Previous Issue
Volume 12, April
 
 

Processes, Volume 12, Issue 5 (May 2024) – 112 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
20 pages, 13316 KiB  
Article
Confluence Effect of Debris-Filled Damage and Temperature Variations on Guided-Wave Ultrasonic Testing (GWUT)
by Samuel C. Olisa and Muhammad A. Khan
Processes 2024, 12(5), 957; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050957 - 8 May 2024
Abstract
Continuous monitoring of structural health is essential for the timely detection of damage and avoidance of structural failure. Guided-wave ultrasonic testing (GWUT) assesses structural damages by correlating its sensitive features with the damage parameter of interest. However, few or no studies have been [...] Read more.
Continuous monitoring of structural health is essential for the timely detection of damage and avoidance of structural failure. Guided-wave ultrasonic testing (GWUT) assesses structural damages by correlating its sensitive features with the damage parameter of interest. However, few or no studies have been performed on the detection and influence of debris-filled damage on GWUT under environmental conditions. This paper used the pitch–catch technique of GWUT, signal cross-correlation, statistical root mean square (RMS) and root mean square deviation (RMSD) to study the combined influence of varying debris-filled damage percentages and temperatures on damage detection. Through experimental result analysis, a predictive model with an R2 of about 78% and RMSE values of about 7.5×105 was established. When validated, the model proved effective, with a comparable relative error of less than 10%. Full article
Show Figures

Figure 1

15 pages, 580 KiB  
Article
Hydrothermal Hydrolysis of Cocoa Bean Shell to Obtain Bioactive Compounds
by Marta Sánchez, Tamara Bernal, Amanda Laca, Adriana Laca and Mario Díaz
Processes 2024, 12(5), 956; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050956 - 8 May 2024
Abstract
Cocoa bean shell (CBS), a by-product from the chocolate industry, is an interesting source of bioactive compounds. In this work, the effects of time and pH on the hydrothermal hydrolysis of CBS were evaluated with the aim of maximizing the extraction of antioxidant [...] Read more.
Cocoa bean shell (CBS), a by-product from the chocolate industry, is an interesting source of bioactive compounds. In this work, the effects of time and pH on the hydrothermal hydrolysis of CBS were evaluated with the aim of maximizing the extraction of antioxidant and functional compounds from this biomass. In general, all treatments tested led to improvements in the extraction of bioactive compounds compared to untreated samples. The maximum values for antioxidant activity (187 µmol TE/g CBS dw) and phenolic compounds (14.5 mg GAE/g CBS dw) were obtained when CBS was treated at pH 4 for 10 min. In addition, maximum amounts of flavonoids (10.1 mg CE/g CBS dw), tannins (6.5 mg CE/g CBS dw) and methylxanthines (9 mg/g CBS dw) were obtained under mild pH conditions (4–5). It is noteworthy that these values are higher than those reported in the literature for other vegetable substrates, highlighting the potential of CBS to be valorized as a source of different value-adding products. Full article
24 pages, 10023 KiB  
Review
Mass Transport and Energy Conversion of Magnetic Nanofluids from Nanoparticles’ Movement and Liquid Manipulation
by Fei Xu, Yaowen Cao, Hanwen Gong, Juan Li, Ying Xu and Lei Shi
Processes 2024, 12(5), 955; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050955 - 8 May 2024
Viewed by 85
Abstract
Magnetic nanofluids, also referred to as ferromagnetic particle levitation systems, are materials with highly responsive magnetic properties. Due to their magnetic responsiveness, excellent controllability, favorable thermal characteristics, and versatility, magnetic nanofluids have sparked considerable interest in both industrial manufacturing and scientific research. Magnetic [...] Read more.
Magnetic nanofluids, also referred to as ferromagnetic particle levitation systems, are materials with highly responsive magnetic properties. Due to their magnetic responsiveness, excellent controllability, favorable thermal characteristics, and versatility, magnetic nanofluids have sparked considerable interest in both industrial manufacturing and scientific research. Magnetic nanofluids have been used and developed in diverse areas such as materials science, physics, chemistry and engineering due to their remarkable characteristics such as rapid magnetic reaction, elastic flow capacities, and tunable thermal and optical properties. This paper provides a full and in-depth introduction to the diverse uses of ferrofluids including material fabrication, fluid droplet manipulation, and biomedicine for the power and machinery sectors. As a result, magnetic nanofluids have shown promising applications and have provided innovative ideas for multidisciplinary research in biology, chemistry, physics and materials science. This paper also presents an overview of the device construction and the latest developments in magnetic-nanofluid-related equipment, as well as possible challenging issues and promising future scenarios. Full article
(This article belongs to the Special Issue Magnetic Nanoparticles in Green Manufacturing for Sustainability)
Show Figures

Figure 1

15 pages, 8628 KiB  
Article
Wind Shear Model Considering Atmospheric Stability to Improve Accuracy of Wind Resource Assessment
by Hongpeng Liu, Guanjin Chen, Zejia Hua, Jingang Zhang and Qing Wang
Processes 2024, 12(5), 954; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050954 - 8 May 2024
Viewed by 117
Abstract
An accurate wind shear model is an important prerequisite in extrapolating the wind resource from lower heights to the increasing hub height of wind turbines. Based on the 1-year dataset (collected in 2014) consisting of 15-minute intervals collected at heights of 2, 10, [...] Read more.
An accurate wind shear model is an important prerequisite in extrapolating the wind resource from lower heights to the increasing hub height of wind turbines. Based on the 1-year dataset (collected in 2014) consisting of 15-minute intervals collected at heights of 2, 10, 50, 100, and 150 m on an anemometer tower in northern China, the present study focuses on the time-varying relationship between the wind shear coefficient (WSC) and atmospheric stability and proposes a wind shear model considering atmospheric stability. Through the relationship between Monin–Obukhov (M-O) length and gradient Richardson number, the M-O length is directly calculated by wind data, and the WSC is calculated by combining the Panofsky and Dutton (PD) models, which enhances the engineering practicability of the model. Then, the performance of the model is quantified and compared with two alternative methods: the use of annual average WSC and the use of stability change WSC extrapolation. The analysis demonstrates that the proposed model outperforms the other approaches in terms of normal root mean square error (NRMSE) and normal bias (NB). More specifically, this method reduces the NRMSE and NB by 24–29% and 76–95%, respectively. Meanwhile, it reaches the highest extrapolation accuracy under unstable and stable atmospheric conditions. The results are verified using the Weibull distribution. Full article
Show Figures

