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Abstract: This paper deals with fractional order three-phase-lag (TPL) thermo-elasticity in a micropolar
thermoelastic half space medium with voids. The subsequent non-dimensional coupled equations are
solved by using the normal mode analysis and eigenvalue approach methods. By doing numerical
computations of the physical fields for a substance that resembles a magnesium crystal in the presence
of an electromagnetic field, the issue is proven to exist. The effect of the fractional order, the phase
lags on the components of temperature, displacement, the stress, and changes in volume fraction
field have been depicted graphically. Additionally, a graphic comparison of several types of models
employing phase delays and the influence of the magnetic field is displayed.

Keywords: fractional thermo-elasticity; three-phase-lag thermo-elasticity; eigen value approach;
normal mode analysis; electro-magnetic field

1. Introduction

Lord and Shulman (1967) [1] derived a new model to overcome the infinite speed of
heat transportation which was established by Biot (1956) [2]. The heat equation of this
theory is of the wave type, it automatically ensures finite speeds of propagation for heat and
elastic waves. Linear model of thermoelasticity is incapable to characterize the behaviour of
many new synthetic solids of the elastomer and polymer type. Eringen used the micropolar
elasticity term to describe such materials.

Fractional calculus was first used by Abel in the solution of an integral equation that
arises in the tautochrone problem. This area has grown rapidly, and applications have been
found in several fields, including solid mechanics, geophysics, physics, and mathematical
biology. Many mathematical models in the fields of solid mechanics, bio-rheology, non-
linear dynamical systems in ecology, and so on, have been successfully modified using
fractional calculus. The fractional derivative exhibits non-local properties, and global
dependency is among the main reason for its use. Kimmich considered anomalous diffusion
and characterised it with the time-fractional diffusion wave equation using the Riemann–
Liouville fractional integral. Povstenko [3,4] demonstrated the effect of fractional heat
transportation in the presence of thermal stresses. Many authors [5–9] have also discussed
fractional calculus in thermoelasticity.

Recently, Tzou [10,11] developed dual-phase-lag heat equation theory by incorporating
of two-phase-lags associated with temperature gradient heat flux vector. Two phase lag
parameters are related to the fastest effects of thermal inertia. This theory is known as the
dual-phase-lag (DPL) model. The later three-phase-lag (TPL) model was developed by
Roychoudhury [12].

In the present article, we consider two dimensional problem under TPL heat conduction
theory in present of electric and magnetic field. The governing equation are transformed
by normal modes. Finally the displacement component and temperature distribution are
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fixed out analytically from the vector matrix differential equation by eigenvalue method in
transformed domain.

2. Basic Equation

The system of governing equations of a rotating micropolar thermoelastic solid is
given by [12,13]

σi j, j + Fi = ρ[üi + Ω × (Ω × u)i + (2Ω × u̇)i] (1)

mi j,i + εi jrσir = Jρ[φ̈+ (Ω ×φ)i] (2)

αψ,ii − εψ−ωψ̇− β
∗ui,i + mθ = ρε1ψ̈ (3)

The components of the force stress and couple stress tensors are

σi j = λur,rδi j + µ(ui, j + u j,i) + k(u j,i − εi jrφr) − β
∗ψδi j − γT(θ+ ν

∂θ
∂t

)δi j (4)

mi j = αφr,rδi j + βφi, j + γφ j,i (5)

Fractional order Three-phase-lag Heat conduction without heat source as[
K∗

(
1 +

τνα

α!
∂α

∂tα

)
+ K

∂
∂t

(
1 +

τθ
α

α!
∂α

∂tα

)]
θii =

1 +
ταq

α!
∂α

∂tα
+
τ2α

q

2α!
∂2α

∂t2α

(ρCE
∂2θ

∂t2 + βT0
∂2

∂t2 (ekk) + mT0
∂2ψ

∂t2 ) (6)

and the strain components are

ei j =
1
2
(ui, j + u ji) and ekk = (

∂u
∂x

+
∂w
∂z

) (7)

3. Formulation of the Problem

(1 + ε5)
∂2u
∂x2 + (1− a2 + ε5)

∂2w
∂x∂z

+ a2 ∂
2u
∂z2 − ε3

∂φ2

∂z
−

1
(ε1 + ε2)

(1 + v
∂
∂t
)
∂θ
∂x

+ β1
∂ψ

∂x

= (ε4 +
1

(ε1 + ε2)
)
∂2u
∂t2

(8)

(1 + ε5)
∂2w
∂z2 + (1− a2 + ε5)

∂2u
∂x∂z

+ a2 ∂
2w
∂x2 − ε3

∂φ2

∂x
−

1
(ε1 + ε2)

(1 + v
∂
∂t
)
∂θ
∂z

+ β1
∂ψ

∂z

= (ε4 +
1

(ε1 + ε2)
)
∂2w
∂t2

(9)

