Previous Issue
Volume 15, April
 
 

Genes, Volume 15, Issue 5 (May 2024) – 80 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 5673 KiB  
Article
Molecular Regulation of Fetal Brain Development in Inbred and Congenic Mouse Strains Differing in Longevity
by Maliha Islam and Susanta K. Behura
Genes 2024, 15(5), 604; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050604 (registering DOI) - 9 May 2024
Abstract
The objective of this study was to investigate gene regulation of the developing fetal brain from congenic or inbred mice strains that differed in longevity. Gene expression and alternative splice variants were analyzed in a genome-wide manner in the fetal brain of C57BL/6J [...] Read more.
The objective of this study was to investigate gene regulation of the developing fetal brain from congenic or inbred mice strains that differed in longevity. Gene expression and alternative splice variants were analyzed in a genome-wide manner in the fetal brain of C57BL/6J mice (long-lived) in comparison to B6.Cg-Cav1tm1Mls/J (congenic, short-lived) and AKR/J (inbred, short-lived) mice on day(d) 12, 15, and 17 of gestation. The analysis showed a contrasting gene expression pattern during fetal brain development in these mice. Genes related to brain development, aging, and the regulation of alternative splicing were significantly differentially regulated in the fetal brain of the short-lived compared to long-lived mice during development from d15 and d17. A significantly reduced number of splice variants was observed on d15 compared to d12 or d17 in a strain-dependent manner. An epigenetic clock analysis of d15 fetal brain identified DNA methylations that were significantly associated with single-nucleotide polymorphic sites between AKR/J and C57BL/6J strains. These methylations were associated with genes that show epigenetic changes in an age-correlated manner in mice. Together, the finding of this study suggest that fetal brain development and longevity are epigenetically linked, supporting the emerging concept of the early-life origin of longevity. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

12 pages, 3333 KiB  
Article
PlantMine: A Machine-Learning Framework to Detect Core SNPs in Rice Genomics
by Kai Tong, Xiaojing Chen, Shen Yan, Liangli Dai, Yuxue Liao, Zhaoling Li and Ting Wang
Genes 2024, 15(5), 603; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050603 - 9 May 2024
Abstract
As a fundamental global staple crop, rice plays a pivotal role in human nutrition and agricultural production systems. However, its complex genetic architecture and extensive trait variability pose challenges for breeders and researchers in optimizing yield and quality. Particularly to expedite breeding methods [...] Read more.
As a fundamental global staple crop, rice plays a pivotal role in human nutrition and agricultural production systems. However, its complex genetic architecture and extensive trait variability pose challenges for breeders and researchers in optimizing yield and quality. Particularly to expedite breeding methods like genomic selection, isolating core SNPs related to target traits from genome-wide data reduces irrelevant mutation noise, enhancing computational precision and efficiency. Thus, exploring efficient computational approaches to mine core SNPs is of great importance. This study introduces PlantMine, an innovative computational framework that integrates feature selection and machine learning techniques to effectively identify core SNPs critical for the improvement of rice traits. Utilizing the dataset from the 3000 Rice Genomes Project, we applied different algorithms for analysis. The findings underscore the effectiveness of combining feature selection with machine learning in accurately identifying core SNPs, offering a promising avenue to expedite rice breeding efforts and improve crop productivity and resilience to stress. Full article
(This article belongs to the Special Issue Genomic Studies of Plant Breeding)
Show Figures

Figure 1

20 pages, 4526 KiB  
Article
Transcriptional Profiling of Early Defense Response to White Pine Blister Rust Infection in Pinus albicaulis (Whitebark Pine)
by Laura Figueroa-Corona, Kailey Baesen, Akriti Bhattarai, Angelia Kegley, Richard A. Sniezko, Jill Wegrzyn and Amanda R. De La Torre
Genes 2024, 15(5), 602; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050602 - 9 May 2024
Abstract
Pathogen perception generates the activation of signal transduction cascades to host defense. White pine blister rust (WPBR) is caused by Cronartium ribicola J.C. Fisch and affects a number of species of Pinus. One of the most severely affected species is Pinus albicaulis [...] Read more.
Pathogen perception generates the activation of signal transduction cascades to host defense. White pine blister rust (WPBR) is caused by Cronartium ribicola J.C. Fisch and affects a number of species of Pinus. One of the most severely affected species is Pinus albicaulis Engelm (whitebark pine). WPBR resistance in the species is a polygenic and complex trait that requires an optimized immune response. We identified early responses in 2-year-old seedlings after four days of fungal inoculation and compared the underlying transcriptomic response with that of healthy non-inoculated individuals. A de novo transcriptome assembly was constructed with 56,796 high quality-annotations derived from the needles of susceptible and resistant individuals in a resistant half-sib family. Differential expression analysis identified 599 differentially expressed transcripts, from which 375 were upregulated and 224 were downregulated in the inoculated seedlings. These included components of the initial phase of active responses to abiotic factors and stress regulators, such as those involved in the first steps of flavonoid biosynthesis. Four days after the inoculation, infected individuals showed an overexpression of chitinases, reactive oxygen species (ROS) regulation signaling, and flavonoid intermediates. Our research sheds light on the first stage of infection and emergence of disease symptoms among whitebark pine seedlings. RNA sequencing (RNA-seq) data encoding hypersensitive response, cell wall modification, oxidative regulation signaling, programmed cell death, and plant innate immunity were differentially expressed during the defense response against C. ribicola. Full article
(This article belongs to the Section Genes & Environments)
Show Figures

Figure 1

12 pages, 1136 KiB  
Article
Genetic Screening Revealed the Negative Regulation of miR-310~313 Cluster Members on Imd Pathway during Gram-Negative Bacterial Infection in Drosophila
by Yao Li, Yixuan Sun, Ruimin Li, Hongjian Zhou, Shengjie Li and Ping Jin
Genes 2024, 15(5), 601; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050601 - 8 May 2024
Viewed by 81
Abstract
Innate immune response is the first line of host defense against pathogenic microorganisms, and its excessive or insufficient activation is detrimental to the organism. Many individual microRNAs (miRNAs) have emerged as crucial post-transcriptional regulators of immune homeostasis in Drosophila melanogaster. However, the [...] Read more.
Innate immune response is the first line of host defense against pathogenic microorganisms, and its excessive or insufficient activation is detrimental to the organism. Many individual microRNAs (miRNAs) have emerged as crucial post-transcriptional regulators of immune homeostasis in Drosophila melanogaster. However, the synergistical regulation of miRNAs located within a cluster on the Imd-immune pathway remains obscured. In our study, a genetic screening with 52 transgenic UAS-miRNAs was performed to identify ten miRNAs or miRNA clusters, including the miR310~313 cluster, which may function on Imd-dependent immune responses. The miRNA RT-qPCR analysis showed that the expression of miR-310~313 cluster members exhibited an increase at 6–12 h post E. Coli infection. Furthermore, the overexpression of the miR-310~313 cluster impaired the Drosophila survival. And the overexpression of miR-310/311/312 reduced Dpt expression, an indication of Imd pathway induced by Gram-negative bacteria. Conversely, the knockdown of miR-310/311/312 led to increases in Dpt expression. The Luciferase reporter expression assays and RT-qPCR analysis confirmed that miR-310~313 cluster members directly co-targeted and inhibited Imd transcription. These findings reveal that the members of the miR-310~313 cluster synergistically inhibit Imd-dependent immune responses by co-targeting the Imd gene in Drosophila. Full article
21 pages, 1321 KiB  
Review
Genetic Causes of Qualitative Sperm Defects: A Narrative Review of Clinical Evidence
by Andrea Graziani, Maria Santa Rocca, Cinzia Vinanzi, Giulia Masi, Giuseppe Grande, Luca De Toni and Alberto Ferlin
Genes 2024, 15(5), 600; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050600 - 8 May 2024
Viewed by 132
Abstract
Several genes are implicated in spermatogenesis and fertility regulation, and these genes are presently being analysed in clinical practice due to their involvement in male factor infertility (MFI). However, there are still few genetic analyses that are currently recommended for use in clinical [...] Read more.
Several genes are implicated in spermatogenesis and fertility regulation, and these genes are presently being analysed in clinical practice due to their involvement in male factor infertility (MFI). However, there are still few genetic analyses that are currently recommended for use in clinical practice. In this manuscript, we reviewed the genetic causes of qualitative sperm defects. We distinguished between alterations causing reduced sperm motility (asthenozoospermia) and alterations causing changes in the typical morphology of sperm (teratozoospermia). In detail, the genetic causes of reduced sperm motility may be found in the alteration of genes associated with sperm mitochondrial DNA, mitochondrial proteins, ion transport and channels, and flagellar proteins. On the other hand, the genetic causes of changes in typical sperm morphology are related to conditions with a strong genetic basis, such as macrozoospermia, globozoospermia, and acephalic spermatozoa syndrome. We tried to distinguish alterations approved for routine clinical application from those still unsupported by adequate clinical studies. The most important aspect of the study was related to the correct identification of subjects to be tested and the correct application of genetic tests based on clear clinical data. The correct application of available genetic tests in a scenario where reduced sperm motility and changes in sperm morphology have been observed enables the delivery of a defined diagnosis and plays an important role in clinical decision-making. Finally, clarifying the genetic causes of MFI might, in future, contribute to reducing the proportion of so-called idiopathic MFI, which might indeed be defined as a subtype of MFI whose cause has not yet been revealed. Full article
(This article belongs to the Special Issue Beyond the Basics: Genetic Insights into Male Infertility)
Show Figures

