Previous Issue
Volume 4, March
 
 

Thermo, Volume 4, Issue 2 (June 2024) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
30 pages, 9528 KiB  
Article
Comparative Numerical Analysis of Keyhole Shape and Penetration Depth in Laser Spot Welding of Aluminum with Power Wave Modulation
by Saeid SaediArdahaei and Xuan-Tan Pham
Thermo 2024, 4(2), 222-251; https://0-doi-org.brum.beds.ac.uk/10.3390/thermo4020013 - 23 May 2024
Viewed by 240
Abstract
Keyhole mode laser welding is a valuable technique for welding thick materials in industrial applications. However, its susceptibility to fluctuations and instabilities poses challenges, leading to defects that compromise weld quality. Observing the keyhole during laser welding is challenging due to bright process [...] Read more.
Keyhole mode laser welding is a valuable technique for welding thick materials in industrial applications. However, its susceptibility to fluctuations and instabilities poses challenges, leading to defects that compromise weld quality. Observing the keyhole during laser welding is challenging due to bright process radiation, and existing observation methods are complex and expensive. This paper alternatively presents a novel numerical modeling approach for laser spot welding of aluminum through a modified mixture theory, a modified level-set (LS) method, and a thermal enthalpy porosity technique. The effects of laser parameters on keyhole penetration depth are investigated, with a focus on laser power, spot radius, frequency, and pulse wave modulation in pulsed wave (PW) versus continuous wave (CW) laser welding. PW laser welding involves the careful modulation of power waves, specifically adjusting the pulse width, pulse number, and pulse shapes. Results indicate a greater than 80 percent increase in the keyhole penetration depth with higher laser power, pulse width, and pulse number, as well as decreased spot radius. Keyhole instabilities are also more pronounced with higher pulse width/numbers and frequencies. Notably, the rectangular pulse shape demonstrates substantially deeper penetration compared to CW welding and other pulse shapes. This study enhances understanding of weld pool dynamics and provides insights into optimizing laser welding parameters to mitigate defects and improve weld quality. Full article
Show Figures

Figure 1

20 pages, 3355 KiB  
Article
The Effect of Temperature on the London Dispersive and Lewis Acid-Base Surface Energies of Polymethyl Methacrylate Adsorbed on Silica by Inverse Gas Chromatography
by Tayssir Hamieh
Thermo 2024, 4(2), 202-221; https://0-doi-org.brum.beds.ac.uk/10.3390/thermo4020012 - 17 May 2024
Viewed by 260
Abstract
Inverse gas chromatography at infinite dilution was used to determine the surface thermodynamic properties of silica particles and PMMA adsorbed on silica, and more particularly, to quantify the London dispersive energy γsd, the Lewis acid γs+, and [...] Read more.
Inverse gas chromatography at infinite dilution was used to determine the surface thermodynamic properties of silica particles and PMMA adsorbed on silica, and more particularly, to quantify the London dispersive energy γsd, the Lewis acid γs+, and base γs polar surface energies of PMMA/silica composites as a function of the temperature and the recovery fraction θ of PMMA. The polar acid-base surface energy γsAB and the total surface energy of the different composites were then deduced as a function of the temperature. In this paper, the Hamieh thermal model was used to quantify the surface thermodynamic energy of polymethyl methacrylate (PMMA) adsorbed on silica particles at different recovery fractions. A comparison of the new results was carried out with those obtained by applying other molecular models of the surface areas of organic molecules adsorbed on the different solid substrates. An important deviation of these molecular models from the thermal model was proved. The determination of γsd, γs+, γs, and γsAB of PMMA in both the bulk and adsorbed phases showed an important non-linearity variation of these surface parameters as a function of the temperature. The presence of maxima in the curves of γsd(T) highlighted the second-order transition temperatures in PMMA showing beta-relaxation, glass transition, and liquid–liquid temperatures. These three transition temperatures depended on the adsorption rate of PMMA on silica. The proposed method gave a new relation between the recovery fraction of PMMA and its London dispersive energy, showing an important effect of the temperature on the surface energy parameters of the adsorption of PMMA on silica. A universal equation relating γsd(T,θ) of the systems PMMA/silica to the recovery fraction and the temperature was proposed. Full article
Show Figures

Graphical abstract

17 pages, 3662 KiB  
Article
Enhancing Bi2Te2.70Se0.30 Thermoelectric Module Performance through COMSOL Simulations
by Md. Kamrul Hasan, Mehmet Ali Üstüner, Hayati Mamur and Mohammad Ruhul Amin Bhuiyan
Thermo 2024, 4(2), 185-201; https://0-doi-org.brum.beds.ac.uk/10.3390/thermo4020011 - 6 May 2024
Viewed by 387
Abstract
This research employs the COMSOL Multiphysics software (COMSOL 6.2) to conduct rigorous simulations and assess the performance of a thermoelectric module (TEM) meticulously crafted with alumina (Al2O3), copper (Cu), and Bi2Te2.70Se0.30 thermoelectric (TE) materials. [...] Read more.
This research employs the COMSOL Multiphysics software (COMSOL 6.2) to conduct rigorous simulations and assess the performance of a thermoelectric module (TEM) meticulously crafted with alumina (Al2O3), copper (Cu), and Bi2Te2.70Se0.30 thermoelectric (TE) materials. The specific focus is on evaluating diverse aspects of the Bi2Te2.70Se0.30 thermoelectric generator (TEG). The TEM design incorporates Bi2Te2.70Se0.30 for TE legs of the p- and n-type positioned among the Cu layers, Cu as the electrical conductor, and Al2O3 serving as an electrical insulator between the top and bottom layers. A thorough investigation is conducted into critical parameters within the TEM, which include arc length, electric potential, normalized current density, temperature gradient, total heat source, and total net energy rate. The geometric configuration of the square-shaped Bi2Te2.70Se0.30 TEM, measuring 1 mm × 1 mm × 2.5 mm with a 0.25 mm Al2O3 thickness and a 0.125 mm Cu thickness, is scrutinized. This study delves into the transport phenomena of TE devices, exploring the impacts of the Seebeck coefficient (S), thermal conductivity (k), and electrical conductivity (σ) on the temperature differential across the leg geometry. Modeling studies underscore the substantial influence of S = ±2.41 × 10−3 V/K, revealing improved thermal conductivity and decreased electrical conductivity at lower temperatures. The findings highlight the Bi2Te2.70Se0.30 TEM’s high potential for TEG applications, offering valuable insights into design and performance considerations crucial for advancing TE technology. Full article
Show Figures

Figure 1

21 pages, 2037 KiB  
Article
An Evaluation of Correlations for Predicting the Heat Transfer Coefficient during the Condensation of Saturated and Superheated Vapors Inside Channels
by Mirza M. Shah
Thermo 2024, 4(2), 164-184; https://0-doi-org.brum.beds.ac.uk/10.3390/thermo4020010 - 1 Apr 2024
Viewed by 643
Abstract
Condensation heat transfer is involved in many industrial applications. Therefore, it is important to know the relative accuracy of the available methods for predicting heat transfer. Condensation can occur with saturated as well as superheated vapors. Predictive methods for both conditions were evaluated [...] Read more.
Condensation heat transfer is involved in many industrial applications. Therefore, it is important to know the relative accuracy of the available methods for predicting heat transfer. Condensation can occur with saturated as well as superheated vapors. Predictive methods for both conditions were evaluated using a wide range of data. Twelve well-known correlations for the condensation of saturated vapor, including the most recent ones, were compared with data for 51 pure fluids and mixtures from 132 sources in horizontal and vertical channels of many shapes. Channel hydraulic diameters were 0.08–49 mm, the mass flux was 1.1–1400 kg/m2s, and the reduced pressure range was 0.0006–0.949. The fluids included water, CO2, ammonia, hydrocarbons, halocarbon refrigerants, various chemicals, and heat transfer fluids. The best predictive technique was identified. The three most commonly used models for heat transfer during the condensation of superheated vapors were studied. They were first compared with test data using measured saturated condensation and forced convection heat transfer coefficients to select the best model. The selected model was then compared with test data using various correlations for heat transfer coefficients needed in the model. The best correlations to use in the model were identified. The results of this research are presented, as are recommendations for use in design. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop