New Approach of High-Quality Agricultural Development in the Saline-Alkali Land

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Farming Sustainability".

Deadline for manuscript submissions: 31 March 2025 | Viewed by 3132

Special Issue Editors


E-Mail Website
Guest Editor
Chinese Academy of Sciences, Beijing, China
Interests: sustainable management of farmland ecosystem research; improvement of moderate and low yielding cropland
Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
Interests: soil fertility enhancement; the improvement of saline land

Special Issue Information

Dear Colleagues,

Agricultural development is related to the efficient use and rational distribution of water resources in saline land, related to the protection of the ecological environment, and the efficient development and safety of land resources. Therefore, the high-quality development of saline agriculture is an important part of the sustainable development of saline land, while the development of high-quality agriculture in saline land is an important challenge. Based on the new approach and model needs, the current situation, and major problems of the development of the saline-alkali areas, this Special Issue will focus on the new approaches and models for comprehensive utilization of saline-alkali land, the dynamic process of soil water and salt, plant-soil-microbe interaction, and construction of ecological grass-husbandry ecosystem.

Prof. Dr. Zhu Ouyang
Dr. Zhen Liu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • comprehensive utilization of saline-alkali land
  • soil carbon and nitrogen processes in saline-alkali soil
  • the dynamic process of soil water and salt in saline-alkali soil
  • interaction of plant-soil-microbe in saline-alkali land
  • construction of ecological grass-husbandry ecosystem

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 2128 KiB  
Article
The Spatial Coupling Mechanism of Soil Moisture and Salinity after the Erosive Rainfall in the Loess Hilly Region
by Zengming Ke, Lihui Ma and Nan Shen
Agronomy 2024, 14(6), 1138; https://0-doi-org.brum.beds.ac.uk/10.3390/agronomy14061138 - 27 May 2024
Viewed by 257
Abstract
Investigating the spatial distribution characteristics of the interaction between soil salinity and moisture is crucial in revealing moisture–salinity interaction in semi-arid farmland. The sampling of soil was performed on the second (S1), fifth (S2), eighth (S3), eleventh (S4), and fourteenth (S5) days after [...] Read more.
Investigating the spatial distribution characteristics of the interaction between soil salinity and moisture is crucial in revealing moisture–salinity interaction in semi-arid farmland. The sampling of soil was performed on the second (S1), fifth (S2), eighth (S3), eleventh (S4), and fourteenth (S5) days after the erosive rainfall. The multifractal method was used to analyze spatial distribution parameters of soil moisture and salinity under the different stages. The findings showed that the soil moisture content decreased from 22.44% to 12.73%, while the salinity increased from 0.71 to 1.18 g kg–1 after the rainfall. As the amount of moisture in the soil decreased, the variability in the distribution of moisture initially increased from S1 to S3 and then decreased, while the salinity content also decreased. The spatial distribution of soil moisture and salinity content showed a strong correlation at S3 to S4 (with the relative water content of soil ranging from 0.52 to 0.75), indicating a significant coupling effect in these stages. However, the distribution of soil salinity was not uniform under high moisture content conditions (S1 to S2), as it was leached unevenly by rainfall, and under low moisture content conditions (S5), it precipitated, resulting in a low correlation between the spatial distribution of soil moisture and salinity content. This research has provided insight into the coupling dynamics of soil moisture and salinity content, revealing the mechanisms governing their spatial distribution in dryland agricultural regions. Full article
Show Figures

Figure 1

25 pages, 10576 KiB  
Article
The Effects of Different Planting Patterns in Bare Strips on Soil Water and Salt Accumulation under Film-Mulched Drip Irrigation
by Yuan Su, Wenxuan Mai, Zhenyong Zhao, Yan Liu, Yingjie Yan, Linlin Yao and Hongfei Zhou
Agronomy 2024, 14(6), 1103; https://0-doi-org.brum.beds.ac.uk/10.3390/agronomy14061103 - 22 May 2024
Viewed by 264
Abstract
Salt accumulation in bare strips under film-mulched drip irrigation is a global concern as it adversely affects soil quality and hinders sustainable agricultural development in arid and semi-arid regions. This study aims to investigate the spatial distribution of soil moisture and salt under [...] Read more.
Salt accumulation in bare strips under film-mulched drip irrigation is a global concern as it adversely affects soil quality and hinders sustainable agricultural development in arid and semi-arid regions. This study aims to investigate the spatial distribution of soil moisture and salt under various planting patterns and assess the lateral salt accumulation effect in bare strips. Seven treatments were implemented based on the local cotton planting pattern, including the local classical planting pattern (LTP), mulch width of 220 cm (WFM-220), spacing of 90 cm (SFM-90), mulch width of 40 cm (WFM-40), spacing of 10 cm (SFM-10), ridge tillage (TFM-RT), and ditching (TFM-D), varying in mulch width, spacing, and tillage method in bare strips. Additionally, the performance of the HYDRUS-2D model was evaluated by comparing simulated and observed values using field data. The results revealed that (I) the WFM-220 cm treatment exhibited the best water content retention under mulched film, with lower salt accumulation in the surface bare strip (0–20 cm soil layer); (II) all treatments with narrow rows showed desalination effects in the 0–40 cm soil layer, with salt content reductions ranging from approximately 13% to 38% compared to the initial values; (III) under the LTP treatment, the lateral salt discharge effect in the bare strip of the 0–40 cm soil layer was the best, regardless of mulch width and spacing, with a salt accumulation rate up to three times higher than the initial value, and even up to four times higher in the 0–10 cm layer; (IV) the TFM-RT treatment exhibited the best salt accumulation ability on the surface bare strip; and (V) the HYDRUS-2D model proved to be an effective tool for studying the dynamic regulation mechanism of water and salt with root mean square error values ranging from 0.079 to 0.106 cm3·cm−3 for soil water content and from 0.044 to 0.079 dS·m−1 for electrical conductivity, indicating good agreement between simulations and observations. Full article
Show Figures