Figure 1

19 pages, 3795 KiB  
Article
Study on the Characteristics of Coarse Feeding Tolerance of Ding’an Pigs: Phenotypic and Candidate Genes Identification
by Yanxia Song, Mingming Xue, Feng Wang, Qiguo Tang, Yabiao Luo, Meili Zheng, Yubei Wang, Pengxiang Xue, Ningqi Dong, Ruiping Sun and Meiying Fang
Genes 2024, 15(5), 599; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050599 - 8 May 2024
Viewed by 175
Abstract
Ding’an (DA) pig, a prominent local breed in Hainan Province, exhibits notable advantages in coarse feeding tolerance and high-quality meat. To explore the potential genetic mechanism of coarse feeding tolerance in DA pigs, 60-day-old full sibling pairs of DA and DLY (Duroc-Landrace-Yorkshire) pigs [...] Read more.
Ding’an (DA) pig, a prominent local breed in Hainan Province, exhibits notable advantages in coarse feeding tolerance and high-quality meat. To explore the potential genetic mechanism of coarse feeding tolerance in DA pigs, 60-day-old full sibling pairs of DA and DLY (Duroc-Landrace-Yorkshire) pigs were subjected to fed normal (5%) and high (10%) crude fiber diets for 56 days, respectively. The findings showed that increasing the crude fiber level had no impact on the apparent digestibility of crude fiber, intramuscular fat, and marbling scores in DA pigs, whereas these factors were significantly reduced in DLY pigs (p < 0.05). Through differential expression analysis and Weighted Gene Co-expression Network Analysis (WGCNA) of the colonic mucosal transcriptome data, 65 and 482 candidate genes with coarse feeding tolerance in DA pigs were identified, respectively. Joint analysis screened four key candidate genes, including LDHB, MLC1, LSG1, and ESM1, potentially serving as key regulated genes for coarse feeding tolerance. Functional analysis revealed that the most significant pathway enriched in differential genes associated with coarse feeding tolerance in Ding’an pigs was the signaling receptor binding. The results hold substantial significance for advancing our understanding of the genetic mechanisms governing coarse feeding tolerance in Ding’an pigs. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 7369 KiB  
Article
Expression and Characterization of an Efficient Alginate Lyase from Psychromonas sp. SP041 through Metagenomics Analysis of Rotten Kelp
by Ping Wang, Yi Cai, Hua Zhong, Ruiting Chen, Yuetao Yi, Yanrui Ye and Lili Li
Genes 2024, 15(5), 598; https://doi.org/10.3390/genes15050598 - 8 May 2024
Viewed by 119
Abstract
Alginate is derived from brown algae, which can be cultivated in large quantities. It can be broken down by alginate lyase into alginate oligosaccharides (AOSs), which exhibit a higher added value and better bioactivity than alginate. In this study, metagenomic technology was used [...] Read more.
Alginate is derived from brown algae, which can be cultivated in large quantities. It can be broken down by alginate lyase into alginate oligosaccharides (AOSs), which exhibit a higher added value and better bioactivity than alginate. In this study, metagenomic technology was used to screen for genes that code for high-efficiency alginate lyases. The candidate alginate lyase gene alg169 was detected from Psychromonas sp. SP041, the most abundant species among alginate lyase bacteria on selected rotten kelps. The alginate lyase Alg169 was heterologously expressed in Escherichia coli BL21 (DE3), Ni-IDA-purified, and characterized. The optimum temperature and pH of Alg169 were 25 °C and 7.0, respectively. Metal ions including Mn2+, Co2+, Ca2+, Mg2+, Ni2+, and Ba2+ led to significantly increased enzyme activity. Alg169 exhibited a pronounced dependence on Na+, and upon treatment with Mn2+, its activity surged by 687.57%, resulting in the highest observed enzyme activity of 117,081 U/mg. Bioinformatic analysis predicted that Alg169 would be a double-domain lyase with a molecular weight of 65.58 kDa. It is a bifunctional enzyme with substrate specificity to polyguluronic acid (polyG) and polymannuronic acid (polyM). These results suggest that Alg169 is a promising candidate for the efficient manufacturing of AOSs from brown seaweed. Full article
Show Figures

Figure 1

9 pages, 1970 KiB  
Case Report
A Novel COL4A5 Pathogenic Variant Joins the Dots in a Family with a Synchronous Diagnosis of Alport Syndrome and Polycystic Kidney Disease
by Ludovico Graziani, Chiara Minotti, Miriam Lucia Carriero, Mario Bengala, Silvia Lai, Alessandra Terracciano, Antonio Novelli and Giuseppe Novelli
Genes 2024, 15(5), 597; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050597 - 8 May 2024
Viewed by 147
Abstract
Alport Syndrome (AS) is the most common genetic glomerular disease, and it is caused by COL4A3, COL4A4, and COL4A5 pathogenic variants. The classic phenotypic spectrum associated with AS ranges from isolated hematuria to chronic kidney disease (CKD) with extrarenal abnormalities. Atypical [...] Read more.
Alport Syndrome (AS) is the most common genetic glomerular disease, and it is caused by COL4A3, COL4A4, and COL4A5 pathogenic variants. The classic phenotypic spectrum associated with AS ranges from isolated hematuria to chronic kidney disease (CKD) with extrarenal abnormalities. Atypical presentation of the disorder is possible, and it can mislead the diagnosis. Polycystic kidney disease (PKD), which is most frequently associated with Autosomal Dominant PKD (ADPKD) due to PKD1 and PKD2 heterozygous variants, is emerging as a possible clinical manifestation in COL4A3-A5 patients. We describe a COL4A5 novel familial frameshift variant (NM_000495.5: c.1095dup p.(Leu366ValfsTer45)), which was associated with AS and PKD in the hemizygous proband, as well as with PKD, IgA glomerulonephritis and focal segmental glomerulosclerosis (FSGS) in the heterozygous mother. Establishing the diagnosis of AS can sometimes be difficult, especially in the context of misleading family history and atypical phenotypic features. This case study supports the emerging genotypic and phenotypic heterogeneity in COL4A3-A5-associated disorders, as well as the recently described association between PKD and collagen type IV (Col4) defects. We highlight the importance of the accurate phenotyping of all family members and the relevance of next-generation sequencing in the differential diagnosis of hereditary kidney disease. Full article
(This article belongs to the Special Issue Genetics and Genomics of Rare Disorders Volume II)
Show Figures

Figure 1

15 pages, 2245 KiB  
Article
Interleukin-1β Polymorphisms Are Genetic Markers of Susceptibility to Periprosthetic Joint Infection in Total Hip and Knee Arthroplasty
by Valentina Granata, Dario Strina, Valentina Possetti, Roberto Leone, Sonia Valentino, Katia Chiappetta, Mattia Loppini, Alberto Mantovani, Barbara Bottazzi, Rosanna Asselta, Cristina Sobacchi and Antonio Inforzato
Genes 2024, 15(5), 596; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050596 - 8 May 2024
Viewed by 167
Abstract
Periprosthetic joint infections (PJIs) are serious complications of prosthetic surgery. The criteria for the diagnosis of PJI integrate clinical and laboratory findings in a complex and sometimes inconclusive workflow. Host immune factors hold potential as diagnostic biomarkers in bone and joint infections. We [...] Read more.
Periprosthetic joint infections (PJIs) are serious complications of prosthetic surgery. The criteria for the diagnosis of PJI integrate clinical and laboratory findings in a complex and sometimes inconclusive workflow. Host immune factors hold potential as diagnostic biomarkers in bone and joint infections. We reported that the humoral pattern-recognition molecule long pentraxin 3 (PTX3) predicts PJI in total hip and knee arthroplasty (THA and TKA, respectively). If and how genetic variation in PTX3 and inflammatory genes that affect its expression (IL-1β, IL-6, IL-10, and IL-17A) contributes to the risk of PJI is unknown. We conducted a case–control study on a Caucasian historic cohort of THA and TKA patients who had prosthesis explant due to PJI (cases) or aseptic complications (controls). Saliva was collected from 93 subjects and used to extract DNA and genotype PTX3, IL-1β, IL-6, IL-10, and IL-17A single-nucleotide polymorphisms (SNPs). Moreover, the concentration of IL-1β, IL-10, and IL-6 was measured in synovial fluid and plasma. No association was found between PTX3 polymorphisms and PJI; however, the AGG haplotype, encompassing rs2853550, rs1143634, and rs1143627 in IL-1β, was linked to the infection (p = 0.017). Also, synovial levels of all inflammatory markers were higher in cases than in controls, and a correlation emerged between synovial concentration of PTX3 and that of IL-1β in cases only (Spearman r = 0.67, p = 0.004). We identified a relationship between rs2853550 and the synovial concentration of IL-1β and PTX3. Our findings suggest that IL-1β SNPs could be used for the early identification of THA and TKA patients with a high risk of infection. Full article
(This article belongs to the Special Issue Updates of DNA Variations in Evolution and Human Diseases)
Show Figures

Figure 1

12 pages, 289 KiB  
Article
Neuropsychological Profile of 25 Brazilian Patients with 22q11.2 Deletion Syndrome: Effects of Clinical and Socioeconomic Variables
by Larissa Salustiano Evangelista Pimenta, Claudia Berlim de Mello, Luciana Mello Di Benedetto, Diogo Cordeiro de Queiroz Soares, Leslie Domenici Kulikowski, Anelisa Gollo Dantas, Maria Isabel Melaragno and Chong Ae Kim
Genes 2024, 15(5), 595; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050595 - 8 May 2024
Viewed by 131
Abstract
The 22q11.2 deletion syndrome (22q11.2DS) is associated with a heterogeneous neurocognitive phenotype, which includes psychiatric disorders. However, few studies have investigated the influence of socioeconomic variables on intellectual variability. The aim of this study was to investigate the cognitive profile of 25 patients, [...] Read more.
The 22q11.2 deletion syndrome (22q11.2DS) is associated with a heterogeneous neurocognitive phenotype, which includes psychiatric disorders. However, few studies have investigated the influence of socioeconomic variables on intellectual variability. The aim of this study was to investigate the cognitive profile of 25 patients, aged 7 to 32 years, with a typical ≈3 Mb 22q11.2 deletion, considering intellectual, adaptive, and neuropsychological functioning. Univariate linear regression analysis explored the influence of socioeconomic variables on intellectual quotient (IQ) and global adaptive behavior. Associations with relevant clinical conditions such as seizures, recurrent infections, and heart diseases were also considered. Results showed IQ scores ranging from 42 to 104. Communication, executive functions, attention, and visuoconstructive skills were the most impaired in the sample. The study found effects of access to quality education, family socioeconomic status (SES), and caregiver education level on IQ. Conversely, age at diagnosis and language delay were associated with outcomes in adaptive behavior. This characterization may be useful for better understanding the influence of social-environmental factors on the development of patients with 22q11.2 deletion syndrome, as well as for intervention processes aimed at improving their quality of life. Full article
14 pages, 3678 KiB  
Article
Normalized Clinical Severity Scores Reveal a Correlation between X Chromosome Inactivation and Disease Severity in Rett Syndrome
by Jonathan K. Merritt, Xiaolan Fang, Raymond C. Caylor, Steven A. Skinner, Michael J. Friez, Alan K. Percy and Jeffrey L. Neul
Genes 2024, 15(5), 594; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050594 - 8 May 2024
Viewed by 240
Abstract
Rett Syndrome (RTT) is a severe neurodevelopmental disorder predominately diagnosed in females and primarily caused by pathogenic variants in the X-linked gene Methyl-CpG Binding Protein 2 (MECP2). Most often, the disease causing the MECP2 allele resides on the paternal X chromosome [...] Read more.
Rett Syndrome (RTT) is a severe neurodevelopmental disorder predominately diagnosed in females and primarily caused by pathogenic variants in the X-linked gene Methyl-CpG Binding Protein 2 (MECP2). Most often, the disease causing the MECP2 allele resides on the paternal X chromosome while a healthy copy is maintained on the maternal X chromosome with inactivation (XCI), resulting in mosaic expression of one allele in each cell. Preferential inactivation of the paternal X chromosome is theorized to result in reduced disease severity; however, establishing such a correlation is complicated by known MECP2 genotype effects and an age-dependent increase in severity. To mitigate these confounding factors, we developed an age- and genotype-normalized measure of RTT severity by modeling longitudinal data collected in the US Rett Syndrome Natural History Study. This model accurately reflected individual increase in severity with age and preserved group-level genotype specific differences in severity, allowing for the creation of a normalized clinical severity score. Applying this normalized score to a RTT XCI dataset revealed that XCI influence on disease severity depends on MECP2 genotype with a correlation between XCI and severity observed only in individuals with MECP2 variants associated with increased clinical severity. This normalized measure of RTT severity provides the opportunity for future discovery of additional factors contributing to disease severity that may be masked by age and genotype effects. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

