ijms-logo

Journal Browser

Journal Browser

Drought Stress Tolerance in Plants in 2024

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: closed (30 May 2024) | Viewed by 509

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Plant Breeding and Genetic Resources, HAO-Demeter, Thermi, Greece
Interests: plant responses to abiotic stress; photoprotective and antioxidative mechanisms to abiotic stress; photosynthesis; secondary metabolites
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The current climate change scenario is accelerating degradation, desertification, and salinization. These are destructive processes negatively impacting arable lands and food production and are of particular importance considering that the world population is markedly increasing. This seems to lead to floods and decreasing water quality, but also to a decrease in the availability of water resources in some regions. More than ever, drought is a major threat to agriculture worldwide.

This issue of the International Journal of Molecular Sciences journal will focus on recent advances in mechanisms involved in drought tolerance in crop plants, with special attention paid to the role of the root tissue, shoot–root interactions, and photosynthetic function. In addition to drought, it will consider other abiotic stresses involving water deficits, like soil salinization, at the cell level and their interaction with drought.

Dr. Ilektra Sperdouli
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • root physiology
  • drought tolerance
  • photosynthesis
  • water deficit stress
  • shoot–root interaction
  • salinity
  • crop plants

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 1627 KiB  
Article
Mechanistic Insights on Salicylic Acid-Induced Enhancement of Photosystem II Function in Basil Plants under Non-Stress or Mild Drought Stress
by Ilektra Sperdouli, Emmanuel Panteris, Julietta Moustaka, Tuğba Aydın, Gülriz Bayçu and Michael Moustakas
Int. J. Mol. Sci. 2024, 25(11), 5728; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms25115728 - 24 May 2024
Viewed by 232
Abstract
Photosystem II (PSII) functions were investigated in basil (Ocimum basilicum L.) plants sprayed with 1 mM salicylic acid (SA) under non-stress (NS) or mild drought-stress (MiDS) conditions. Under MiDS, SA-sprayed leaves retained significantly higher (+36%) chlorophyll content compared to NS, SA-sprayed leaves. [...] Read more.
Photosystem II (PSII) functions were investigated in basil (Ocimum basilicum L.) plants sprayed with 1 mM salicylic acid (SA) under non-stress (NS) or mild drought-stress (MiDS) conditions. Under MiDS, SA-sprayed leaves retained significantly higher (+36%) chlorophyll content compared to NS, SA-sprayed leaves. PSII efficiency in SA-sprayed leaves under NS conditions, evaluated at both low light (LL, 200 μmol photons m−2 s−1) and high light (HL, 900 μmol photons m−2 s−1), increased significantly with a parallel significant decrease in the excitation pressure at PSII (1-qL) and the excess excitation energy (EXC). This enhancement of PSII efficiency under NS conditions was induced by the mechanism of non-photochemical quenching (NPQ) that reduced singlet oxygen (1O2) production, as indicated by the reduced quantum yield of non-regulated energy loss in PSII (ΦNO). Under MiDS, the thylakoid structure of water-sprayed leaves appeared slightly dilated, and the efficiency of PSII declined, compared to NS conditions. In contrast, the thylakoid structure of SA-sprayed leaves did not change under MiDS, while PSII functionality was retained, similar to NS plants at HL. This was due to the photoprotective heat dissipation by NPQ, which was sufficient to retain the same percentage of open PSII reaction centers (qp), as in NS conditions and HL. We suggest that the redox status of the plastoquinone pool (qp) under MiDS and HL initiated the acclimation response to MiDS in SA-sprayed leaves, which retained the same electron transport rate (ETR) with control plants. Foliar spray of SA could be considered as a method to improve PSII efficiency in basil plants under NS conditions, at both LL and HL, while under MiDS and HL conditions, basil plants could retain PSII efficiency similar to control plants. Full article
(This article belongs to the Special Issue Drought Stress Tolerance in Plants in 2024)
Back to TopTop