∂2φ2

∂x2 +
∂2φ2

∂z2 − 2ε7φ2 + ε7(
∂u
∂z
−
∂w
∂x

) = ε8
∂2φ2

∂t2 (10)

[
K1(1 +

τv
α

α!
∂α

∂tα
) +

∂
∂t
(1 +

τθ
α

α!
∂α

∂tα
)

]
(
∂2θ

∂x2 +
∂2θ

∂z2 ) = pl

(
∂2θ

∂t2 + ε9
∂2

∂t2 (
∂u
∂x

+
∂w
∂z

) + β1
∂2ψ

∂t2

)
(11)

The components of stress tensor and force tensor are written in the below form:

σxx = (ε1 + ε2)
∂u
∂x

+ (ε1 − 1)
∂w
∂x
− (1 + ν

∂
∂t
)θ (12)
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σzz = (ε1 + ε2)
∂w
∂z

+ (ε1 − 1)
∂u
∂x
− (1 + ν

∂
∂t
)θ (13)

σxz =
∂u
∂z

+ ε2
∂w
∂x
− (ε2 − 1)φ2 (14)

σzx =
∂w
∂x

+ ε2
∂u
∂z
− (ε2 − 1)φ2 (15)

mzy =
(ε2 − 1)
ε4

∂φ2

∂z
(16)

mxy =
(ε2 − 1)
ε4

∂φ2

∂x
(17)

where εi, i = 1(1)9 are given in Appendix A.
To simplify the Equations (1)–(7), we use the non-dimensional variables as below

(x∗, z∗) = η0
c0
(x, z), (t∗, t∗0, τ∗0, τ∗q, τ∗T, υ∗) = η0(t, t0, τ0, τq, τT, υ), Ω∗ = Ω

η0

(u∗, w∗) = ρc0η0
γTT0

(u, w),θ∗ = θ
T0

, σ∗i j =
σi j
γTT0

,m∗i j =
η0mi j

c0γTT0
, (ψ∗,φ∗2) =

ρc2
0

γTT0
(ψ,φ2).

(18)

where

c2
0 =

µ

ρ
, β =

√
λ+ 2µ
µ

, η0 =
ρcEc2

0

k
, pl =

1 +
ταq

α!
∂α

∂tα
+
τ2α

q

2α!
∂2α

∂t2α

.

Equations (8)–(17) takes the above form, dropping the * for convenience.

4. Normal Mode Analysis

The decomposition of the solution of the physical variables under consideration has
the following form in the normal mode

(u, w,ψ,θ,φ2, σ jk)(x, z, t) = (ū, w̄, ψ̄, θ̄, φ̄2, σ̄ jk)(x)e(st+iqz); (19)

where ū, w̄, θ̄, φ̄2, σ̄ jk, Q̄ are the amplitudes of the functions, s is a complex constant, i =
√
−1

and q is the wave numbers in the z-direction.
Using above equations we obtain the vector matrix differential equation as

dz
dx

= Az (20)

where

z = (ū, w̄, φ̄2, θ̄, ψ̄,
dū
dx

,
dw̄
dx

,
dφ̄2

dx
,

dθ̄
dx

,
dψ̄
dx

)T (21)

A =



0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

a51 a52 a53 0 0 0 a56 0 a58 a59
a61 a62 0 a64 0 a65 0 a67 0 0
a71 0 a73 0 0 0 a76 a77 0 0
0 a82 0 a84 0 a85 a86 a87 a88 0
0 a92 0 a94 a95 a96 0 0 0 0



(22)
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and pls =

(
1+

τqα

α! sα+
τq2α

2α! s2α
)

[
K1(1+

τvα
α! sα)+s(1+

τθ
α

α! sα)
] and all the components of matrix A in Equation (22) are

given in Appendix A.

5. Solution

The following equation represents the matrix A’s characteristic equation:

det(A−ΛI) = 0 (23)

The eigenvalues of the characteristic Equation (20) are taken in the form Λ = ±Λi
(i = 1, 2, 3, 4, 5)

The eigen vector X
∼

corresponding to the eigen value Λ calculated as

X
∼
=

[
Γ1 Γ2 Γ3 Γ4 Γ5 ΛΓ1 ΛΓ2 ΛΓ3 ΛΓ4 ΛΓ5

]T
(24)

where Γi (i, j = 1, 2, 3, 4, 5) are given in Appendix A. We construct the inverse of the
matrix V = (X1, X2, X3, X4, X5, X6, X7, X8, X9, X10) = (Xi j)10×10, i, j = 1(1)10 as V−1 =(
ωi j

)
, i, j = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Then the solution of the differential Equation (23) is [14,15]

z =
5∑

j=1

X jy j (25)

yr = Creλrx + eλrx
∫
∞

−∞

Qre−λrx and Qr =
10∑

j=1

ωrj f j (26)

where Cr is an arbitrary constant which is to be evaluated using initial and boundary
conditions.

u = e(st+iqy)
5∑

j=1

X1 j(C jeΛ jx −
Q j

Λ j
) (27)

w = e(st+iqy)
5∑

j=1

X2 j(C jeΛ jx −
Q j

Λ j
) (28)

θ = e(ωt+iby)
5∑

j=1

X3 j(C jeΛ jx −
Q j

Λ j
) (29)

Using Equations (27)–(29) simplifying the above equations we obtain the stress
components as follows

σzz = e(ωt+ibz)

 5∑
j=1

C jS1 j(x)eΛ jx −M1

, σzx = e(ωt+ibz)

 5∑
j=1

C jS2 j(x)eΛ jx −M2

 (30)

σxx = e(ωt+ibz)

 5∑
j=1

C jS4 j(x)eΛ jx −M4

, σxz = e(ωt+ibz)

 5∑
j=1

C jS3 j(x)eΛ jx −M3

 (31)
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mxy = e(ωt+ibz)

 5∑
j=1

C jS6 jeΛ jx −M6

, mzy = e(ωt+ibz)

 5∑
j=1

C jS5 jeΛ jx −M5

 (32)

where C j , Si j(x) and Mk (i = 1, 2, 3, 4, 5, 6, 7; j = 1, 2, 3, 4; k = 1, 2, 3, 4, 5, 6, 7) are given in
the Appendix A.

6. Discussion

We discuss TPL model in Figures 1–4. In Figure 1 the fractional order parameter α has
a significant effect on the temperature distribution, where increasing on α causes increasing
on and the rate of change of with respect to x also increases when α increases at fixed
t = 0.1.

In Figure 2, when fractional order α = 1, time t = 0.1 are fixed and other constants are
same, then u displacement distribution starts with negative values for TPL, LS, CT theory.
The u-distribution up to x = 1.2 for the LS model is greater than for the TPL model and CT
model. After x = 1.2 the result is reversed.

In Figure 3 and 4, the fractional parameter has significant effects on the stress σxx and
σxzdistributions. Both starts from zero initially which shows that they satisfy boundary
condition. Increasing of fractional parameter α causes decreasing the absolute values of the
stresses, and the rate of change of them with respect to x also increase when α increases.
For the fixed value of x the stress σxz distribution has the lowest value for the fractional
parameter α = 0.2 in the range 0 ≤ x ≤ 1.0. For x ≥ 1.0 the distribution gradually increases
towards zero.
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Figure 1. Impact of fractional order parameter on temperature distribution at t = 0.1 and z = 1
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Figure 2. Impact of different thermoelasticity theory on u distribution at t = 0.1 and z = 1
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Figure 3. Impact of fractional order parameter on σxx distribution at t = 0.1 and z = 1
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Figure 4. Impact of fractional order parameter on σxz distribution at t = 0.1 and z = 1

7. Conclusions

In this work, the effect of the heat source, fractional order and phase lag parameters
on the temperature distribution, displacement components, the stress components have
been studying for a two-dimensional problem in a half space micro-polar thermoelastic
material is considered with the context of the fractional order thermoelasticity theory caring
a heat source. We found that, the fractional order parameter has significant effects on all the
studied fields and the results supporting the definition of the classification of the thermal
conductivity of the materials. We also found significant effects of phase lag parameters.
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Appendix A

a51 =
ε4s2+a2q2+ s2

ε1+ε2
1+ε5

, a52 =
iqε3

1+ε5
, a53 =

iq(a2
−1)−iqε5
1+ε5

, a56 =
(1+νs)

(ε1+ε2)(1+ε5)
, a58 = −b3

a61 =
q2+ε4s2+ε5q2+ s2

ε1+ε2
a2 , a62 =

iq(1+νs)
a2(ε1+ε2)

, a64 = −
iqb3
a2 , a65 =

iq(a2
−1)−ε5
a2 , a67 = − ε3

a2

a71 = −iqε7, a73 = q2 + ε8s2 + 2ε7, a77 = ε7
a82 = iqplsε9, a84 = (pls + q2), a85 = plsε10, a86 = plsε9s,
a92 = iqε11, a93 = 0, a94 = −ε13, a95 = q2 + ε14s2 + sε6 + ε12, a96 = ε11

ε1 =
λ+µ

ρc2
0

, ε2 =
µ+k
ρc2

0
, ε3 =

k/ρc2
0

(ε1+ε2)
, ε4 =

ε0µ
2
0H2

0
ρ(ε1+ε2)

, ε5 =
µ2

0H2
0

ρc2
0(ε1+ε2)

, ε7 =
kc2

0
γη2

0
,

ε8 =
ρJη2

0
γ , ε9 =

βT0γT
ρKη0

, ε10 =
mT0γT
ρKη0

ε6 =
ωc2

0
βη0

, ε11 =
bc2

0
βη2

0
ε12 =

εc2
0

βη0
ε13 =

mρc0
4

βγTη02 ε14 =
ρξc0

2

β
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