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Abstract: Functional data analysis has significantly enriched the landscape of existing data analysis
methodologies, providing a new framework for comprehending data structures and extracting valu-
able insights. This paper is dedicated to addressing functional data clustering—a pivotal challenge
within functional data analysis. Our contribution to this field manifests through the introduction of
innovative clustering methodologies tailored specifically to functional curves. Initially, we present a
proximity measure algorithm designed for functional curve clustering. This innovative clustering
approach offers the flexibility to redefine measurement points on continuous functions, adapting to
either equidistant or nonuniform arrangements, as dictated by the demands of the proximity measure.
Central to this method is the “proximity threshold”, a critical parameter that governs the cluster
count, and its selection is thoroughly explored. Subsequently, we propose a time-shift clustering
algorithm designed for time-series data. This approach identifies historical data segments that share
patterns similar to those observed in the present. To evaluate the effectiveness of our methodologies,
we conduct comparisons with the classic K-means clustering method and apply them to simulated
data, yielding encouraging simulation results. Moving beyond simulation, we apply the proposed
proximity measure algorithm to COVID-19 data, yielding notable clustering accuracy. Additionally,
the time-shift clustering algorithm is employed to analyse NASDAQ Composite data, successfully
revealing underlying economic cycles.

Keywords: curve clustering; functional data; proximity measure; time-shift clustering; COVID-19;
NASDAQ

1. Introduction

The advent of the Big Data era brings both opportunities and challenges to humanity.
Wedel and Kannan [1] said that “data is the oil of the digital economy”. Indeed, this data-
rich environment is enhancing the way people live and work. To harness the potential of
Big Data, identification, management, and analysis are essential tools for making intelligent
and data-driven decisions. Nowadays, data are not only vast in capacity but also intricate in
structure, encompassing elements like (ultra) high-dimensional data, (ultra) high-frequency
data, and unequal observation time point data. Traditional data analysis techniques mainly
focus on exploring univariate data, multivariate data, time-series data, cross-sectional data,
and panel data. As a result, they encounter numerous limitations when attempting to
extract information from Big Data. However, functional data analysis (FDA) has gained
prominence as a research hotspot in statistics and various fields of science by capitalising
on the advantages of utilising the functional features of observed data that vary across a
continuum [2].

Generally speaking, functional data is a type of data with functional properties that
describe information about curves, surfaces, or anything that varies over a continuum.
One of the most significant topics in the FDA is functional clustering. Methodologies for
functional data clustering have developed rapidly and have aroused intense interest among
researchers over the past few decades. The existing functional clustering methods can
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roughly be categorised into four groups: raw data clustering, filtering methods, adaptive
methods, and distance-based methods [3]. For raw data methods, functional data are
clustered directly based on their discrete evaluation points [4]. This method is often the
simplest, as the functions are typically already recorded at specific discrete observation
points. Therefore, there is no requirement to reconstruct the functional form of the data,
we can directly cluster the observation points. However, the drawback of this method is
its disregard for the functional characteristics of the data, potentially leading to a loss of
valuable information in this regard [3]. Filtering methods involve representing the curves
using specific basis functions and then clustering them based on the coefficients of the
basis expansion. Hence, the curves are expressed through a limited set of parameters (or
coefficients), effectively reducing the dimensionality of the data. For the filtering phase,
opting for a spline basis is a prevalent choice due to its optimal properties [5]. For instance,
Abraham et al. [6] used the B-spline to fit the functional data and then cluster them by
the K-means algorithm. Peng and Müller [7] used the functional principal component
scores and the K-means algorithm to realise the clustering. Wu et al. [8] used functional
principal component analysis and then clustered the principal scores based on the principal
curves clustering method. Unlike the filtering methods, adaptive methods consider the
basis expansion coefficients as random variables that adhere to a probability distribution,
rather than treating them as parameters. For example, James and Sugar [9] used the basis
expansion coefficients to cluster sparsely sampled functional data based on a mixture of
Gaussian distributions. Bouveyron and Jacques [10] proposed a clustering algorithm for
high-dimensional functional data within a specific functional subspace. The core idea
involves assuming a Gaussian distribution for the functional principal components and
defining a probabilistic model based on the mixture model. Distance-based methods
modify traditional multivariate clustering algorithms to suit functional data, achieved by
establishing specific distances or dissimilarities among curves. For instance, in the work
of Ferraty and Vieu [11], they suggested employing a hierarchical clustering algorithm in
conjunction with either the L2-metric or the semi-metric. Ieva et al. combined the K-means
algorithm with L2 distance [12]. Also, Tarpey and Kinateder explored the utilisation of L2
distance with K-means for Gaussian processes [13].

Furthermore, Jacques and Preda [14] considered the dependency between the curves
and proposed a model-based clustering method for multivariate functional data; Secchi
et al. [15] presented the Bagging Voronoi classifiers algorithm, designed to handle the
functional data of large geo-referenced datasets. Additionally, Boullé [16] introduced
a novel nonparametric method based on piecewise constant density estimation, which
offers the advantage of not requiring parametric settings for functional data clustering.
Meanwhile, Verma et al. [17] provided an overview of the performance of various clustering
algorithms in data mining, including K-means clustering, hierarchical clustering, Density-
Based Spatial Clustering of Applications with Noise (DBSCAN), density-based clustering,
Ordering Points to Identify the Clustering Structure (Optics), and the EM Algorithm. They
point out that in all the discussed clustering techniques, the central approach involves
finding cluster centres that represent each cluster. These centres act as reference points,
aiding in identifying the core location of each cluster. When presented with an input, the
system utilises a similarity metric between the input and cluster centres to assign the input
to the nearest or most similar cluster.

In this paper, we present a novel functional clustering algorithm that hinges on a
proximity measure designed for functional data trajectories, referred to as the proximity
measure. This innovative approach takes inspiration from the aforementioned distance-
based methods, leading us to introduce the fresh concept of proximity measurement.
Diverging from the distance-based clustering methods commonly found in the literature,
our proposed method takes into account both the shape and trend of the curves, operating
independently of their specific positions. For instance, even if two functional curves share
an identical trend but are widely separated, our proximity measure will still classify them
within the same cluster. To put it succinctly, our focus is on their degree of similarity
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rather than their spatial proximity. In contrast, our proposed method stands apart from
filtering clustering techniques as it does not require the estimation of the coefficients of
the base expansion. We employ the B-spline smoothing technique to separate the real
signal from the noisy data. Once the smoothed functional curves are derived from the
discrete observation data, we have the flexibility to redefine the measuring points, either
equidistant or nonuniform, as required to apply the proximity measure. To clarify, we
extract the essence of the functional curve from the raw data and subsequently partition
the smoothed functional curves into discrete measurement points once again. This strategy
holds a significant advantage in handling original functional entities featuring unevenly
spaced points or instances of missing data. It is worth noting that, unlike raw data clustering
methods, we engage in reconstructing the functional structure of the data. This ensures
the preservation of the data’s functional characteristics and the avoidance of any loss of
valuable information. It is essential to highlight that K-means clustering necessitates prior
knowledge of the number of clusters. This method proves highly susceptible to noise
within datasets, which poses challenges in achieving optimal clustering. Another limitation
of K-means lies in its inherent uncertainty, resulting in potentially varied clustering results
across different runs, even when utilising the same dataset [18]. Likewise, our proposed
proximity measure algorithm incorporates a crucial parameter known as the “proximity
threshold”. This threshold possesses a clear range of values and does not need to be
preconfigured before using the algorithm. Moreover, our algorithm ensures consistent
clustering outcomes even across multiple runs.

Another noteworthy aspect of this paper is the rolling window clustering technique,
derived from the introduced proximity measure algorithm, denoted as “time-shift clus-
tering”. This method is designed to identify segments within historical data that share a
similar trend with the observed data points of interest. In this context, the “rolling window”
concept discussed in this paper has similarities to the “sliding window” concept introduced
in the study of Keogh and Lin [19]. In their work, they asserted that “sliding window
time-series clustering is never meaningful” due to instances of “trivial match”. However,
our approach, unlike the “trivial match”, identifies subsequences that exhibit similar shapes
to designated subsequences by searching across the entire timeframe, rather than focusing
on locating cluster centres. Furthermore, it is important to note that the “trivial match” is
typically employed in unsupervised clustering, whereas time-shift clustering falls under
the category of supervised clustering. This distinction arises from our practice of presetting
a target window as the designated subsequences. Another point of departure is that “trivial
match” clusters the closest subsequences, which are the subsequences immediately to the
left and right. In contrast, time-shift clustering can identify similar subsequences that are
distant from the designated subsequences.

Finally, we applied the proposed algorithms to both simulated and real datasets. The
outcomes demonstrate that the proposed methods exhibit excellent clustering accuracy and
are adept at uncovering valuable insights within the data.

The rest of this paper is organised as follows. Section 2 elaborates on the principle
of the proximity measure algorithm and time-shift clustering for functional data. The
proposed method is demonstrated using some simulated examples in Section 3. Section 4
showcases the application of the proposed clustering method to COVID-19 and NASDAQ
datasets. Finally, in Section 5, the advantages and disadvantages of the proposed algorithm
are discussed, along with potential future directions.

2. Methodology
2.1. Proximity Measure and Functional Clustering Algorithm

In this section, we initially define a proximity measure for continuous functions and
subsequently introduce our novel clustering algorithm for functional data, grounded in
their curvilinear structure.
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Let Fm be the collection of m distinct continuous functions of [T0, T1], i.e.,

Fm =
{
Xi
∣∣Xi = fi(t), i = 1, · · · , m, fi(t) 6= f j(t), ∀i 6= j , t ∈ [T0, T1]

}
. (1)

We define the proximity Dij between fi(t) ∈ Fm and f j(t) ∈ Fm as

Dij =
1

T1 − T0

∫ T1

T0

[
( fi(t)− f j(t))− (µi − µj)

]2dt

=
1

T1 − T0

∫ T1

T0

[
( fi(t)− µi)− ( f j(t)− µj)

]2dt,
(2)

where µi =
1

T1−T0

∫ T1
T0

fi(t)dt and µj =
1

T1−T0

∫ T1
T0

f j(t)dt.
Obviously, the proximity Dij between fi(t) and f j(t) satisfies the following properties:

Dij = Dji

Dij > 0, and Dij = 0 if and only if fi(t)− f j(t) ≡ C,

where C ∈ R is a constant. Furthermore, we have the following.

Theorem 1. The proximity Dij between fi(t) and f j(t) defined in Equation (2) satisfies the follow-
ing reverse triangle inequality:

1
T1 − T0

∫ T1

T0

[
( fi(t)− µi)− ( f j(t)− µj)

]2dt

>

(√
1

T1 − T0

∫ T1

T0

( fi(t)− µi)2dt−

√
1

T1 − T0

∫ T1

T0

( f j(t)− µj)2dt

)2

.

(3)

Proof. Let Fi(t) = fi(t)− µi and Fj(t) = f j(t)− µj, we have

1
T1 − T0

∫ T1

T0

[
Fi(t)− Fj(t)

]2dt

=
1

T1 − T0

∫ T1

T0

F2
i (t)dt− 2

T1 − T0

∫ T1

T0

Fi(t)Fj(t)dt +
1

T1 − T0

∫ T1

T0

F2
j (t)dt

>
1

T1 − T0

∫ T1

T0

F2
i (t)dt− 2

T1 − T0

∣∣∣∣∫ T1

T0

Fi(t)Fj(t)dt
∣∣∣∣+ 1

T1 − T0

∫ T1

T0

F2
j (t)dt

>
1

T1 − T0

∫ T1

T0

F2
i (t)dt− 2

T1 − T0

√∫ T1

T0

F2
i (t)dt

√∫ T1

T0

F2
j (t)dt +

1
T1 − T0

∫ T1

T0

F2
j (t)dt

(by the Cauchy–Schwarz inequality)

=

(√
1

T1 − T0

∫ T1

T0

F2
i (t)dt−

√
1

T1 − T0

∫ T1

T0

F2
j (t)dt

)2

.

In practice, we only possess discrete observations of each function at a finite set
of points. Consequently, continuous functions need to be estimated from these discrete
observations using a basis of functions, such as the B-spline or Fourier basis. Subsequently,
proximity can be calculated through numerical integration.

Suppose now we have m curves Xi(t) (i = 1, . . . , m), denoted collectively by
Fm = {Xi, i = 1, . . . , m}. Our proposed clustering algorithm for functional data is out-
lined in the following steps.
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Step 1 Set up the proximity matrix. Based on Equation (2), we calculate the proximity
Dij, i, j = 1, 2, · · · , m, and obtain the following proximity matrix PMm×m:

PMm×m =


D11 D12 · · · D1m
D21 D22 · · · D2m

...
...

. . .
...

Dm1 Dm2 · · · Dmm

. (4)

It is evident that within this proximity matrix, all diagonal entries are zero.

Step 2 Set a proximity threshold α. From the proximity matrix PMm×m, we find the
largest Dij value and denote it by PMmax. We define a threshold as α ∈ [0, PMmax].
The threshold α plays a vital role in clustering and determines the number of
clusters (hence it is also referred to as the threshold of cluster separation):

(a) When α = 0, we will have m clusters, meaning that each object is a cluster;
(b) When α = PMmax, we will have only one cluster, meaning that all objects

belong to one cluster;
(c) If α ∈ (0, PMmax), go to Step 3.

Step 3 Find the two initial centroids. We refer to the different groups of functions
as clusters Ck, k = 1, 2, · · · , c. Assuming that Xp and Xq are such that their
proximity is Dpq = PMmax and Dpq > α, then we can determine the two initial
cluster centroids: Xp (belonging to C1) and Xq (belonging to C2). It means that
there exists a maximum difference between the trajectory of object Xp and the
trajectory of object Xq. Thus, we set the objects Xp and Xq as two initial centroids,
whilst C1 and C2 are two initial clusters.

Step 4 Find the third centroid (if possible). Search all objects in Fm and find an object
Xr ∈ Fm \ {Xp,Xq} such that Dpr > α and Dqr > α. LetXr = arg maxXr∈Fm\{Xp ,Xq}
[Dpr + Dqr]. This means that the object Xr cannot be grouped into C1 or C2. In
other words, there is a maximum difference between the trajectory of object Xp,
the trajectory of object Xq, and the trajectory of object Xr:

(a) If Xr exists, update the cluster centroids: Xp, Xq, and Xr, and Xr belongs to
the third cluster C3. Go to Step 5.

(b) If Xr does not exist, go to Step 6.

Step 5 Try to find the fourth centroid. Following the same logic as in Step 4, for any
object Xh ∈ Fm \ {Xp,Xq,Xr}, check the following:

(a) If Dph < Dqh, Dph < Drh and Dph ≤ α, move object Xh to C1 with the cluster
centroid Xp;

(b) If Dqh < Dph, Dqh < Drh and Dqh ≤ α, move object Xh to C2 with the cluster
centroid Xq;

(c) If Drh < Dph, Drh < Dqh and Drh ≤ α, move object Xh to C3 with the cluster
centroid Xr;

(d) If Dph > α, Dqh > α and Drh > α, let object Xh be in a separate cluster C4.

Here, we call the C1 to C4 provisional clusters. Next, go to Step 7.

Step 6 If the object Xr does not exist. For any object Xh ∈ Fm \ {Xp,Xq}:
(a) If Dph < Dqh, move object Xh to C1 with the cluster centroid Xp;
(b) If Dph > Dqh, move object Xh to C2 with the cluster centroid Xq.

Similarly, we call the C1 and C2 provisional clusters. Next, go to Step 7.

Step 7 Check and iteration. We check all provisional clusters. For example, for the
provisional cluster C1 mentioned in Step 5 and Step 6, check the following:
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(a) If Dst ≤ α, ∀ Xs,Xt ∈ C1, C1 is a completed cluster. Next, go to Step 8;
(b) If there exists at least one pair of objects Xs,Xt ∈ C1, such that Dst > α, then

we regard the cluster C1 as a new collection of functions F ′m′ , where m′ is
the size of C1, and repeat Step 3 to Step 7 for cluster C1 only.

For the remaining provisional clusters, we execute the same process as described
for cluster C1 above.

Step 8 Update and complete. Update all clusters and gather all completed clusters from
Step 7. The algorithm terminates when the number of objects in all the completed
clusters equals the total number of objects in Fm.

It is worth noting that within the above algorithm, a crucial inquiry arises regarding
the determination of the proximity threshold α. This threshold α can be selected according
to the specific scenario and research objectives in each case. Further elaboration on α
selection will be provided in Section 4.

2.2. Time-Shift Clustering for Time-Series Data

In this section, we present a fresh concept called time-shift clustering, building upon
the clustering method outlined earlier. It is important to clarify that the term “time-shift” in
this context allows for position adjustments, enabling movement backwards or to different
time points, rather than strictly adhering to a linear chronological order. This concept
merges the proposed clustering algorithm with the rolling time window technique, with
the aim of identifying historical data segments that are similar to current observations.

The rolling window analysis of time-series models is commonly employed to assess
the stability of models and parameters over time or to forecast future situations [20–22]. As
discussed in Section 1, the utilisation of the “rolling window” in this context differs from the
“trivial match” mentioned in the work of Keogh and Lin [19]. Our emphasis lies solely on
searching for and identifying necessary subsequences, without necessitating the estimation
of a cluster centre among all the subsequences. Therefore, in our case, we utilise a rolling
window to search backwards for historical periods that are similar to the current one.
Regarding the time-shift clustering procedure, the primary clustering algorithm remains
consistent with the one outlined in Section 2.1. Consequently, in the following, we will
solely elucidate the aspect related to the rolling window.

Given a time series with observations X(t), for t = 1, 2, · · · , N. Suppose that we
are interested in the pattern of the most recent w observations, i.e., at the time points
t = N − w + 1, . . . , N, which could be recent w weeks, w months, or w years. We denote
these time points as the target window. Our objective is to identify segments of the same
length within the historical data X(t) (t = 1, 2, · · · , N − 1) that exhibit patterns similar to
the target window, employing a proximity measure. To attain this objective, we employ the
rolling window method, which comprises the following three steps:

Step I Choose a rolling step size τ and partition the complete time series into multiple
windows. In this scheme, the first rolling window encompasses observations
spanning the period from N − w + 1− τ to N − τ, the second rolling window
spans observations from N − w + 1− 2τ to N − 2τ, and so forth. When the
rolling step size τ equals one, the time series is segmented into n = N − w− 1
windows. A larger value of τ indicates a swifter rolling of the windows.

Step II Regard both the target window and each of the rolling windows as continuous
functions, and then execute Step 1 to Step 8 of the clustering algorithm outlined
in Section 2.1.

Step III Examine all of the rolling windows (see Figure 1) to identify those that exhibit
patterns similar to the target window.

The following schematic diagram illustrates the concept of the time-shift clustering
procedure.
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1 N

w

S a m p l e

T a r g e t  W i n d o w

R o l l i n g  W i n d o w  N - w - 2
R o l l i n g  W i n d o w  N - w - 1

R o l l i n g  W i n d o w  2
R o l l i n g  W i n d o w  1

T a r g e t  W i n d o w

τ

Figure 1. Time-shift clustering process.

3. Numerical Experiments

To assess the efficacy of the proposed clustering algorithm, this section presents two
simulated examples. We compare the performance of our method with that of traditional
K-means clustering. In the case of K-means clustering, the observations are treated as
objects (X1,X2, · · · ,Xm) evaluated at a significantly high number of equidistant points
within the interval.

3.1. Simulation Study

We generated two functional datasets as follows.
The first functional curves dataset (Case 1) was generated using the following func-

tions: 
Xi

1(t) = ui sin(t) + ε(t), t ∈ [1, 6]
Xi

2(t) = ui cos(2t) + ε(t), t ∈ [1, 6]
Xi

3(t) = ui sin2( t
2 ) log t + ε(t), t ∈ [1, 6],

(5)

where ui ∼ U(3, 10), i = 1, 2, · · · , 30, and ε(t) ∼ N(0, 1). We generated 30 sample curves
for each of the aforementioned three functions, each containing 26 data points. These data
points were evaluated at equidistant intervals within the range of [1, 6]. An illustration of
the simulated curves is presented in Figure 2.

0 1 2 3 4 5 6 7

-15

-10

-5

0

5

10

15

0 1 2 3 4 5 6 7

-15

-10

-5

0

5

10

15

0 1 2 3 4 5 6 7

-15

-10

-5

0

5

10

15

0 1 2 3 4 5 6 7

-15

-10

-5

0

5

10

15

Figure 2. 90 simulated curves for Case 1.
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The second functional curves dataset (Case 2) is defined by the following functions [23]:
X1(t) = exp( t

5 )− 1.3 + ε(t), t ∈ [1, 6]
X2(t) = 0.8 arctan(0.6t) + ε(t), t ∈ [1, 6]
X3(t) = −0.3 cos(0.8t + 4.5)− 0.2 + ε(t), t ∈ [1, 6],

(6)

where ε(t) ∼ N(0, 1). Likewise, we generated 30 sample curves for each of the aforemen-
tioned three functions, each comprising 26 data points. These data points were evaluated
at equidistant intervals within the range of [1, 6]. An illustration of the simulated curves is
presented in Figure 3.

0 1 2 3 4 5 6 7

-1

-0.5

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7

-1

-0.5

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7

-1

-0.5

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 3. 90 simulated curves for Case 2.

3.2. Simulation Results

A simulation study comprising 10,000 replications was carried out, considering the
Case 1 and Case 2 functional curves datasets. We present the outcomes of our proposed
clustering method and contrast them with the conventional K-means clustering approach.
We choose to use the average error rate as our performance evaluation metric instead of
the mode or median. This decision is based on the fact that the mode is not always unique,
and the median closely approximates the mean value in our case. Opting for the mean
value provides a more accurate representation of the error level since all error rates exhibit
a relatively stable pattern devoid of outliers.

Therefore, the average error rates for these two clustering methods are presented in
Table 1.

Table 1. The average error rates for the simulation study.

Algorithm Proposed Method K-Means Clustering

Case 1 error rates

5.09% (α1 = 40.4)
5.15% (α2 = 40.5)
5.17% (α3 = 40.6) 6.4%
5.20% (α4 = 40.7)
5.23% (α5 = 40.8)

Case 2 error rates

2.61% (α1 = 0.061)
2.19% (α2 = 0.062)
2.23% (α3 = 0.063) 5.95%
2.32% (α4 = 0.064)
3.26% (α5 = 0.065)
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In the proximity measure method, the selection of the proximity threshold α depends
on the desired number of clusters. Given that these 90 curves are generated by three
distinct functions, the ultimate number of clusters should be three. Consequently, we set
the proximity threshold α to yield a total of three final clusters. Notably, there exists a range
of threshold values that lead to the formation of three clusters. Nonetheless, the clustering
outcomes for varying threshold values exhibit remarkable similarity, with closely aligned
error rates.

As an illustrative instance, Table 1 showcases five thresholds for both Case 1 and
Case 2. The error rates for the K-means clustering approach are computed by specifying
the correct number of clusters. The data in Table 1 reveal that the error rates produced by
the proposed method for different threshold values are very similar and notably lower than
those resulting from K-means clustering.

Let us now take a closer look at some of the typical clustering results.
Figure 4a,b exemplify instances of poor clustering using the proposed proximity

measure clustering and the K-means method for Case 1, respectively. A distinct contrast
can be observed between these two clustering outcomes.

Similar patterns can be discerned in Figure 5a,b, which provide an example of poor clus-
tering results using the proximity measure and the K-means method for Case 2, respectively.

To provide a clearer demonstration, we use Silhouette analysis to illustrate the poor
clustering results for the simulation study. Figures 6 and 7 show the Silhouette plots for
Case 1 and Case 2 using the proximity measure and K-means methods, which correspond
to the clustering results of Figures 4 and 5.

Overall, based on the Silhouette plots, the worst-case scenario for K-means clustering
is even worse than that of the proximity measure.

Furthermore, we used the Rand Index (RI) and Adjusted Rand Index (ARI) to assess
the performance of these two methods. In the proximity measure, both the RI and ARI
values are very close to one, indicating significantly better performance compared to the
K-means method, as shown in Table 2.
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(a) Case 1 clustering results by the proximity measure with α = 40.6.

Figure 4. Cont.
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(b) Case 1 clustering results by the K-means clustering.

Figure 4. The poorly clustering results for Case 1. In the proximity measure algorithm illustration
(Figure 4a), certain misclassifications occur within Cluster 3, yet only three blue curves are inaccurately
grouped. In contrast, within the K-means clustering illustration (Figure 4b), a more pronounced issue
arises in Cluster 1, where the red and blue curves are not discriminated. Additionally, the green
curves are erroneously split between Cluster 2 and Cluster 3.
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(a) Case 2 clustering results by the proximity measure with α = 0.063.

Figure 5. Cont.
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(b) Case 2 clustering results by K-means clustering.

Figure 5. The poor clustering results for Case 2. Figure 5a indicates only one green curve erroneously
placed in Cluster 1, while Figure 5b highlights the continued challenge of distinguishing between red
and blue curves and the imprecise division of the green curve.

For illustrative purposes, examples of accurate clustering results are presented in
Figures 8 and 9 for both the proposed method and the K-means algorithm, in the context
of Case 1 and Case 2, respectively. Hence, these simulation outcomes demonstrate the
superiority of our proposed method in effectively identifying curvilinear characteristics
within curve clustering.
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(b) K-means clustering.

Figure 6. The Silhouette plots for Case 1 (the red dashed line is the average Silhouette value).
Figure 6a represents the worst-case clustering scenario using a proximity measure, where three
clusters exceed the average Silhouette score and are close to one, and only three outliers (the three
blue curves in Figure 4a) are present in Cluster 3. However, Figure 6b shows the worst-case clustering
scenario using a K-means method, where a large Cluster 1 includes all red and blue curves, while the
green curves are divided between Cluster 2 and Cluster 3.
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(b) K-means clustering.

Figure 7. The Silhouette plots for Case 2 (the red dashed line is the average Silhouette value). For
the worst-case clustering scenario of the proximity measure, Figure 7a depicts that almost every
Silhouette value is close to one, with only one outlier (a green curve in Figure 5a) erroneously assigned
to Cluster 1. Also, for the K-means method, Figure 7b shows a large Cluster 2 that includes all the red
and blue curves, while the green curves are divided between Cluster 1 and Cluster 3.

Table 2. Rand Index (RI) and Adjusted Rand Index (ARI) for the simulation study.

Cluster Method
Case 1 Case 2

RI ARI RI ARI

Proximity measure 0.9573 0.9030 0.9853 0.9665
K-means clustering 0.7201 0.4384 0.7253 0.4509
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(a) Case 1 clustering results.
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(b) Case 2 clustering results.
Figure 8. The clustering results by the proximity measure for Case 1 and Case 2.
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Figure 9. The clustering results by K-means clustering for Case 1 and Case 2.

4. Applications

Within this section, we employ the proximity measure algorithm on the COVID-19
dataset outlined in Section 4.1 and implement the time-shift clustering approach on the
NASDAQ Composite dataset discussed in Section 4.2.

4.1. COVID-19 Confirmed and Death Cases Dataset

In December 2019, the first case of COVID-19 was identified in Wuhan, China. Within
a matter of weeks, the pandemic rapidly extended beyond China’s borders, affecting
countries around the world. During this period, the World Health Organization (WHO)
declared COVID-19 a Public Health Emergency of International Concern (PHEIC). On
March 11, 2020, the WHO officially designated COVID-19 as a “global pandemic”. This
declaration prompted many countries to declare states of emergency and adopt various
policies along with corresponding anti-epidemic measures [24]. Measures such as national
or regional lockdowns, social distancing, mask mandates, closure of public places, and
other interventions were implemented. Consequently, due to the diverse range of strategies
adopted, the patterns and rates of virus transmission varied across different countries. In
this section, we apply our proposed algorithm to cluster countries and uncover distinct
spread curve patterns [25,26].

4.1.1. Data Description

The COVID-19 data for 49 countries are chosen from the 194 WHO member states
across the six WHO regions. These data are manually extracted from the WHO Coronavirus
Disease Situation Report. Notably, the WHO Coronavirus Disease Situation Report shifted
to a weekly reporting format on 16 August 2020. Therefore, our dataset for confirmed
COVID-19 cases and deaths is collected up until 16 August 2020. We chose the initial
49 countries from each WHO region based on their cumulative confirmed case count reach-
ing 1000 before April 2020. These 49 countries represent 25% of the most severely affected
nations across the six WHO regions. To be precise, our selection included five countries
from the African Region, eleven from the Region of the Americas, eight from the Eastern
Mediterranean Region, ten from the European Region, seven from the Southeast Asia
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Region, and eight from the Western-Pacific Region. Figure 10 displays the geographical
distribution of these 49 countries on the Coronavirus (COVID-19) Dashboard by region.
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Figure 10. Coronavirus (COVID-19) Dashboard. Data sources: WHO Coronavirus Disease Situation
Report, accessed on October 2020 (https://www.who.int/emergencies/diseases/novel-coronavirus-
2019/situation-reports).

The COVID-19 dataset covers the time span from 22 January 2020 to 16 August 2020.
China reported the first confirmed case and, subsequently, other countries, like the USA
and Italy, reported their first confirmed cases after around two to three months. To establish
a uniform reference point, we defined time zero as the moment when each country reported
at least 10 daily confirmed new cases for the first time. Following this, we continued to
monitor the data for 136 days, resulting in a total of 136 observations for each country. To
provide consistency, we further normalised the data by representing the number of daily
confirmed new cases per million people.

Regarding the daily confirmed deaths data, we opted to include only 43 countries from
the aforementioned 49. This exclusion was due to the fact that in six countries (Singapore,
New Zealand, Nepal, Thailand, Maldives, and Sri Lanka), the number of daily confirmed
deaths is exceedingly close to zero.

We took the logarithmic transformation for both the case data and the death data
and used the B-spline for smoothing. The smoothed daily confirmed new cases for the
49 countries are depicted in Figure 11, while Figure 12 showcases the smoothed daily
confirmed new deaths for the 43 countries.

4.1.2. Results

We implemented the proposed proximity measure clustering algorithm on both the
case data and the death data. Table 3 provides several instances illustrating the impact of
the proximity threshold α on the cluster count. It is important to recognise that the selection
of the threshold α is intricately connected to the specific circumstances and purpose of the
clustering process.

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
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Figure 11. COVID-19 confirmed new cases per million people (in log scale). Citations for population
data: United Nations, Department of Economic and Social Affairs, Population Division (2019). World
Population Prospects 2019, Online Edition. Rev. 1.
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Figure 12. COVID-19 confirmed new deaths (in log scale).

Table 3. The relationship between the proximity threshold and the number of clusters.

Functional Dataset Proximity Threshold α Number of Clusters Ck

COVID-19 confirmed new cases

4.35 4
3.85 5
2.65 6
2.40 7
2.24 8

COVID-19 confirmed new deaths

3.95 4
3.55 5
3.15 6
2.36 7
1.95 8
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Figure 13 illustrates the clustering outcomes for confirmed new cases with six clusters
(α = 2.65). Similarly, Figure 14 displays the clustering outcomes for confirmed new deaths
with six clusters (α = 3.15). Furthermore, more comprehensive clustering results for con-
firmed new cases and confirmed new deaths can be found in Appendix A Figures A1 and A2.
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Figure 13. The clustering results for COVID-19 confirmed new cases (CNC) (in log scale).
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Figure 14. The clustering results for COVID-19 confirmed new deaths (in log scale).

Based on Figure A1, the COVID-19 confirmed new cases across the 49 countries are cat-
egorised into six clusters as described below. The first cluster comprises ten countries, with
four countries from the Region of the Americas, two countries from the Eastern Mediter-
ranean Region, two countries from the Southeast Asia Region, and the remainder from
other regions. Within this particular cluster, the primary curve trajectories exhibit a steep
ascent accompanied by minor fluctuations during the initial phases. These countries experi-
enced a rapid propagation of the coronavirus, lacking effective preventive measures during
that period. Examples of such nations include Brazil, the USA, the United Arab Emirates,
and India, among others. The second cluster comprises four countries, including three
from the Western-Pacific Region, namely China, Malaysia, and New Zealand, along with
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Thailand. A distinctive characteristic of these four countries is the occurrence of a minor
increase followed by a subsequent decline in the count of confirmed new cases. This trend
emerges due to the prompt implementation of measures to curb the virus spread, such
as national or regional lockdowns. The third cluster encompasses twelve countries, with
four hailing from the African Region (Algeria, Nigeria, Ghana, and Cameroon) and three
from the Western-Pacific Region (Singapore, the Philippines, and Japan), along with others
like Ecuador and Sri Lanka. These nations are characterised by relatively smaller popula-
tions and exhibit case curve trajectories that remain relatively flat over time. The fourth
cluster encompasses twelve countries, consisting of five from the Region of the Americas
(including Peru and Chile), four from the Eastern Mediterranean Region (like Qatar and
Egypt), and three from the Southeast Asia Region (such as Bangladesh and Indonesia). In
these countries, the count of COVID-19 confirmed new cases experiences a gradual and
slow increase over time. The fifth cluster comprises nine countries, encompassing eight
from the European Region, such as the UK, Spain, and Italy, as well as Canada. In these
nations, the count of COVID-19 confirmed new cases demonstrates a rapid initial increase
followed by a gradual decline. This downward trajectory is possibly attributed to measures
such as social distancing and the closure of public spaces. The sixth cluster consists of just
two countries, namely Korea and Australia. In these nations, the case numbers initially rise,
followed by a decline, and then a subsequent rise once more. This unique pattern sharply
contrasts with the trends observed in the other five clusters.

Analysing Figure A2, we observed that the COVID-19 confirmed new deaths across
the 43 countries are divided into six clusters as detailed below. The first cluster comprises
five countries, all stemming from the European Region, including Spain, Italy, Germany,
Belgium, and the Netherlands. Within this cluster, the central curve trajectories display a
notable surge followed by an abrupt decline. This pattern may stem from these European
countries’ swift and effective implementation of measures to curtail the increase in mortality
rates. The second cluster encompasses six countries, of which four belong to the Western-
Pacific Region (China, Korea, Malaysia, and Australia), while the other two hail from
the Eastern Mediterranean Region and the European Region. A key characteristic of
these countries is the occurrence of a slight increase followed by a substantial decrease in
confirmed new deaths. The third cluster comprises six countries, with four originating
from the Region of the Americas, including the USA, Brazil, Peru, and Mexico, while the
remaining two are from the European Region and the Southeast Asia Region. In this cluster,
the identified trend involves a rapid surge in deaths followed by a sustained high level of
fatalities. The fourth cluster encompasses 21 countries, primarily from the African Region,
the Region of the Americas, and the Eastern Mediterranean Region. The trajectory of
COVID-19 confirmed new deaths in these nations indicates a sustained, gradual increase
over time. The fifth cluster comprises two countries: one originating from the African
Region and the other from the European Region. The death toll in these countries remains
notably low throughout the study period. The sixth cluster encompasses three countries:
two from the European Region and one from the Region of the Americas. These countries
exhibit a pattern similar to the first cluster, albeit with a notably slower initial rise during
the early stages of the pandemic.

4.2. NASDAQ Composite Data

Within this section, we employed our time-shift clustering approach to analyse the
NASDAQ Composite data. The dataset consists of weekly NASDAQ Composite data
gathered from February 1, 1971, to May 24, 2021, encompassing a total of 2626 weeks. We
applied a logarithmic transformation to the raw data and utilised B-spline techniques to
obtain smoothed observations. The data overview is presented in Figure 15.

Subsequently, we implemented the proposed time-shift clustering algorithm on this
dataset. Our objective was to identify segments within the historical data that exhibit
patterns akin to the current observations of interest. As examples, we considered three
cases, with the widths of the target windows as w1 = 100, w2 = 150, and w3 = 200,
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respectively. They represented a 100-week target window (i.e., from the 2527th week to the
2626th week), a 150-week target window (i.e., from the 2477th week to the 2626th week),
and a 200-week target window (i.e., from the 2427th week to the 2626th week), respectively.
We used a rolling step size τ = 1 so that there were a total of 2525, 2475, and 2425 rolling
windows, respectively. The results are displayed in Figures 16–18.
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Figure 15. The NASDAQ Composite data (in log scale). Data sources: NASDAQ Composite from
Yahoo Finance Website, accessed on June 2021 (https://finance.yahoo.com/quote/%5EIXIC).
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Figure 16. The time-shift clustering results for a 100-week target window.

As depicted in Figure 16, the target window’s width was set at w1 = 100, covering
the actual period spanning from 24 June 2019 to 24 May 2021. For this analysis, we opted
for a proximity threshold of α1 = 0.0029, yielding four analogous curves identified among
the 2525 rolling windows. The week numbers corresponding to these four curves are

https://finance.yahoo.com/quote/%5EIXIC
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detailed in the legend of the bottom panel. For example, the first curve, spanning from the
1402nd week to the 1501st week, encompasses the actual period from 15 December 1997 to
15 November 1999. The remaining three curves can be interpreted similarly.

Upon comparing the target window to these four rolling windows, it becomes evident
that their shapes bear a striking resemblance. This implies that the developmental trajectory
of the NASDAQ Composite Index during the interval from 2019 to 2021 is similar to that
of the period spanning 1997 to 1999. Consequently, if there is an interest in predicting the
forthcoming trend following May 2021, these historical data might yield valuable insights.
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Figure 17. The time-shift clustering results for a 150-week target window.

Likewise, when our focus shifts to the pattern of the most recent 150 weeks, we set
the window width to w2 = 150. This scenario is depicted in Figure 17, where we identified
two comparable curves within the 2475 rolling windows. For the target window, the actual
period spans from 9 July 2018 to 24 May 2021, while the two akin curves relate to the
timeframe around 31 July 1978 to 8 June 1981.

Illustrated in Figure 18 is the scenario considering the most recent 200 weeks. In
this case, the target window spans from 24 July 2017 to 24 May 2021. Correspondingly,
the two akin curves pertain to the timeframe roughly spanning from 15 August 1977 to
8 June 1981.

Let us use Figure 18 as an illustrative example to delineate the contrast in the ap-
plication approach between the “rolling window” in our study and the “trivial match”
described in Keogh and Lin’s work [19]. From Figure 18, it is apparent that our “rolling
window” can identify two similar segments (around the 391st week to the 540th week)
that are distant from the target window (spanning the 2427th week to the 2626th week).
And, our method circumvents the necessity of estimating cluster centres. So, the proposed
time-shift clustering algorithm is meaningful.
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Figure 18. The time-shift clustering results for a 200-week target window.

The significance of the proximity threshold α lies in its control over the level of
similarity established between the target window and the rolling windows. To illustrate
this point, consider the case of w3 = 200 presented in Figure 19. Here, the results are
shown for two instances: when the proximity threshold α3 is set to 0.004325 (Figure 19a)
and when α3 is increased to 0.0062 (Figure 19b). Evidently, in Figure 19a, only one similar
curve is identified. Conversely, upon decreasing the threshold further (below 0.004325),
no corresponding curves are discovered. In contrast, Figure 19b showcases an increased
number of similar curves, facilitated by the larger threshold value of α3 = 0.0062.
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(a) α3 = 0.004325.
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(b) α3 = 0.0062.

Figure 19. The time-shift clustering results for a 200-week target window with α3 = 0.004325 and
α3 = 0.0062. Here, the blue line indicates the target window, while the remaining lines represent
rolling windows.

5. Discussion and Conclusions

In this paper, we introduced a novel curve clustering algorithm based on the prox-
imity measure for continuous functions. To validate the utility and effectiveness of these
proposed algorithms, we conducted several numerical experiments and compared the
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outcomes against the K-means clustering algorithm. The simulation results underscore the
capability of our algorithm to identify curvilinear features within functional data, yielding
clustering results with enhanced accuracy compared to K-means. Moreover, as observed in
Figures 4a,b and 5a,b, the proximity measure algorithm can effectively focus on a curve’s
trend while remaining independent of its positional information. In contrast, the K-means
clustering approach tends to cause confusion since it cannot disregard positional infor-
mation, which consequently results in dissimilar curves being grouped together due to
close proximity. Subsequently, we extended our analysis by applying the proximity mea-
sure algorithm to the COVID-19 dataset. The obtained clustering results are satisfactory,
demonstrating that confirmed new cases and confirmed new deaths in 49 countries can be
grouped into six clusters based on the designated threshold. Each group can be explained
by certain common features.

Moreover, we have extended our efforts by developing a time-shift clustering algo-
rithm that merges proximity measure clustering with a rolling window technique. This
innovative approach was then applied to the NASDAQ Composite data, resulting in the
successful identification of similar subsequences that correspond to three target windows.
This has been proven we can extend this method to explore and mine any functional dataset
with potential periodic regularity.

The findings of this paper can be understood as the proposed proximity measure
enriches the field of functional data clustering. It is especially suitable for identifying and
clustering curve features of function curves, without interference from spatial position
information. Searching for similar subsequences across the entire timeframe may be
considered a further validation of the flexible applicability of the proximity measures.

Although the proposed algorithms have demonstrated effectiveness, it is important to
note that the choice of the proximity threshold remains a significant consideration. This
choice is closely tied to the specific context and goals of clustering, making it potentially
challenging to determine an appropriate value in certain scenarios. Determining an optimal
proximity threshold is an aspect we intend to address in future research. Moreover, future
investigations should focus on clustering continuous functional curves directly, without
the need to convert them into discrete data.

Another avenue of future exploration involves extending the algorithms to cluster
surfaces and multidimensional functional data. Additionally, the time-shift clustering
approach holds promise for applications in assessing economic cycles within finance,
showcasing its potential usefulness beyond the contexts explored in this paper.
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Appendix A

Appendix A.1. COVID-19 Output for Confirmed New Cases
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Figure A1. Cont.
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Figure A1. The detailed clustering results for COVID-19 confirmed new cases (CNC) (in log scale).
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Appendix A.2. COVID-19 Output for Confirmed New Deaths
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Figure A2. The detailed clustering results for COVID-19 confirmed new deaths (in log scale).
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