Figure 1

17 pages, 30436 KiB  
Article
Increase in Soil Carbon Pool Stability Rather Than Its Stock in Coastal Saline—Alkali Ditches following Reclamation Time
by Xiangrong Li, Zhen Liu, Jing Li, Huarui Gong, Yitao Zhang, Zhigang Sun and Zhu Ouyang
Agronomy 2023, 13(11), 2843; https://0-doi-org.brum.beds.ac.uk/10.3390/agronomy13112843 - 19 Nov 2023
Viewed by 1163
Abstract
Extensive drainage ditches are constructed to reduce soil salinity in reclaimed saline–alkali farmland, consequently forming plant growth hotspots and impacting soil carbon stocks therein. However, the investigation into changes in soil carbon stocks remains limited in these ditches. To address this, soil samples [...] Read more.
Extensive drainage ditches are constructed to reduce soil salinity in reclaimed saline–alkali farmland, consequently forming plant growth hotspots and impacting soil carbon stocks therein. However, the investigation into changes in soil carbon stocks remains limited in these ditches. To address this, soil samples were collected from drainage ditches, which originated from the reclamation of saline–alkali farmland, at different reclamation years (the first, seventh, and fifteenth year). Moreover, fractions were separated from soil samples; a particle size separation method (particulate organic matter, POM; mineral–associated organic matter, MAOM) and a spatio–temporal substitution method were conducted to analyze the variations in soil carbon components and the underlying mechanisms. The results indicate that there were no significant variations in the contents and stocks of soil organic carbon (SOC) and soil inorganic carbon (SIC) following the increase in reclamation time. However, in the POM fraction, the SOC content (SOCPOM) and stock significantly decreased from 2.24 to 1.12 g kg−1 and from 19.02 to 12.71 Mg ha−1, respectively. Conversely, in the MAOM fraction, the SOC content (SOCMAOM) and stock significantly increased from 0.65 to 1.70 g kg−1 and from 5.30 to 12.27 Mg ha−1, respectively. The different changes in SOCPOM and SOCMAOM, as well as the result of the structural equation model, showed a possible transformation process from SOCPOM to SOCMAOM in the soil carbon pool under the driving force of reclamation time. The results in terms of the changes in soil carbon components demonstrate the stability rather than the stock of the soil carbon pool increase in coastal saline–alkali ditches following the excavation formation time. Although more long time series and direct evidence are needed, our findings further provide a case study for new knowledge about changes in the soil carbon pool within saline–alkali ditches and reveal the potential processes involved in the transformation of soil carbon components. Full article
Show Figures

Figure 1

10 pages, 996 KiB  
Article
Influences of Exogenic Organic Materials Application on Soil Fertility Status and Paddy Growth under a Coastal Saline Soil Condition
by Wengang Zuo, Yuxi Zhou, Yutian Yao, Chao Chen, Fan Wang, Hao Peng, Tianyang Qin, Yunlong Li, Shuotong Chen, Rongjiang Yao, Yuhua Shan and Yanchao Bai
Agronomy 2023, 13(9), 2280; https://0-doi-org.brum.beds.ac.uk/10.3390/agronomy13092280 - 29 Aug 2023
Cited by 1 | Viewed by 864
Abstract
Paddy cultivation in saline soil can rapidly reduce soil salinity, which is an important approach for managing, utilizing, and improving such soils. However, the high salinity of saline soil severely limits the sustainability of paddy production. Adding exogenic organic material to improve soil [...] Read more.
Paddy cultivation in saline soil can rapidly reduce soil salinity, which is an important approach for managing, utilizing, and improving such soils. However, the high salinity of saline soil severely limits the sustainability of paddy production. Adding exogenic organic material to improve soil fertility in saline soil is a key measure for obtaining high-yield, efficient and sustainable cultivation of paddy. This study used a field experiment to explore the influences of different organic materials application on soil desalination and fertility improvement in saline paddy soil. The results showed that the application of dairy manure (DM), sludge vermicompost (SV), and vinegar residue (VR) reduced soil barrier factors, including electrical conductivity (EC) and pH, increased soil fertility, including soil organic carbon (SOC), nitrogen (N), and phosphorus (P), and promoted paddy growth in saline soil. Specifically, soil EC decreased by 29.0%, 32.9% and 49.4% and paddy biomass increased by 27.7%, 63.7% and 107.6% in DM, SV, and VR-treated soils with the highest application rates, respectively, compared to the control. At an equal carbon application rate, VR was more conducive to decreasing soil EC and pH and increasing paddy biomass. Compared to DM and SV, VR addition resulted in an average decrease of 20.7% and 19.1% in soil EC, respectively, and an average increase of 57.3% and 29.5% in paddy biomass. In addition, soil water-stable aggregates (WSA), SOC, N, and P contents in VR-treated soil were lower than those in DM and SV-treated soils. Correlation and path analysis revealed that there was a significant negative correlation between paddy biomass and soil barrier factors. However, EC in VR-treated soil had a direct negative effect on paddy biomass, while EC in DM and SV-treated soils had an indirect negative effect on paddy biomass. Additionally, the direct contribution of soil pH to paddy biomass was higher with VR (−1.49) than that with DM (−0.21) and SV (0.89). In contrast to DM and SV, the effect of soil WSA on paddy biomass in VR-treated soil was mainly an indirect positive effect, and the direct effect was negative. The corresponding results provided new options and ideas for the efficient utilization of saline soils and high-yield cultivation of paddy. Full article
Show Figures

Figure 1

Back to TopTop