Figure 1

5 pages, 195 KiB  
Editorial
Progress of Optimization in Manufacturing Industries and Energy System
by Dapeng Zhang, Qiangda Yang and Yuwen You
Processes 2024, 12(5), 953; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050953 - 8 May 2024
Viewed by 162
Abstract
The manufacturing and energy industry are typical complex large systems which cover a long cycle such as design [...] Full article
14 pages, 4312 KiB  
Article
Study and Application of Rock Drilling Resistance Characteristics in the Jiyang Depression Formation
by Xiaoyong Ma, Wei Cheng and Liang Zhu
Processes 2024, 12(5), 952; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050952 - 8 May 2024
Viewed by 150
Abstract
In response to the unclear drilling resistance characteristics of rocks in the Ji’yang Depression, low drilling efficiency of PDC drill bits, and difficulties in drill bit selection, this study selected rock samples from different depths in the area for indoor drilling resistance analysis [...] Read more.
In response to the unclear drilling resistance characteristics of rocks in the Ji’yang Depression, low drilling efficiency of PDC drill bits, and difficulties in drill bit selection, this study selected rock samples from different depths in the area for indoor drilling resistance analysis testing. Based on logging data, a prediction model was established for drilling resistance characteristics parameters of the strata in the area, and a graph of drilling resistance characteristic parameters of the rocks in the area was drawn. The study showed that the uniaxial compressive strength of the strata rocks was 50–110 MPa, with a hardness of 500–1300 MPa, a plasticity coefficient ranging from 1 to 2, a rock drillability grade of 8–20, and an abrasiveness index of 5–20. Combining the analysis of on-site drilling bit failures, PDC drill bits adapted to the strata in the area were selected, and the mechanical drilling speed of the selected bits reached 12.58 m/h, successfully drilling through the target layer. The above research results are of guiding significance for understanding the reasons for the difficulty of drilling into the Jiyang Depression strata and for improving mechanical drilling speed and drill bit selection in this area. Full article
Show Figures

Figure 1

15 pages, 1873 KiB  
Article
Ultrasonically Assisted Electrocoagulation Combined with Zeolite in Compost Wastewater Treatment
by Sandra Svilović, Nediljka Vukojević Medvidović, Ladislav Vrsalović, Senka Gudić and Ana-Marija Mikulandra
Processes 2024, 12(5), 951; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050951 - 8 May 2024
Viewed by 297
Abstract
In this paper, the possibility of combining electrocoagulation (EC), ultrasound, and the addition of zeolite for wastewater treatment was investigated for the first time. The following combinations of hybrid processes were tested: electrocoagulation with zeolite (ECZ), simultaneous electrocoagulation with zeolite and ultrasound (ECZ+US), [...] Read more.
In this paper, the possibility of combining electrocoagulation (EC), ultrasound, and the addition of zeolite for wastewater treatment was investigated for the first time. The following combinations of hybrid processes were tested: electrocoagulation with zeolite (ECZ), simultaneous electrocoagulation with zeolite and ultrasound (ECZ+US), and two-stage electrocoagulation with zeolite and ultrasound (US+Z - EC), carried out with three different electrode materials. The results show that the simultaneous assistance of ultrasound in the ECZ leads to a lower increase in pH, while the temperature increase is higher. Regarding the COD, the assistance of ultrasound is only useful for Zn electrodes in the two-stage US+Z - EC, while the reduction in voltage consumption occurs for Fe and Al electrodes. Ultrasonic assistance caused more damage to the anodes, but anode consumption was reduced for Al and Zn electrodes. The total amount of zeolite that can be recovered is between 55–97%, and recovery is higher in systems with higher turbidity reduction. Good settling ability is only achieved with Al and Fe electrodes in simultaneous performance. Taguchi’s orthogonal L9 array design was applied to analyze the effects of electrode material, process type, mixing speed, and time duration on COD decrease, settling velocity, electrode, and voltage consumption. The results show that the use of ultrasound does not contribute to the desired result and generally only has a favorable effect on voltage and electrode consumption, while it has no positive effect on settling ability or COD decrease. Furthermore, although longer times and higher mixing speeds negatively impact cost due to voltage and electrode consumption, it is advisable not to choose the shortest duration and lowest speed to obtain adequate wastewater treatment quality. Full article
(This article belongs to the Special Issue Treatment and Remediation of Organic and Inorganic Pollutants)
Show Figures

Figure 1

21 pages, 1199 KiB  
Article
Research on Multi-Objective Process Parameter Optimization Method in Hard Turning Based on an Improved NSGA-II Algorithm
by Zhengrui Zhang, Fei Wu and Aonan Wu
Processes 2024, 12(5), 950; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050950 - 7 May 2024
Viewed by 145
Abstract
To address the issue of local optima encountered during the multi-objective optimization process with the Non-dominated Sorting Genetic Algorithm II (NSGA-II) algorithm, this paper introduces an enhanced version of the NSGA-II. This improved NSGA-II incorporates polynomial and simulated binary crossover operators into the [...] Read more.
To address the issue of local optima encountered during the multi-objective optimization process with the Non-dominated Sorting Genetic Algorithm II (NSGA-II) algorithm, this paper introduces an enhanced version of the NSGA-II. This improved NSGA-II incorporates polynomial and simulated binary crossover operators into the genetic algorithm’s crossover phase to refine its performance. For evaluation purposes, the classic ZDT benchmark functions are employed. The findings reveal that the enhanced NSGA-II algorithm achieves higher convergence accuracy and surpasses the performance of the original NSGA-II algorithm. When applied to the machining of the high-hardness material 20MnCrTi, four algorithms were utilized: the improved NSGA-II, the conventional NSGA-II, NSGA-III, and MOEA/D. The experimental outcomes show that the improved NSGA-II algorithm delivers a more optimal combination of process parameters, effectively enhancing the workpiece’s surface roughness and material removal rate. This leads to a significant improvement in the machining quality of the workpiece surface, demonstrating the superiority of the improved algorithm in optimizing machining processes. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
12 pages, 725 KiB  
Article
Catalytic Conversion of Oil Shale over Fe or Ni Catalysts under Sub-Critical Water
by Chang Che, Junwen Wu, Zhibing Shen, Haolong Ning, Ruiyuan Tang, Shengrong Liang, Juntao Zhang, Haiyan Jiang and Shibao Yuan
Processes 2024, 12(5), 949; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050949 - 7 May 2024
Viewed by 174
Abstract
Sub-critical water is an environment-friendly solvent. It is widely used for the extraction of various organic compounds. It can be used to dissolve and transport organic matter in oil shale. In this study, the conversion of oil shale was synergistically catalyzed by the [...] Read more.
Sub-critical water is an environment-friendly solvent. It is widely used for the extraction of various organic compounds. It can be used to dissolve and transport organic matter in oil shale. In this study, the conversion of oil shale was synergistically catalyzed by the addition of Fe or Ni to the Fe inherent in samples under sub-critical water conditions. Oil shale can be converted to gas, oil and residues of oil. Thermogravimetric (TG) analysis results presented that the weight loss of raw oil shale was up to 15.85%. After sub-critical water extraction, the weight loss rate of the residues was reduced to 8.41%. With the application of a metal catalyst, Fe or Ni, the weight loss of residues was further reduced to 7.43% and 6.57%, respectively. According to DTG curves, it was found that there were two weight-loss rate peaks. The decomposition process of kerogen in oil shale could be divided into two cracking processes. One is decomposed at a high velocity at around 420 °C, and another is decomposed at a low velocity at around 515 °C. Gas chromatography (GC) results of gas products indicated that Fe or Ni could contribute to producing normal alkanes, such as methane, ethane, propane, etc., which are produced by the hydrogenation of alkenes via hydrogen transfer during the conversion process of kerogen. Gas chromatography-mass spectrometry (GC–MS) was conducted to analyze the components of the liquid products. The results showed that n-alkanes, iso-alkane, oxygenated hydrocarbons and aromatic compounds were the major components of the kerogen cracking products. When Ni was introduced as a catalyst, the contents of aromatic compounds and oxygenated hydrocarbons in the liquid products were increased from 19.55% and 6.87% to 22.38% and 13.77%, respectively. This is due to the synergistic effect of the addition of Ni with the inherent Fe in oil shale under sub-critical water which ensures kerogen is more easily cracked to produce aromatic compounds and oxygenated hydrocarbons. Full article
(This article belongs to the Special Issue Process Technologies for Heavy Oils and Residua Upgradings)
15 pages, 829 KiB  
Article
Texture and Twinning Evolution of Cold-Rolled Industrial Pure Zirconium
by Yuan Liu, Yiming Li, Weimin Mao, Huiyi Bai, Qi Fang, Yunping Ji and Huiping Ren
Processes 2024, 12(5), 948; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050948 - 7 May 2024
Viewed by 149
Abstract
Industrial pure zirconium plays an essential role as a structural material in the nuclear energy sector. Understanding the deformation mechanisms is crucial for effectively managing the plasticity and texture evolution of industrial pure zirconium. In the present study, the texture and microstructure evolution [...] Read more.
Industrial pure zirconium plays an essential role as a structural material in the nuclear energy sector. Understanding the deformation mechanisms is crucial for effectively managing the plasticity and texture evolution of industrial pure zirconium. In the present study, the texture and microstructure evolution of industrial pure zirconium during the cold-rolling process have been characterized by XRD, EBSD, and TEM. The influences of various twins on texture evolution have also been simulated by the reaction stress model. The effects of slip and twinning on the deformation behavior and texture evolution have been discussed based on crystallographic and experimental considerations. Cold rolling yields a typical bimodal texture, resulting in the preferential <2110>//RD orientation. The activation of the deformation mechanisms during cold rolling follows the sequential trend of slip, twinning, local slip. Experimental characterization and reaction stress simulation illustrate that T1 twins dominate in the early stage, whereas C2 twins develop at the later stage of the cold-rolling process. Twinning, especially the T1 twin, contributes to the formation of the {0001}<1010> orientation. Full article
(This article belongs to the Special Issue Digital Research and Development of Materials and Processes)
13 pages, 1349 KiB  
Article
Novel Ferrocene-Containing Triacyl Derivative of Resveratrol Protects Ovarian Cells from Toxicity Caused by Ortho-Substituted Polychlorinated Biphenyls
by Ivana Kmetič, Teuta Murati, Veronika Kovač, Lidija Barišić, Nina Bilandžić, Branimir Šimić and Marina Miletić
Processes 2024, 12(5), 947; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050947 - 7 May 2024
Viewed by 156
Abstract
Polychlorinated biphenyls (PCBs) can induce neurotoxicity, immunotoxicity, reproductive toxicity, genotoxicity, and carcinogenicity (IARC group 1 Carcinogens). Scientific data suggest that resveratrol possesses the ability to attenuate ortho-PCB-induced toxicity. Recently, a novel ferrocene-containing triacyl derivative of resveratrol (RF) was synthesized and in this [...] Read more.
Polychlorinated biphenyls (PCBs) can induce neurotoxicity, immunotoxicity, reproductive toxicity, genotoxicity, and carcinogenicity (IARC group 1 Carcinogens). Scientific data suggest that resveratrol possesses the ability to attenuate ortho-PCB-induced toxicity. Recently, a novel ferrocene-containing triacyl derivative of resveratrol (RF) was synthesized and in this study, its potential to protect CHO-K1 cells from selected PCB congeners (75 µM) was evaluated. Cell viability/proliferation was observed by Trypan Blue (TB), Neutral Red (NR), Kenacid Blue (KB), and MTT bioassays, ROS formation by fluorescent probes, and the extent of apoptosis by flow cytometry. All applied bioassays confirmed that RF (2.5–100 μM) remarkably improves viability in PCB 153-treated cells with an increase in cell survival almost up to control levels. This effect was not determined after PCB 77 exposure, although ROS formation was decreased at RF ≥ 50 µM. Apoptosis was significant (p < 0.05) for both congeners. In PCB 77-treated cells, RF did not suppress the induction of cell death. The intended protective effect of RF was evident when cells were treated with PCB 153, and this correlates with results obtained for cell viability. Compared to resveratrol, the novel RF showed promising results in terms of improved biological activity and cell protection against PCB 153 toxicity at all concentrations tested. Full article
Show Figures