16 pages, 1731 KiB  
Article
Genotype–Phenotype Correlations in Alport Syndrome—A Single-Center Experience
by Ștefan Nicolaie Lujinschi, Bogdan Marian Sorohan, Bogdan Obrișcă, Alexandra Vrabie, Gabriela Lupușoru, Camelia Achim, Andreea Gabriella Andronesi, Andreea Covic and Gener Ismail
Genes 2024, 15(5), 593; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050593 - 7 May 2024
Viewed by 163
Abstract
Background: Alport syndrome (AS) is a common and heterogeneous genetic kidney disease, that often leads to end-stage kidney disease (ESKD). Methods: This is a single-center, retrospective study that included 36 adults with type IV collagen (COL4) mutations. Our main scope was to describe [...] Read more.
Background: Alport syndrome (AS) is a common and heterogeneous genetic kidney disease, that often leads to end-stage kidney disease (ESKD). Methods: This is a single-center, retrospective study that included 36 adults with type IV collagen (COL4) mutations. Our main scope was to describe how genetic features influence renal survival. Results: A total of 24 different mutations were identified, of which eight had not been previously described. Mutations affecting each of the type IV collagen α chains were equally prevalent (33.3%). Most of the patients had pathogenic variants (61.1%). Most patients had a family history of kidney disease (71%). The most prevalent clinical picture was nephritic syndrome (64%). One-third of the subjects had extrarenal manifestations, 41.6% of patients had ESKD at referral, and another 8.3% developed ESKD during follow-up. The median renal survival was 42 years (95% CI, 29.98–54.01). The COL4A4 group displayed better renal survival than the COL4A3 group (p = 0.027). Patients with missense variants had higher renal survival (p = 0.023). Hearing loss was associated with lower renal survival (p < 0.001). Conclusions: Patients with COL4A4 variants and those with missense mutations had significantly better renal survival, whereas those with COL4A3 variants and those with hearing loss had worse prognoses. Full article
23 pages, 723 KiB  
Article
The Association between Mutational Signatures and Clinical Outcomes among Patients with Early-Onset Breast Cancer
by Robert B. Basmadjian, Dylan E. O’Sullivan, May Lynn Quan, Sasha Lupichuk, Yuan Xu, Winson Y. Cheung and Darren R. Brenner
Genes 2024, 15(5), 592; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050592 - 7 May 2024
Viewed by 158
Abstract
Early-onset breast cancer (EoBC), defined by a diagnosis <40 years of age, is associated with poor prognosis. This study investigated the mutational landscape of non-metastatic EoBC and the prognostic relevance of mutational signatures using 100 tumour samples from Alberta, Canada. The MutationalPatterns package [...] Read more.
Early-onset breast cancer (EoBC), defined by a diagnosis <40 years of age, is associated with poor prognosis. This study investigated the mutational landscape of non-metastatic EoBC and the prognostic relevance of mutational signatures using 100 tumour samples from Alberta, Canada. The MutationalPatterns package in R/Bioconductor was used to extract de novo single-base substitution (SBS) and insertion–deletion (indel) mutational signatures and to fit COSMIC SBS and indel signatures. We assessed associations between these signatures and clinical characteristics of disease, in addition to recurrence-free (RFS) and overall survival (OS). Five SBS and two indel signatures were extracted. The SBS13-like signature had higher relative contributions in the HER2-enriched subtype. Patients with higher than median contribution tended to have better RFS after adjustment for other prognostic factors (HR = 0.29; 95% CI: 0.08–1.06). An unsupervised clustering algorithm based on absolute contribution revealed three clusters of fitted COSMIC SBS signatures, but cluster membership was not associated with clinical variables or survival outcomes. The results of this exploratory study reveal various SBS and indel signatures may be associated with clinical features of disease and prognosis. Future studies with larger samples are required to better understand the mechanistic underpinnings of disease progression and treatment response in EoBC. Full article
17 pages, 996 KiB  
Review
Genetic Variants in the ABCB1 and ABCG2 Gene Drug Transporters Involved in Gefitinib-Associated Adverse Reaction: A Systematic Review and Meta-Analysis
by Mariana Vieira Morau, Cecília Souto Seguin, Marília Berlofa Visacri, Eder de Carvalho Pincinato and Patricia Moriel
Genes 2024, 15(5), 591; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050591 - 7 May 2024
Viewed by 172
Abstract
This systematic review and meta-analysis aimed to verify the association between the genetic variants of adenosine triphosphate (ATP)-binding cassette subfamily B member 1 (ABCB1) and ATP-binding cassette subfamily G member 2 (ABCG2) genes and the presence and severity of [...] Read more.
This systematic review and meta-analysis aimed to verify the association between the genetic variants of adenosine triphosphate (ATP)-binding cassette subfamily B member 1 (ABCB1) and ATP-binding cassette subfamily G member 2 (ABCG2) genes and the presence and severity of gefitinib-associated adverse reactions. We systematically searched PubMed, Virtual Health Library/Bireme, Scopus, Embase, and Web of Science databases for relevant studies published up to February 2024. In total, five studies were included in the review. Additionally, eight genetic variants related to ABCB1 (rs1045642, rs1128503, rs2032582, and rs1025836) and ABCG2 (rs2231142, rs2231137, rs2622604, and 15622C>T) genes were analyzed. Meta-analysis showed a significant association between the ABCB1 gene rs1045642 TT genotype and presence of diarrhea (OR = 5.41, 95% CI: 1.38–21.14, I2 = 0%), the ABCB1 gene rs1128503 TT genotype and CT + TT group and the presence of skin rash (OR = 4.37, 95% CI: 1.51–12.61, I2 = 0% and OR = 6.99, 95%CI: 1.61–30.30, I2= 0%, respectively), and the ABCG2 gene rs2231142 CC genotype and presence of diarrhea (OR = 3.87, 95% CI: 1.53–9.84, I2 = 39%). No ABCB1 or ABCG2 genes were positively associated with the severity of adverse reactions associated with gefitinib. In conclusion, this study showed that ABCB1 and ABCG2 variants are likely to exhibit clinical implications in predicting the presence of adverse reactions to gefitinib. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
14 pages, 3937 KiB  
Article
Genetic Analysis of the ts-Lethal Mutant Δpa0665/pTS-pa0665 Reveals Its Role in Cell Morphology and Oxidative Phosphorylation in Pseudomonas aeruginosa
by Jiayin Zhu, Hulin Zhao and Zhili Yang
Genes 2024, 15(5), 590; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050590 - 7 May 2024
Viewed by 200
Abstract
Pa0665 in Pseudomonas aeruginosa shares homologous sequences with that of the essential A-type iron–sulfur (Fe-S) cluster insertion protein ErpA in Escherichia coli. However, its essentiality in P. aeruginosa and its complementation with E. coli erpA has not been experimentally examined. To fulfill this [...] Read more.
Pa0665 in Pseudomonas aeruginosa shares homologous sequences with that of the essential A-type iron–sulfur (Fe-S) cluster insertion protein ErpA in Escherichia coli. However, its essentiality in P. aeruginosa and its complementation with E. coli erpA has not been experimentally examined. To fulfill this task, we constructed plasmid-based ts-mutant Δpa0665/pTS-pa0665 using a three-step protocol. The mutant displayed growth defects at 42 °C, which were complemented by expressing ec.erpA. Microscopic observations indicated a petite cell phenotype for Δpa0665/pTS-pa0665 at 42 °C, correlated with the downregulation of the oprG gene. RNA sequencing revealed significant transcriptional changes in genes associated with the oxidative phosphorylation (OXPHOS) system, aligning with reduced ATP levels in Δpa0665/pTS-pa0665 under 42 °C. Additionally, the ts-mutant showed heightened sensitivity to H2O2 at 42 °C. Overall, our study demonstrates the essential role of pa0665 for OXPHOS function and is complemented by ec.erpA. We propose that the plasmid-based ts-allele is useful for genetic analysis of essential genes of interest in P. aeruginosa. Full article
(This article belongs to the Special Issue Genomics and Bioinformatics in Microbial Science)
Show Figures

Figure 1

14 pages, 2916 KiB  
Article
Genome-Wide Identification and Characterization of the PHT1 Gene Family and Its Response to Mycorrhizal Symbiosis in Salvia miltiorrhiza under Phosphate Stress
by Xue Chen, Yanhong Bai, Yanan Lin, Hongyan Liu, Fengxia Han, Hui Chang, Menglin Li and Qian Liu
Genes 2024, 15(5), 589; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050589 - 6 May 2024
Viewed by 321
Abstract
Phosphorus (P) is a vital nutrient element that is essential for plant growth and development, and arbuscular mycorrhizal fungi (AMF) can significantly enhance P absorption. The phosphate transporter protein 1 (PHT1) family mediates the uptake of P in plants. However, the PHT1 gene [...] Read more.
Phosphorus (P) is a vital nutrient element that is essential for plant growth and development, and arbuscular mycorrhizal fungi (AMF) can significantly enhance P absorption. The phosphate transporter protein 1 (PHT1) family mediates the uptake of P in plants. However, the PHT1 gene has not yet been characterized in Salvia miltiorrhiza. In this study, to gain insight into the functional divergence of PHT1 genes, nine SmPHT1 genes were identified in the S. miltiorrhiza genome database via bioinformatics tools. Phylogenetic analysis revealed that the PHT1 proteins of S. miltiorrhiza, Arabidopsis thaliana, and Oryza sativa could be divided into three groups. PHT1 in the same clade has a similar gene structure and motif, suggesting that the features of each clade are relatively conserved. Further tissue expression analysis revealed that SmPHT1 was expressed mainly in the roots and stems. In addition, phenotypic changes, P content, and PHT1 gene expression were analyzed in S. miltiorrhiza plants inoculated with AMF under different P conditions (0 mM, 0.1 mM, and 10 mM). P stress and AMF significantly affected the growth and P accumulation of S. miltiorrhiza. SmPHT1;6 was strongly expressed in the roots colonized by AMF, implying that SmPHT1;6 was a specific AMF-inducible PHT1. Taken together, these results provide new insights into the functional divergence and genetic redundancy of the PHT1 genes in response to P stress and AMF symbiosis in S. miltiorrhiza. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

8 pages, 1407 KiB  
Case Report
The Segregation of p.Arg68Ter-CLDN14 Mutation in a Syrian Deaf Family, Phenotypic Variations, and Comparative Analysis with the GJB2 Gene
by Abdelaziz Tlili, Abdullah Al Mutery and Jihen Chouchen
Genes 2024, 15(5), 588; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050588 - 6 May 2024
Viewed by 272
Abstract
Hearing impairment, a rare inherited condition, is notably prevalent in populations with high rates of consanguinity. The most common form observed globally is autosomal recessive non-syndromic hearing loss. Despite its prevalence, this genetic disorder is characterized by a substantial genetic diversity, making diagnosis [...] Read more.
Hearing impairment, a rare inherited condition, is notably prevalent in populations with high rates of consanguinity. The most common form observed globally is autosomal recessive non-syndromic hearing loss. Despite its prevalence, this genetic disorder is characterized by a substantial genetic diversity, making diagnosis and screening challenging. The emergence of advanced next-generation sequencing (NGS) technologies has significantly advanced the discovery of genes and variants linked to various conditions, such as hearing loss. In this study, our objective was to identify the specific variant causing hearing loss in a family from Syria using clinical exome sequencing. The proband in the family exhibited profound deafness as shown by pure-tone audiometry results. The analysis of the different variants obtained by NGS revealed the presence of a nonsense mutation within the CLDN14 gene. Through Sanger sequencing, we verified that this variant segregates with the disease and was not present in the control population. Moreover, we conducted a comprehensive review of all reported deafness-related CLDN14 mutations and their associated phenotypes. Furthermore, we endeavored to carry out a comparative analysis between the CLDN14 and GJB2 genes, with the objective of identifying potential factors that could explain the notable discrepancy in mutation frequency between these two genes. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

21 pages, 9294 KiB  
Article
Genome-Wide Analysis of Transcription Factor R2R3-MYB Gene Family and Gene Expression Profiles during Anthocyanin Synthesis in Common Walnut (Juglans regia L.)
by Dongjun Zuo, Yujie Yan, Jiayu Ma and Peng Zhao
Genes 2024, 15(5), 587; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050587 - 5 May 2024
Viewed by 316
Abstract
The R2R3-MYB gene family, encoding plant transcriptional regulators, participates in many metabolic pathways of plant physiology and development, including flavonoid metabolism and anthocyanin synthesis. This study proceeded as follows: the JrR2R3-MYB gene family was analyzed genome-wide, and the family members were identified and [...] Read more.
The R2R3-MYB gene family, encoding plant transcriptional regulators, participates in many metabolic pathways of plant physiology and development, including flavonoid metabolism and anthocyanin synthesis. This study proceeded as follows: the JrR2R3-MYB gene family was analyzed genome-wide, and the family members were identified and characterized using the high-quality walnut reference genome “Chandler 2.0”. All 204 JrR2R3-MYBs were established and categorized into 30 subgroups via phylogenetic analysis. JrR2R3-MYBs were unevenly distributed over 16 chromosomes. Most JrR2R3-MYBs had similar structures and conservative motifs. The cis-acting elements exhibit multiple functions of JrR2R3-MYBs such as light response, metabolite response, and stress response. We found that the expansion of JrR2R3-MYBs was mainly caused by WGD or segmental duplication events. Ka/Ks analysis indicated that these genes were in a state of negative purifying selection. Transcriptome results suggested that JrR2R3-MYBs were widely entangled in the process of walnut organ development and differentially expressed in different colored varieties of walnuts. Subsequently, we identified 17 differentially expressed JrR2R3-MYBs, 9 of which may regulate anthocyanin biosynthesis based on the results of a phylogenetic analysis. These genes were present in greater expression levels in ‘Zijing’ leaves than in ‘Lvling’ leaves, as revealed by the results of qRT-PCR experiments. These results contributed to the elucidation of the functions of JrR2R3-MYBs in walnut coloration. Collectively, this work provides a foundation for exploring the functional characteristics of the JrR2R3-MYBs in walnuts and improving the nutritional value and appearance quality of walnuts. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

18 pages, 872 KiB  
Review
Immunogenetics of Systemic Sclerosis
by Olga Gumkowska-Sroka, Kacper Kotyla and Przemysław Kotyla
Genes 2024, 15(5), 586; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050586 - 5 May 2024
Viewed by 297
Abstract
Systemic sclerosis (SSc) is a rare autoimmune connective tissue disorder characterized by massive fibrosis, vascular damage, and immune imbalance. Advances in rheumatology and immunology over the past two decades have led to a redefinition of systemic sclerosis, shifting from its initial perception as [...] Read more.
Systemic sclerosis (SSc) is a rare autoimmune connective tissue disorder characterized by massive fibrosis, vascular damage, and immune imbalance. Advances in rheumatology and immunology over the past two decades have led to a redefinition of systemic sclerosis, shifting from its initial perception as primarily a “hyperfibrotic” state towards a recognition of systemic sclerosis as an immune-mediated disease. Consequently, the search for genetic markers has transitioned from focusing on fibrotic mechanisms to exploring immune regulatory pathways. Immunogenetics, an emerging field at the intersection of immunology, molecular biology, and genetics has provided valuable insights into inherited factors that influence immunity. Data from genetic studies conducted thus far indicate that alterations in genetic messages can significantly impact disease risk and progression. While certain genetic variations may confer protective effects, others may exacerbate disease susceptibility. This paper presents a comprehensive review of the most relevant genetic changes that influence both the risk and course of systemic sclerosis. Special emphasis is placed on factors regulating the immune response, recognizing their pivotal role in the pathogenesis of the disease. Full article
(This article belongs to the Special Issue New Advances in Immunogenetics of Disease)
Show Figures

Figure 1

12 pages, 1513 KiB  
Brief Report
Characterization of the Common Genetic Variation in the Spanish Population of Navarre
by Alberto Maillo, Estefania Huergo, María Apellániz-Ruiz, Edurne Urrutia-Lafuente, María Miranda, Josefa Salgado, Sara Pasalodos-Sanchez, Luna Delgado-Mora, Óscar Teijido, Ibai Goicoechea, Rosario Carmona, Javier Perez-Florido, Virginia Aquino, Daniel Lopez-Lopez, María Peña-Chilet, Sergi Beltran, Joaquín Dopazo, Iñigo Lasa, Juan José Beloqui, NAGEN-Scheme, Ángel Alonso and David Gomez-Cabreroadd Show full author list remove Hide full author list
Genes 2024, 15(5), 585; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050585 - 4 May 2024
Viewed by 302
Abstract
Large-scale genomic studies have significantly increased our knowledge of genetic variability across populations. Regional genetic profiling is essential for distinguishing common benign variants from disease-causing ones. To this end, we conducted a comprehensive characterization of exonic variants in the population of Navarre (Spain), [...] Read more.
Large-scale genomic studies have significantly increased our knowledge of genetic variability across populations. Regional genetic profiling is essential for distinguishing common benign variants from disease-causing ones. To this end, we conducted a comprehensive characterization of exonic variants in the population of Navarre (Spain), utilizing whole genome sequencing data from 358 unrelated individuals of Spanish origin. Our analysis revealed 61,410 biallelic single nucleotide variants (SNV) within the Navarrese cohort, with 35% classified as common (MAF > 1%). By comparing allele frequency data from 1000 Genome Project (excluding the Iberian cohort of Spain, IBS), Genome Aggregation Database, and a Spanish cohort (including IBS individuals and data from Medical Genome Project), we identified 1069 SNVs common in Navarre but rare (MAF ≤ 1%) in all other populations. We further corroborated this observation with a second regional cohort of 239 unrelated exomes, which confirmed 676 of the 1069 SNVs as common in Navarre. In conclusion, this study highlights the importance of population-specific characterization of genetic variation to improve allele frequency filtering in sequencing data analysis to identify disease-causing variants. Full article
Show Figures

Figure 1

11 pages, 1597 KiB  
Article
Evaluation of miR-148a-3p and miR-106a-5p as Biomarkers for Prostate Cancer: Pilot Study
by Roxana Andra Coman, Vlad Horia Schitcu, Liviuta Budisan, Lajos Raduly, Cornelia Braicu, Bogdan Petrut, Ioan Coman, Ioana Berindan-Neagoe and Nadim Al Hajjar
Genes 2024, 15(5), 584; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050584 - 4 May 2024
Viewed by 434
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that may function as tumor suppressors or oncogenes. Alteration of their expression levels has been linked to a range of human malignancies, including cancer. The objective of this investigation is to assess the relative [...] Read more.
MicroRNAs (miRNAs) are a class of small non-coding RNAs that may function as tumor suppressors or oncogenes. Alteration of their expression levels has been linked to a range of human malignancies, including cancer. The objective of this investigation is to assess the relative expression levels of certain miRNAs to distinguish between prostate cancer (PCa) from benign prostatic hyperplasia (BPH). Blood plasma was collected from 66 patients diagnosed with BPH and 58 patients with PCa. Real-time PCR technology was used to evaluate the relative expression among the two groups for miR-106a-5p and miR-148a-3p. The significant downregulation of both miRNAs in plasma from PCa versus BPH patients suggests their potential utility as diagnostic biomarkers for distinguishing between these conditions. The concurrent utilization of these two miRNAs slightly enhanced the sensitivity for discrimination among the two analyzed groups, as shown in ROC curve analysis. Further validation of these miRNAs in larger patient cohorts and across different stages of PCa may strengthen their candidacy as clinically relevant biomarkers for diagnosis and prognosis. Full article
(This article belongs to the Special Issue Non-coding RNAs in Human Health and Disease)
Show Figures

Figure 1

12 pages, 1375 KiB  
Article
Mapping of Leaf Rust Resistance Loci in Two Kenyan Wheats and Development of Linked Markers
by Davinder Singh, Peace Kankwatsa, Karanjeet S. Sandhu, Urmil K. Bansal, Kerrie L. Forrest and Robert F. Park
Genes 2024, 15(5), 583; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050583 - 3 May 2024
Viewed by 396
Abstract
Leaf rust caused by the pathogen Puccinia triticina (Pt) is a destructive fungal disease of wheat that occurs in almost all wheat-growing areas across the globe. Genetic resistance has proven to be the best solution to mitigate the disease. Wheat breeders [...] Read more.
Leaf rust caused by the pathogen Puccinia triticina (Pt) is a destructive fungal disease of wheat that occurs in almost all wheat-growing areas across the globe. Genetic resistance has proven to be the best solution to mitigate the disease. Wheat breeders are continuously seeking new diversified and durable sources of resistance to use in developing new varieties. We developed recombinant inbred line (RIL) populations from two leaf rust-resistant genotypes (Kenya Kudu and AUS12568) introduced from Kenya to identify and characterize resistance to Pt and to develop markers linked closely to the resistance that was found. Our studies detected four QTL conferring adult plant resistance (APR) to leaf rust. Two of these loci are associated with known genes, Lr46 and Lr68, residing on chromosomes 1B and 7B, respectively. The remaining two, QLrKK_2B and QLrAus12568_5A, contributed by Kenya Kudu and AUS12568 respectively, are putatively new loci for Pt resistance. Both QLrKK_2B and QLrAus12568_5A were found to interact additively with Lr46 in significantly reducing the disease severity at adult plant growth stages in the field. We further developed a suite of six closely linked markers within the QLrAus12568_5A locus and four within the QLrKK_2B region. Among these, markers sunKASP_522 and sunKASP_524, flanking QLrAus12568_5A, and sunKASP_536, distal to QLrKK_2B, were identified as the most closely linked and reliable for marker-assisted selection. The markers were validated on a selection of 64 Australian wheat varieties and found to be polymorphic and robust, allowing for clear allelic discrimination. The identified new loci and linked molecular markers will enable rapid adoption by breeders in developing wheat varieties carrying diversified and durable resistance to leaf rust. Full article
(This article belongs to the Collection Feature Papers: 'Plant Genetics and Genomics' Section)
Show Figures

Figure 1

13 pages, 1531 KiB  
Article
MD3F: Multivariate Distance Drift Diffusion Framework for High-Dimensional Datasets
by Jessica Zielinski, Patricia Corby and Alexander V. Alekseyenko
Genes 2024, 15(5), 582; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050582 - 3 May 2024
Viewed by 270
Abstract
High-dimensional biomedical datasets have become easier to collect in the last two decades with the advent of multi-omic and single-cell experiments. These can generate over 1000 measurements per sample or per cell. More recently, focus has been drawn toward the need for longitudinal [...] Read more.
High-dimensional biomedical datasets have become easier to collect in the last two decades with the advent of multi-omic and single-cell experiments. These can generate over 1000 measurements per sample or per cell. More recently, focus has been drawn toward the need for longitudinal datasets, with the appreciation that important dynamic changes occur along transitions between health and disease. Analysis of longitudinal omics data comes with many challenges, including type I error inflation and corresponding loss in power when thousands of hypothesis tests are needed. Multivariate analysis can yield approaches with higher statistical power; however, multivariate methods for longitudinal data are currently limited. We propose a multivariate distance-based drift-diffusion framework (MD3F) to tackle the need for a multivariate approach to longitudinal, high-throughput datasets. We show that MD3F can result in surprisingly simple yet valid and powerful hypothesis testing and estimation approaches using generalized linear models. Through simulation and application studies, we show that MD3F is robust and can offer a broadly applicable method for assessing multivariate dynamics in omics data. Full article
(This article belongs to the Special Issue Application of Bioinformatics in Microbiome)
Show Figures

Figure 1

14 pages, 962 KiB  
Review
Genetic Screening—Emerging Issues
by Martina C. Cornel, Karuna R. M. van der Meij, Carla G. van El, Tessel Rigter and Lidewij Henneman
Genes 2024, 15(5), 581; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050581 - 3 May 2024
Viewed by 597
Abstract
In many countries, some form of genetic screening is offered to all or part of the population, either in the form of well-organized screening programs or in a less formalized way. Screening can be offered at different phases of life, such as preconception, [...] Read more.
In many countries, some form of genetic screening is offered to all or part of the population, either in the form of well-organized screening programs or in a less formalized way. Screening can be offered at different phases of life, such as preconception, prenatal, neonatal and later in life. Screening should only be offered if the advantages outweigh the disadvantages. Technical innovations in testing and treatment are driving changes in the field of prenatal and neonatal screening, where many jurisdictions have organized population-based screening programs. As a result, a greater number and wider range of conditions are being added to the programs, which can benefit couples’ reproductive autonomy (preconception and prenatal screening) and improve early diagnosis to prevent irreversible health damage in children (neonatal screening) and in adults (cancer and cascade screening). While many developments in screening are technology-driven, citizens may also express a demand for innovation in screening, as was the case with non-invasive prenatal testing. Relatively new emerging issues for genetic screening, especially if testing is performed using DNA sequencing, relate to organization, data storage and interpretation, benefit–harm ratio and distributive justice, information provision and follow-up, all connected to acceptability in current healthcare systems. Full article
(This article belongs to the Special Issue Human Genetics: Diseases, Community, and Counseling)
Show Figures

Figure 1

9 pages, 2690 KiB  
Brief Report
A Missense Variant in HACE1 Is Associated with Intellectual Disability, Epilepsy, Spasticity, and Psychomotor Impairment in a Pakistani Kindred
by Muhammad A. Usmani, Amama Ghaffar, Mohsin Shahzad, Javed Akram, Aisha I. Majeed, Kausar Malik, Khushbakht Fatima, Asma A. Khan, Zubair M. Ahmed, Sheikh Riazuddin and Saima Riazuddin
Genes 2024, 15(5), 580; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050580 - 2 May 2024
Viewed by 502
Abstract
Intellectual disability (ID), which affects around 2% to 3% of the population, accounts for 0.63% of the overall prevalence of neurodevelopmental disorders (NDD). ID is characterized by limitations in a person’s intellectual and adaptive functioning, and is caused by pathogenic variants in more [...] Read more.
Intellectual disability (ID), which affects around 2% to 3% of the population, accounts for 0.63% of the overall prevalence of neurodevelopmental disorders (NDD). ID is characterized by limitations in a person’s intellectual and adaptive functioning, and is caused by pathogenic variants in more than 1000 genes. Here, we report a rare missense variant (c.350T>C; p.(Leu117Ser)) in HACE1 segregating with NDD syndrome with clinical features including ID, epilepsy, spasticity, global developmental delay, and psychomotor impairment in two siblings of a consanguineous Pakistani kindred. HACE1 encodes a HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1 (HACE1), which is involved in protein ubiquitination, localization, and cell division. HACE1 is also predicted to interact with several proteins that have been previously implicated in the ID phenotype in humans. The p.(Leu117Ser) variant replaces an evolutionarily conserved residue of HACE1 and is predicted to be deleterious by various in silico algorithms. Previously, eleven protein truncating variants of HACE1 have been reported in individuals with NDD. However, to our knowledge, p.(Leu117Ser) is the second missense variant in HACE1 found in an individual with NDD. Full article
(This article belongs to the Special Issue Next Generation Sequencing in Human Disease)
Show Figures

Figure 1

19 pages, 5558 KiB  
Article
Mechanism of Apoptosis in Porcine Ovarian Granulosa Cells Triggered by T-2 Toxin
by Yige Chen, Xianrui Zheng, Ren Zhou, Huibin Zhang, Yangguang Liu, Xiaojing Hu and Zongjun Yin
Genes 2024, 15(5), 579; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050579 - 1 May 2024
Viewed by 435
Abstract
T-2 toxin (T-2), an A-type mono mycotoxin produced by various Fusarium species, disrupts DNA/RNA and protein synthesis upon entering the body, resulting in pathological conditions in various tissues/organs and posing a significant threat to human and animal health. However, the mechanisms underlying its [...] Read more.
T-2 toxin (T-2), an A-type mono mycotoxin produced by various Fusarium species, disrupts DNA/RNA and protein synthesis upon entering the body, resulting in pathological conditions in various tissues/organs and posing a significant threat to human and animal health. However, the mechanisms underlying its toxicity remain unclear. With the goal of learning how T-2 affects reproduction in animals, we utilized primary porcine ovarian granulosa cells (pGCs) as a carrier in vitro and constructed concentration models for analyzing cell morphology and RNA-sequencing (RNA-seq). Our findings showed that T-2 could influence pGCs morphology, induce cell cycle arrest, and promote apoptosis in a dose-dependent manner. The results of RNA-seq analyses indicated that a total of 8216 genes exhibited significant differential expression (DEG) following T-2 treatment, of which 4812 were observed to be down-regulated and 3404 were up-regulated. The DEGs following T-2 toxin treatment of pGCs had a notable impact on many metabolic pathways such as PI3K-Akt, Ras, MAPK, and apoptosis, which in turn altered important physiological processes. Gene set enrichment analysis (GSEA) indicated that the differences in the harmful effects of T-2 might be caused by the varying control of cellular processes and the pathway responsible for steroid metabolism. These results present further insights regarding the mechanism of T-2 action on sow reproductive toxicity, enhance our understanding of T-2 reproductive toxicological effects, and lay a theoretical foundation for the judicious prevention of T-2-induced reproductive toxicity. Full article
(This article belongs to the Special Issue Advances in Pig Genetic and Genomic Breeding of 2024)
Show Figures

Figure 1

12 pages, 4659 KiB  
Article
Systematic Analysis of Zinc Finger-Homeodomain Transcription Factors (ZF-HDs) in Barley (Hordeum vulgare L.)
by Meng-Di Liu, Hao Liu, Wen-Yan Liu, Shou-Fei Ni, Zi-Yi Wang, Zi-Han Geng, Kong-Yao Zhu, Yan-Fang Wang and Yan-Hong Zhao
Genes 2024, 15(5), 578; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050578 - 1 May 2024
Viewed by 406
Abstract
Zinc finger-homeodomain transcription factors (ZF-HDs) are pivotal in regulating plant growth, development, and diverse stress responses. In this study, we found 8 ZF-HD genes in barley genome. Theses eight HvZF-HD genes were located on five chromosomes, and classified into ZHD and MIF subfamily. [...] Read more.
Zinc finger-homeodomain transcription factors (ZF-HDs) are pivotal in regulating plant growth, development, and diverse stress responses. In this study, we found 8 ZF-HD genes in barley genome. Theses eight HvZF-HD genes were located on five chromosomes, and classified into ZHD and MIF subfamily. The collinearity, gene structure, conserved motif, and cis-elements of HvZF-HD genes were also analyzed. Real-time PCR results suggested that the expression of HvZF-HD4, HvZF-HD6, HvZF-HD7 and HvZF-HD8 were up-regulated after hormones (ABA, GA3 and MeJA) or PEG treatments, especially HvZF-HD6 was significantly induced. These results provide useful information of ZF-HD genes to future study aimed at barley breeding. Full article
(This article belongs to the Special Issue Abiotic Stress in Land Plants: Molecular Genetics and Genomics)
Show Figures

Figure 1

30 pages, 6195 KiB  
Article
Comprehensive Bioinformatic Investigation of TP53 Dysregulation in Diverse Cancer Landscapes
by Ruby Khan, Bakht Pari and Krzysztof Puszynski
Genes 2024, 15(5), 577; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050577 - 30 Apr 2024
Viewed by 448
Abstract
P53 overexpression plays a critical role in cancer pathogenesis by disrupting the intricate regulation of cellular proliferation. Despite its firmly established function as a tumor suppressor, elevated p53 levels can paradoxically contribute to tumorigenesis, influenced by factors such as exposure to carcinogens, genetic [...] Read more.
P53 overexpression plays a critical role in cancer pathogenesis by disrupting the intricate regulation of cellular proliferation. Despite its firmly established function as a tumor suppressor, elevated p53 levels can paradoxically contribute to tumorigenesis, influenced by factors such as exposure to carcinogens, genetic mutations, and viral infections. This phenomenon is observed across a spectrum of cancer types, including bladder (BLCA), ovarian (OV), cervical (CESC), cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), diffuse large B-cell lymphoma (DLBC), esophageal carcinoma (ESCA), head and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and uterine corpus endometrial carcinoma (UCEC). This broad spectrum of cancers is often associated with increased aggressiveness and recurrence risk. Effective therapeutic strategies targeting tumors with p53 overexpression require a comprehensive approach, integrating targeted interventions aimed at the p53 gene with conventional modalities such as chemotherapy, radiation therapy, and targeted drugs. In this extensive study, we present a detailed analysis shedding light on the multifaceted role of TP53 across various cancers, with a specific emphasis on its impact on disease-free survival (DFS). Leveraging data from the TCGA database and the GTEx dataset, along with GEPIA, UALCAN, and STRING, we identify TP53 overexpression as a significant prognostic indicator, notably pronounced in prostate adenocarcinoma (PRAD). Supported by compelling statistical significance (p < 0.05), our analysis reveals the distinct influence of TP53 overexpression on DFS outcomes in PRAD. Additionally, graphical representations of overall survival (OS) underscore the notable disparity in OS duration between tumors exhibiting elevated TP53 expression (depicted by the red line) and those with lower TP53 levels (indicated by the blue line). The hazard ratio (HR) further emphasizes the profound impact of TP53 on overall survival. Moreover, our investigation delves into the intricate TP53 protein network, unveiling genes exhibiting robust positive correlations with TP53 expression across 13 out of 27 cancers. Remarkably, negative correlations emerge with pivotal tumor suppressor genes. This network analysis elucidates critical proteins, including SIRT1, CBP, p300, ATM, DAXX, HSP 90-alpha, Mdm2, RPA70, 14-3-3 protein sigma, p53, and ASPP2, pivotal in regulating cell cycle dynamics, DNA damage response, and transcriptional regulation. Our study underscores the paramount importance of deciphering TP53 dynamics in cancer, providing invaluable insights into tumor behavior, disease-free survival, and potential therapeutic avenues. Full article
Show Figures

Figure 1

15 pages, 610 KiB  
Article
Defining a Haplotype Encompassing the LCORL-NCAPG Locus Associated with Increased Lean Growth in Beef Cattle
by Leif E. Majeres, Anna C. Dilger, Daniel W. Shike, Joshua C. McCann and Jonathan E. Beever
Genes 2024, 15(5), 576; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050576 - 30 Apr 2024
Viewed by 357
Abstract
Numerous studies have shown genetic variation at the LCORL-NCAPG locus is strongly associated with growth traits in beef cattle. However, a causative molecular variant has yet to be identified. To define all possible candidate variants, 34 Charolais-sired calves were whole-genome sequenced, including 17 [...] Read more.
Numerous studies have shown genetic variation at the LCORL-NCAPG locus is strongly associated with growth traits in beef cattle. However, a causative molecular variant has yet to be identified. To define all possible candidate variants, 34 Charolais-sired calves were whole-genome sequenced, including 17 homozygous for a long-range haplotype associated with increased growth (QQ) and 17 homozygous for potential ancestral haplotypes for this region (qq). The Q haplotype was refined to an 814 kb region between chr6:37,199,897–38,014,080 and contained 218 variants not found in qq individuals. These variants include an insertion in an intron of NCAPG, a previously documented mutation in NCAPG (rs109570900), two coding sequence mutations in LCORL (rs109696064 and rs384548488), and 15 variants located within ATAC peaks that were predicted to affect transcription factor binding. Notably, rs384548488 is a frameshift variant likely resulting in loss of function for long isoforms of LCORL. To test the association of the coding sequence variants of LCORL with phenotype, 405 cattle from five populations were genotyped. The two variants were in complete linkage disequilibrium. Statistical analysis of the three populations that contained QQ animals revealed significant (p < 0.05) associations with genotype and birth weight, live weight, carcass weight, hip height, and average daily gain. These findings affirm the link between this locus and growth in beef cattle and describe DNA variants that define the haplotype. However, further studies will be required to define the true causative mutation. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

17 pages, 3158 KiB  
Article
A Simple Nonviral Method to Generate Human Induced Pluripotent Stem Cells Using SMAR DNA Vectors
by Anna Hartley, Luisa Burger, Cornelia L. Wincek, Lieke Dons, Tracy Li, Annabel Grewenig, Toros Taşgın, Manuela Urban, Alicia Roig-Merino, Mehrnaz Ghazvini and Richard P. Harbottle
Genes 2024, 15(5), 575; https://0-doi-org.brum.beds.ac.uk/10.3390/genes15050575 - 30 Apr 2024
Viewed by 448
Abstract
Induced pluripotent stem cells (iPSCs) are a powerful tool for biomedical research, but their production presents challenges and safety concerns. Yamanaka and Takahashi revolutionised the field by demonstrating that somatic cells could be reprogrammed into pluripotent cells by overexpressing four key factors for [...] Read more.
Induced pluripotent stem cells (iPSCs) are a powerful tool for biomedical research, but their production presents challenges and safety concerns. Yamanaka and Takahashi revolutionised the field by demonstrating that somatic cells could be reprogrammed into pluripotent cells by overexpressing four key factors for a sufficient time. iPSCs are typically generated using viruses or virus-based methods, which have drawbacks such as vector persistence, risk of insertional mutagenesis, and oncogenesis. The application of less harmful nonviral vectors is limited as conventional plasmids cannot deliver the levels or duration of the factors necessary from a single transfection. Hence, plasmids that are most often used for reprogramming employ the potentially oncogenic Epstein–Barr nuclear antigen 1 (EBNA-1) system to ensure adequate levels and persistence of expression. In this study, we explored the use of nonviral SMAR DNA vectors to reprogram human fibroblasts into iPSCs. We show for the first time that iPSCs can be generated using nonviral plasmids without the use of EBNA-1 and that these DNA vectors can provide sufficient expression to induce pluripotency. We describe an optimised reprogramming protocol using these vectors that can produce high-quality iPSCs with comparable pluripotency and cellular function to those generated with viruses or EBNA-1 vectors. Full article
(This article belongs to the Special Issue Advances in Non-viral Gene Transfer for Gene Therapy Applications)
Show Figures

Figure 1

Previous Issue
Back to TopTop