Graphical abstract

19 pages, 980 KiB  
Article
Investment Strategy and Benefit Analysis of Power and Heat Hybrid Energy Storage in Industrial Parks Based on Energy Performance Contracting
by Feng Xiao and Yali Wang
Processes 2024, 12(5), 946; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050946 - 7 May 2024
Viewed by 157
Abstract
To solve the problems of a single mode of energy supply and high energy cost in the park, the investment strategy of power and heat hybrid energy storage in the park based on contract energy management is proposed. Firstly, the concept of energy [...] Read more.
To solve the problems of a single mode of energy supply and high energy cost in the park, the investment strategy of power and heat hybrid energy storage in the park based on contract energy management is proposed. Firstly, the concept of energy performance contracting (EPC) and the advantages and disadvantages of its main modes are analyzed, and the basic scheme of EPC for parks is proposed combined with the actual demand. Furthermore, the multiple energy storage model for power and heat storage in parks is established, which includes lithium batteries and heat storage tanks. Based on this, minimizing the annual operation cost of parks is taken as the optimization goal, and the capacity optimization model for power and heat storage is constructed, which considers the investment costs, operation and maintenance costs, purchased energy costs, peak-shaving subsidy, and environmental subsidy. Finally, an industrial park is selected as an example of EPC to verify the effectiveness of our proposed investment strategy. The results show that compared with the situation before the energy-saving renovation, the park can save 35.14 ten thousand CNY in annual cost expenses. When the unit power price of the lithium battery exceeds 3900 CNY/kW, the unit capacity price exceeds 5460 CNY/kWh, the unit power price of the heat storage tank (HST) exceeds 6000 CNY/kW, and the unit capacity price exceeds 1000 CNY/kWh, the configuration of the lithium battery and HST in the park is no longer the optimal choice to perform the energy-saving renovation. Full article
(This article belongs to the Section Energy Systems)
21 pages, 10564 KiB  
Article
Preparation and Application of CO2-Resistant Latex in Shale Reservoir Cementing
by Chunyuan Jiang, Xuecheng Zheng, Yuanqiang Zhu, Lei Tang, Yuhao Liu, Zhijun Zhao and Hongyu Zhang
Processes 2024, 12(5), 945; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050945 - 7 May 2024
Viewed by 221
Abstract
With the application of CO2 fracturing, CO2 huff and puff, CO2 flooding, and other stimulation technologies in shale reservoirs, a large amount of CO2 remained in the formation, which also lead to the serious corrosion problem of CO2 [...] Read more.
With the application of CO2 fracturing, CO2 huff and puff, CO2 flooding, and other stimulation technologies in shale reservoirs, a large amount of CO2 remained in the formation, which also lead to the serious corrosion problem of CO2 in shale reservoirs. In order to solve the harm caused by CO2 corrosion, it is necessary to curb CO2 corrosion from the cementing cement ring to ensure the long-term stable exploitation of shale oil. Therefore, a new latex was created using liquid polybutadiene, styrene, 2-acrylamide-2-methylpropanesulfonic acid, and maleic anhydride to increase the cement ring’s resistance to CO2 corrosion. The latex’s structure and characteristics were then confirmed using infrared, particle size analyzer, thermogravimetric analysis, and transmission electron microscopy. The major size distribution of latex is between 160 and 220 nm, with a solid content of 32.2% and an apparent viscosity of 36.8 mPa·s. And it had good physical properties and stability. Latex can effectively improve the properties of cement slurry and cement composite. When the amount of latex was 8%, the fluidity index of cement slurry was 0.76, the consistency index was 0.5363, the free liquid content was only 0.1%, and the water loss was reduced to 108 mL. At the same time, latex has a certain retarding ability. With 8% latex, the cement slurry has a specific retarding ability, is 0.76 and 0.5363, has a free liquid content of just 0.1%, and reduces water loss to 108 mL. Moreover, latex had certain retarding properties. The compressive strength and flexural strength of the latex cement composite were increased by 13.47% and 33.64% compared with the blank cement composite. A long-term CO2 corrosion experiment also showed that latex significantly increased the cement composite’s resilience to corrosion, lowering the blank cement composite’s growth rate of permeability from 46.88% to 19.41% and its compressive strength drop rate from 27.39% to 11.74%. Through the use of XRD and SEM, the latex’s anti-corrosion mechanism, hydration products, and microstructure were examined. In addition to forming a continuous network structure with the hydrated calcium silicate and other gels, the latex can form a latex film to attach and fill the hydration products. This slows down the rate of CO2 corrosion of the hydration products, enhancing the cement composite’s resistance to corrosion. CO2-resistant toughened latex can effectively solve the CO2 corrosion problem of the cementing cement ring in shale reservoirs. Full article
Show Figures

Figure 1

39 pages, 42293 KiB  
Article
Biomimetic Approach for Enhanced Mechanical Properties and Stability of Self-Mineralized Calcium Phosphate Dibasic–Sodium Alginate–Gelatine Hydrogel as Bone Replacement and Structural Building Material
by Alberto T. Estevez and Yomna K. Abdallah
Processes 2024, 12(5), 944; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050944 - 7 May 2024
Viewed by 267
Abstract
Mineralized materials are gaining increased interest recently in a number of fields, especially in bone tissue engineering as bone replacement materials as well as in the architecture-built environment as structural building materials. Until the moment, there has not been a unified sustainable approach [...] Read more.
Mineralized materials are gaining increased interest recently in a number of fields, especially in bone tissue engineering as bone replacement materials as well as in the architecture-built environment as structural building materials. Until the moment, there has not been a unified sustainable approach that addresses this multi-scale application objective by developing a self-mineralized material with minimum consumption of materials and processes. Thus, in the current study, a hydrogel developed from sodium alginate, gelatine, and calcium phosphate dibasic (CPDB) was optimized in terms of rheological properties and mineralization capacity through the formation of hydroxyapatite crystals. The hydrogel composition process adopted a three-stage, thermally induced chemical cross-linking to achieve a stable and enhanced hydrogel. The 6% CPDB-modified SA–gelatine hydrogel achieved the best rheological properties in terms of elasticity and hardness. Different concentrations of epigallocatechin gallate were tested as well as a rheological enhancer to optimize the hydrogel and to boost its anti-microbial properties. However, the results from the addition of EPGCG were not considered significant; thus, the 6% CPDB-modified SA–gelatine hydrogel was further tested for mineralization by incubation in various media, without and with cells, for 7 and 14 days, respectively, using scanning electron microscopy. The results revealed significantly enhanced mineralization of the hydrogel by forming hydroxyapatite platelets of the air-incubated hydrogel (without cells) in non-sterile conditions, exhibiting antimicrobial properties as well. Similarly, the air-incubated bioink with osteosarcoma SaOs-2 cells exhibited dense mineralized topology with hydroxyapatite crystals in the form of faceted spheres. Finally, the FBS-incubated hydrogel and FBS-incubated bioink, incubated for 7 and 14 days, respectively, exhibited less densely mineralized topology and less distribution of the hydroxyapatite crystals. The degradation rate of the hydrogel and bioink incubated in FBS after 14 days was determined by the increase in dimensions of the 3D-printed samples, which was between 5 to 20%, with increase in the bioink samples dimensions in comparison to their dimensions post cross-linking. Meanwhile, after 14 days, the hydrogel and bioink samples incubated in air exhibited shrinkage: a 2% decrease in the dimensions of the 3D-printed samples in comparison to their dimensions post cross-linking. The results prove the capacity of the developed hydrogel in achieving mineralized material with anti-microbial properties and a slow-to-moderate degradation rate for application in bone tissue engineering as well as in the built environment as a structural material using a sustainable approach. Full article
Show Figures

Figure 1

18 pages, 10148 KiB  
Article
Study on the Effect of Thermal Assisted Combined Plant-Based Biomass Conditioning on Dehydrated Sludge Bio-Drying
by He Li, Yujie Luo, Chang Jiang, Yizhuo Wang and Lu Xiang
Processes 2024, 12(5), 943; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050943 - 7 May 2024
Viewed by 161
Abstract
In recent years, the production of municipal sludge has gradually increased, and finding suitable sludge treatment and disposal technologies is an urgent problem that needs to be solved. Bio-drying of sludge is a relatively efficient and convenient drying method, but currently, there are [...] Read more.
In recent years, the production of municipal sludge has gradually increased, and finding suitable sludge treatment and disposal technologies is an urgent problem that needs to be solved. Bio-drying of sludge is a relatively efficient and convenient drying method, but currently, there are still problems with unstable drying effects and high moisture content of dried products, which limits the subsequent utilization of bio-drying products. This article uses a thermal assisted bio-drying device that simulates carbonization waste heat reflux, and uses corncob, straw, sawdust, and rice husk as conditioners to carry out bio-drying of dehydrated sludge. The influence of the types and ratios of conditioner under thermal assistance on the bio-drying of dehydrated sludge is explored. The results showed that the moisture removal efficiency of the corncob and straw groups was better, and their material moisture content could be reduced to below 10% within 24 h. The lower calorific value of straw-sludge drying products was the highest, at 11,608.8 kJ/kg. The best conditioner under the conditions of this experiment was straw, and the drying effect was best when the mass ratio of dehydrated sludge to straw was 4:1. The research results contribute to promoting the development of sludge bio-drying technology. Full article
Show Figures

Figure 1

26 pages, 1683 KiB  
Review
Recent Advances in Drying Processing Technologies for Aquatic Products
by Weibin Wu, Haoxin Li, Yingmei Chen, Yuanqiang Luo, Jinbin Zeng, Jingkai Huang and Ting Gao
Processes 2024, 12(5), 942; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050942 - 6 May 2024
Viewed by 296
Abstract
Fresh aquatic products, due to their high water activity, are susceptible to microbial contamination and spoilage, resulting in a short shelf life. Drying is a commonly used method to extend the shelf life of these products by reducing the moisture content, inhibiting microbial [...] Read more.
Fresh aquatic products, due to their high water activity, are susceptible to microbial contamination and spoilage, resulting in a short shelf life. Drying is a commonly used method to extend the shelf life of these products by reducing the moisture content, inhibiting microbial growth, and slowing down enzymatic and chemical reactions. However, the drying process of aquatic products involves chemical reactions such as oxidation and hydrolysis, which pose challenges in obtaining high-quality dried products. This paper provides a comprehensive review of drying processing techniques for aquatic products, including drying preprocessing, drying technologies, and non-destructive monitoring techniques, and discusses their advantages and challenges. Furthermore, the impact of the drying process on the quality attributes of dried products, including sensory quality, nutritional components, and microbial aspects, is analyzed. Finally, the challenges faced by drying processing techniques for aquatic products are identified, and future research prospects are outlined, aiming to further advance research and innovation in this field. Full article
(This article belongs to the Special Issue Advanced Drying Technologies in Food Processing)
Show Figures

Figure 1

18 pages, 13491 KiB  
Article
Characteristics of Deformation and Stability of Ultra-Deep Pit in Plateau Alluvial–Lacustrine Gravel Strata
by Yanhui Guo and Shaoqian Liu
Processes 2024, 12(5), 941; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050941 - 6 May 2024
Viewed by 296
Abstract
Deformation of ultra-deep pit walls and surrounding geotechnical bodies due to engineering disturbances typically shows intricate spatiotemporal patterns. In this study, deformations at critical steps of the construction process were first numerically simulated by Midas GTS NX, and this was followed by lab-scale [...] Read more.
Deformation of ultra-deep pit walls and surrounding geotechnical bodies due to engineering disturbances typically shows intricate spatiotemporal patterns. In this study, deformations at critical steps of the construction process were first numerically simulated by Midas GTS NX, and this was followed by lab-scale geophysical model tests of the entire process of the pit construction. Data on deformation obtained from numerical simulations and lab-scale geophysical model tests were compared with those obtained from a dynamic monitoring scheme in the field to analyze the characteristics of the deformation and evolution of the pit wall. This was used to derive a generally applicable theoretical expression to predict variations in the horizontal displacements. Full article
Show Figures

Figure 1

12 pages, 7589 KiB  
Article
The Recovery of Sulfuric Acid in the Presence of Zr(IV) and Hf(IV) by Solvent Extraction with TEHA and Its Mixtures
by Xiaoxi Ding, Jiaxin Jiang, Yafang Zhao, Zaichao Dong, Lingyun Wang and Yang Liu
Processes 2024, 12(5), 940; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050940 - 6 May 2024
Viewed by 241
Abstract
The recovery of sulfuric acid in the presence of Zr(IV) and Hf(IV) was studied via solvent extraction using TEHA (tri-2-ethylhexyl amine) and its mixtures. A solidification phenomenon occurred in the loaded organic phase when a single TEHA was employed in the extraction of [...] Read more.
The recovery of sulfuric acid in the presence of Zr(IV) and Hf(IV) was studied via solvent extraction using TEHA (tri-2-ethylhexyl amine) and its mixtures. A solidification phenomenon occurred in the loaded organic phase when a single TEHA was employed in the extraction of 1 to 5 M H2SO4. Octanol, decanol and TBP (tri butyl phosphate) were mixed with TEHA, separately, to prevent the solidification of sulfuric-acid-loaded organic. Due to the relatively high aqueous solubility of octanol and decanol, the mixture of TEHA + TBP was selected as the optimal system for the extraction of H2SO4. Simulated counter-current extraction and stripping experiments were performed on the basis of the McCabe–Thiele diagrams, indicating that sulfuric acid could be reduced by TEHA + TBP from 4.2 to around 0.5 M without Zr(IV) and Hf(IV) extraction and recovered by its complete stripping with water. The proposed sulfuric acid recovery step would contribute to the completion of the closed-circuit of the Zr(IV) and Hf(IV) separation process in our previous work and help to re-separate the remaining Zr(IV) and Hf(IV) in the sulfuric acid stripping solution. Full article
Show Figures

Figure 1

15 pages, 1190 KiB  
Article
A Study of the Feasibility of Pinus patula Biochar: The Regeneration of the Indigo Carmine-Loaded Biochar and Its Efficiency for Real Textile Wastewater Treatment
by Carolina Gallego-Ramírez, Edwin Chica and Ainhoa Rubio-Clemente
Processes 2024, 12(5), 939; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050939 - 5 May 2024
Viewed by 365
Abstract
The feasibility of an adsorbent material like biochar (BC) depends on its regeneration capacity and its ability to achieve high removal efficiencies on real wastewater (WW) effluents. In this study, the regeneration capacity of the Pinus patula BC previously used in the removal [...] Read more.
The feasibility of an adsorbent material like biochar (BC) depends on its regeneration capacity and its ability to achieve high removal efficiencies on real wastewater (WW) effluents. In this study, the regeneration capacity of the Pinus patula BC previously used in the removal of Indigo Carmine from water was evaluated. The regeneration technique that resulted in the highest desorption efficiency was a thermo-chemical method that consisted of heating the spent BC in a stove at 160 °C for 45 min followed by regeneration with ethanol (C2H6O) at a concentration of 75% for 6 h. Through this regeneration method, it was found that Pinus patula BC could be used in seven consecutive adsorption–desorption cycles. The feasibility of this BC was also assessed by evaluating the adsorbent’s efficiency in real textile WW. Under optimal operational conditions (solution pH = 3, BC dose = 13.5 g/L, and BC particle size = 300–450 µm), the highest removal efficiencies in terms of colour and dissolved organic carbon (DOC) were 81.3 and 76.8%, respectively, for 120 min of treatment. The results obtained in the regeneration studies and the treatment of real textile WW suggested that the use of Pinus patula BC could be suitable to be scaled to an industrial level, contributing to sustainable development and the circular bioeconomy by using a waste to solve the dye pollution problem of another waste. Full article
Show Figures

Graphical abstract

13 pages, 7654 KiB  
Article
Effects of the Nozzle Configuration with and without an Internal Guide Vane on the Efficiency in Cross-Flow Small Hydro Turbines
by Fredys Romero-Menco, Juan Pineda-Aguirre, Laura Velásquez, Ainhoa Rubio-Clemente and Edwin Chica
Processes 2024, 12(5), 938; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050938 - 5 May 2024
Viewed by 306
Abstract
In this work, an experimental analysis of the performance of a cross-flow turbine, commonly referred to as a Michell–Banki turbine (MBT), is carried out for small-scale hydropower production in rural areas located in developing countries to support their social and economic development activities. [...] Read more.
In this work, an experimental analysis of the performance of a cross-flow turbine, commonly referred to as a Michell–Banki turbine (MBT), is carried out for small-scale hydropower production in rural areas located in developing countries to support their social and economic development activities. The study investigates how the efficiency of the MBT is influenced by the presence or absence of a nozzle, along with variations in the internal guide vane (GV) and its angle. The runner had 26 blades that were arranged symmetrically in the periphery between two circular plates. The designed MBT had the ability to generate a maximum of 100 W of power at a water flow rate and a head of 0.009 m3/s and 0.6311 m, respectively. The experimental tests were carried out using a hydraulic bench. The turbine efficiency without the inner GV was found to be higher than that of the turbine with the inner GV; i.e., it was found that the utilization of the GV did not enhance the efficiency of the MBT due to the occurrence of a choking effect. A maximum hydraulic efficiency of 85% was achieved in the turbine without an inner GV in comparison with the efficiency achieved (77%) with this device and an optimum opening angle of the GV of 24° (75% of opening). In this regard, the GV design should be carefully carried out to improve the MBT efficiency. Additionally, the effect of the GV shape on the MBT performance should be experimentally investigated to obtain a more general judgment regarding the role of this device. Full article
(This article belongs to the Special Issue Process and Modelling of Renewable and Sustainable Energy Sources)
Show Figures

Graphical abstract

15 pages, 8646 KiB  
Article
A Numerical Study on Dust Control: Evaluating the Impact of Spray Angle and Airflow Speed in the Coalescence of Droplets and Dust
by Jinming Mo
Processes 2024, 12(5), 937; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050937 - 4 May 2024
Viewed by 288
Abstract
Spray dust reduction is one of the most economical and effective technologies for controlling coal dust in coal mining faces. We aimed to reproduce a spray dust reduction process in a simulation and investigate the mechanism by which the spray angle and airflow [...] Read more.
Spray dust reduction is one of the most economical and effective technologies for controlling coal dust in coal mining faces. We aimed to reproduce a spray dust reduction process in a simulation and investigate the mechanism by which the spray angle and airflow speed influence the dust reduction effect. Based on the DPM (discrete phase model) and the mixture model, we constructed a spray dust reduction evaluation model by considering two-way momentum coupling between the discrete phase and the continuous phase. The results showed that installing nozzles near the dust source (coal mining drum) significantly reduced the dust concentration at the coal mining face from 0.0005 kg/m3 to 0.0001 kg/m3. The increase in airflow speed and spray angle enhanced the horizontal transportation of droplets and dust, providing opportunities for the droplets to condense the dust; however, if the droplets have too large an angle, this will result in an insufficient concentration of droplets in the vicinity of the dust source. When the spray angle is 45°, increasing the airflow speed provides a better dust reduction effect. The nozzle position should also be set scientifically according to the airflow speed. Based on simulation results, a mathematical calculation model of spray dust reduction efficiency was constructed. These results can guide the key parameters of spray dust reduction systems, such as the installation position of the nozzle, the spray angle, and the airflow speed. This paper provides ideas for simulating spray dust reduction for other dust types. Full article
Show Figures

Figure 1

14 pages, 3678 KiB  
Article
Mechanisms of Groundwater Damage to Overlying Rock in Goaf
by Nan Zhu, Fei Liu and Dafa Sun
Processes 2024, 12(5), 936; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050936 - 4 May 2024
Viewed by 256
Abstract
The discontinuation of pumping and drainage activities upon the cessation of mining operations leads to the gradual accumulation of groundwater. This inflow into mined-out areas affects the properties of the rock, disturbing the previously stable goaf and exacerbating instability. In this study, we [...] Read more.
The discontinuation of pumping and drainage activities upon the cessation of mining operations leads to the gradual accumulation of groundwater. This inflow into mined-out areas affects the properties of the rock, disturbing the previously stable goaf and exacerbating instability. In this study, we advance an existing theoretical framework pertaining to the residual deformation of mines by delineating the mechanisms through which groundwater influences the degradation of the overlying strata in goaf areas. Using analogous material simulation experiments and rigorous theoretical analyses, we clarify the specific mechanisms by which groundwater causes structural damage to these regions. The deformation of overlying rock is divided into three different forms: the compressive deformation of rock, the sliding instability of rock, and the rotational instability of rock. The main contributions of this study are its refinement of the existing theory of the residual deformation of mines, an analysis of the damage mechanisms of groundwater, and suggestions regarding technical support for targeted treatment measures in affected mines. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

16 pages, 2204 KiB  
Article
Investigating Salt Precipitation in Continuous Supercritical Water Gasification of Biomass
by Julian Dutzi, Nikolaos Boukis and Jörg Sauer
Processes 2024, 12(5), 935; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050935 - 3 May 2024
Viewed by 277
Abstract
The formation of solid deposits in the process of supercritical water gasification (SCWG) is one of the main problems hindering the commercial application of the process. Seven experiments were conducted with the grass Reed Canary Grass with different preheating temperatures, but all ended [...] Read more.
The formation of solid deposits in the process of supercritical water gasification (SCWG) is one of the main problems hindering the commercial application of the process. Seven experiments were conducted with the grass Reed Canary Grass with different preheating temperatures, but all ended early due to the formation of solid deposits (maximum operation of 3.8 h). The position of solid deposits in the lab plant changed with the variation in the temperature profile. Since the formation of solid deposits consisting of salts, coke, and corrosion products is a severe issue that needs to be resolved in order to enable long-time operation, inner temperature measurements were conducted to determine the temperature range that corresponds with the zone of solid formation. The temperature range was found to be 400 to 440 °C. Wherever this temperature was first reached solid deposits occurred in the system that led to blockage of the flow. Additional to the influence of the temperature, the influence of the flow direction (up-flow or down-flow) on the operation of the continuous SCWG plant was examined. If salts are not separated from the system sufficiently, up-flow reactors should be avoided because they amplify the accumulation of solid deposits leading to a shortened operation time. The heating concept coupled with the salt separation needs to be redesigned in order to separate the salts before entering the gasification reactors. Outside of the determined temperature zone no deposition was visible. Thus, even though the gasification efficiency was low it could be shown that the operation was limited to the deposits forming in the heating section and not by incomplete gasification in the reactor where T > 600 °C. Full article
Show Figures

Figure 1

27 pages, 6502 KiB  
Article
Influence of a Long Flexible Fiber on the Transport Capability of a Non-Clogging Pump
by Jing Liu, Jingwei Xu, Suguo Zhuang and Kai Wang
Processes 2024, 12(5), 934; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050934 - 3 May 2024
Viewed by 251
Abstract
During the operation of non-clogging pumps, the flexible long fiber is prone to clogging and winding during the flow process, which can result in damage to the non-clogging pump, so a numerical simulation method of a solid–liquid two-phase flow in a non-clogging pump [...] Read more.
During the operation of non-clogging pumps, the flexible long fiber is prone to clogging and winding during the flow process, which can result in damage to the non-clogging pump, so a numerical simulation method of a solid–liquid two-phase flow in a non-clogging pump with a flexible long fiber is proposed in this paper. The unsteady numerical simulation of the two-phase flow of a single flexible fiber with different densities, lengths and diameters in a double-blade non-clogging pump was carried out to study the influence of fiber parameters on fiber transport capability. The results show that at a density of 920 kg/m3, 300 kg/m3 and 732 kg/m3, the transport capability of flexible fibers decreases successively, and the transport time T0 is 0.32 s, 0.36 s and 0.48 s, respectively. The transport capability of flexible fibers with a length of 150 mm, 200 mm and 250 mm decreases successively, and the transport time T0 is 0.34 s, 0.48 s and 0.96 s, respectively. The transport time T0 is 0.48 s when the fiber diameter dp is 5 mm. When the fiber diameter dp is 7.5 mm, the transport time T0 is 0.51 s. When the fiber diameter dp is 10 mm, the fiber transport capability of the non-clogging pump decreased significantly, and the transport time T0 is 0.68 s. The fiber length has the most obvious effect on fiber transport capability, followed by the fiber diameter and fiber density. Full article
(This article belongs to the Section Advanced Digital and Other Processes)
Show Figures

Figure 1

15 pages, 8929 KiB  
Article
Plasma Technology Applied to Improve Wettability for Emerging Mycelium-Based Materials
by Paz Aragón Chivite, Núria Portolés Gil, Ruth Garcia Campà, Lorenzo Bautista Pérez and Paula Félix de Castro
Processes 2024, 12(5), 933; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050933 - 3 May 2024
Viewed by 340
Abstract
Plasma technology is increasing its applications in the textile industry for conferring surface functionalities through greener processes. In this study, plasma treatments are studied to improve the wettability of mycelium-based material, an emerging material with a lot of potential in the near future. [...] Read more.
Plasma technology is increasing its applications in the textile industry for conferring surface functionalities through greener processes. In this study, plasma treatments are studied to improve the wettability of mycelium-based material, an emerging material with a lot of potential in the near future. The plasma effect was characterized by assessing the added functionality (wettability) and inspecting surface modifications with different techniques, such as scanning electron microscopy (SEM) and X-Ray photoelectron spectroscopy (XPS). Low pressure plasma (LPP) treatments were successfully applied into the mycelium-based material and optimal power of discharge and treatment time were set for this material (750 W, 17.5 min). With the optimized LPP treatments, the water absorption capacity of mycelium-based material was improved by 2000% and some surface morphological modifications were observed by SEM analysis. On the other hand, XPS analysis demonstrated how the plasma treatment changes the surface composition. Full article
Show Figures

Figure 1

13 pages, 844 KiB  
Article
Production Prediction Model of Tight Gas Well Based on Neural Network Driven by Decline Curve and Data
by Minjing Chen, Zhan Qu, Wei Liu, Shanjie Tang, Zhengkai Shang, Yanfei Ren and Jinliang Han
Processes 2024, 12(5), 932; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050932 - 3 May 2024
Viewed by 293
Abstract
The accurate prediction of gas well production is one of the key factors affecting the economical and efficient development of tight gas wells. The traditional oil and gas well production prediction method assumes strict conditions and has a low prediction accuracy in actual [...] Read more.
The accurate prediction of gas well production is one of the key factors affecting the economical and efficient development of tight gas wells. The traditional oil and gas well production prediction method assumes strict conditions and has a low prediction accuracy in actual field applications. At present, intelligent algorithms based on big data have been applied in oil and gas well production prediction, but there are still some limitations. Only learning from data leads to the poor generalization ability and anti-interference ability of prediction models. To solve this problem, a production prediction method of tight gas wells based on the decline curve and data-driven neural network is established in this paper. Based on the actual production data of fractured horizontal wells in three tight gas reservoirs in the Ordos Basin, the prediction effect of the Arps decline curve model, the SPED decline curve model, the MFF decline curve model, and the combination of the decline curve and data-driven neural network model is compared and analyzed. The results of the case analysis show that the MFF model and the combined data-driven model have the highest accuracy, the average absolute percentage error is 14.11%, and the root-mean-square error is 1.491, which provides a new method for the production prediction of tight gas wells in the Ordos Basin. Full article
Show Figures

Figure 1

19 pages, 7263 KiB  
Article
SCFNet: Lightweight Steel Defect Detection Network Based on Spatial Channel Reorganization and Weighted Jump Fusion
by Hongli Li, Zhiqi Yi, Liye Mei, Jia Duan, Kaimin Sun, Mengcheng Li, Wei Yang and Ying Wang
Processes 2024, 12(5), 931; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050931 - 2 May 2024
Viewed by 479
Abstract
The goal of steel defect detection is to enhance the recognition accuracy and accelerate the detection speed with fewer parameters. However, challenges arise in steel sample detection due to issues such as feature ambiguity, low contrast, and similarity among inter-class features. Moreover, limited [...] Read more.
The goal of steel defect detection is to enhance the recognition accuracy and accelerate the detection speed with fewer parameters. However, challenges arise in steel sample detection due to issues such as feature ambiguity, low contrast, and similarity among inter-class features. Moreover, limited computing capability makes it difficult for small and medium-sized enterprises to deploy and utilize networks effectively. Therefore, we propose a novel lightweight steel detection network (SCFNet), which is based on spatial channel reconstruction and deep feature fusion. The network adopts a lightweight and efficient feature extraction module (LEM) for multi-scale feature extraction, enhancing the capability to extract blurry features. Simultaneously, we adopt spatial and channel reconstruction convolution (ScConv) to reconstruct the spatial and channel features of the feature maps, enhancing the spatial localization and semantic representation of defects. Additionally, we adopt the Weighted Bidirectional Feature Pyramid Network (BiFPN) for defect feature fusion, thereby enhancing the capability of the model in detecting low-contrast defects. Finally, we discuss the impact of different data augmentation methods on the model accuracy. Extensive experiments are conducted on the NEU-DET dataset, resulting in a final model achieving an mAP of 81.2%. Remarkably, this model only required 2.01 M parameters and 5.9 GFLOPs of computation. Compared to state-of-the-art object detection algorithms, our approach achieves a higher detection accuracy while requiring fewer computational resources, effectively balancing the model size and detection accuracy. Full article
Show Figures

Figure 1

21 pages, 5915 KiB  
Article
YOLOv8-LMG: An Improved Bearing Defect Detection Algorithm Based on YOLOv8
by Minggao Liu, Ming Zhang, Xinlan Chen, Chunting Zheng and Haifeng Wang
Processes 2024, 12(5), 930; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050930 - 2 May 2024
Viewed by 427
Abstract
In industrial manufacturing, bearings are crucial for machinery stability and safety. Undetected wear or cracks can lead to severe operational and financial setbacks. Thus, accurately identifying bearing defects is essential for maintaining production safety and equipment reliability. This research introduces an improved bearing [...] Read more.
In industrial manufacturing, bearings are crucial for machinery stability and safety. Undetected wear or cracks can lead to severe operational and financial setbacks. Thus, accurately identifying bearing defects is essential for maintaining production safety and equipment reliability. This research introduces an improved bearing defect detection model, YOLOv8-LMG, which is based on the YOLOv8n framework and incorporates four innovative technologies: the VanillaNet backbone network, the Lion optimizer, the CFP-EVC module, and the Shape-IoU loss function. These enhancements significantly increase detection efficiency and accuracy. YOLOv8-LMG achieves a [email protected] of 86.5% and a [email protected]–0.95 of 57.0% on the test dataset, surpassing the original YOLOv8n model while maintaining low computational complexity. Experimental results reveal that the YOLOv8-LMG model boosts accuracy and efficiency in bearing defect detection, showcasing its significant potential and practical value in advancing industrial inspection technologies. Full article
(This article belongs to the Special Issue Fault Diagnosis Process and Evaluation in Systems Engineering)
Show Figures

Figure 1

3 pages, 145 KiB  
Editorial
Special Issue Entitled “Immune Regulatory Properties of Natural Products”
by Jai-Eun Kim and Wansu Park
Processes 2024, 12(5), 929; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050929 - 2 May 2024
Viewed by 367
Abstract
Although the immunomodulatory effects of natural products have not yet been completely elucidated, attempts to use natural products in the treatment of immune-mediated inflammatory diseases such as autoimmune diseases, chronic inflammatory diseases, mutant viral infections, and even immunosenescence-related cancers are ongoing [...] Full article
(This article belongs to the Special Issue Immune Regulatory Properties of Natural Products)
13 pages, 989 KiB  
Article
Growth Substrate Geometry Optimization for the Productive Mechanical Dry Transfer of Carbon Nanotubes
by Andre Butzerin, Sascha Weikert and Konrad Wegener
Processes 2024, 12(5), 928; https://0-doi-org.brum.beds.ac.uk/10.3390/pr12050928 - 1 May 2024
Viewed by 318
Abstract
The selection of growth substrate geometries for the mechanical dry transfer of carbon nanotubes to device substrates depends on the precision of the assembly equipment. Since these geometries play a decisive role in the overall efficiency of the process, an investigation of the [...] Read more.
The selection of growth substrate geometries for the mechanical dry transfer of carbon nanotubes to device substrates depends on the precision of the assembly equipment. Since these geometries play a decisive role in the overall efficiency of the process, an investigation of the most important geometry parameters is carried out. The substrate geometry affects the number of carbon nanotubes suspended during the growth process and the speed of mechanical assembly at the same time. Since those two criteria are interlinked and affect productivity, a meta-model for the growth and selection of the nanotubes is simulated and a time study of the resulting assembly motions is subsequently performed. The geometry parameters are then evaluated based on the total number of suspended carbon nanotubes and the throughput rate, measured in transfers per hour. The accuracy specifications are then taken into account. Depending on the overall accuracy that can be achieved, different offset angles and overlaps between the growth and receiving substrate can be reached, which affect productivity differently for different substrate geometries. To increase the overall productivity, growth substrate designs are adapted to allow fully automated operation. This measure also reduces the frequency of substrate exchanges once all carbon nanotubes have been harvested. The introduction of substrates with multiple, polygonally arranged edges increases the total number of nanotubes that can be harvested. The inclusion of polygonally arranged edges in the initial analysis shows a significant increase in overall productivity. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop