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Abstract: The definition and description of the dynamics of a predator–prey system are some of
the fundamental problems of population biology. Since 1925, several models have been introduced.
Although they are highly effective, most of them neglect certain relevant criteria such as the spatial
and temporal distribution of the studied species. We introduced these criteria by coupling two models
designed initially for collective dynamics. The first is for predator mobility and is a Vicsek-type
model, and the second is a Brownian particle (BP) model for prey. We observed, as occurs in the
classical models, periodic cycles of the densities of predators and prey. In this case, the period of
oscillations depends on the collective dynamics parameters.

Keywords: collective behavior; self-propelled particles; Brownian particles; predator–prey;
reaction–diffusion; limit cycle

1. Introduction

The study of population dynamics is a subject of multidisciplinary research involving
ecology, biology, mathematics and physics. It is sometimes oriented specifically in the
dynamics of two species: predators and prey. In this perspective, the model developed
independently by A. J. Lotka (1925) [1] and V. Volterra (1926) [2] provides a satisfactory
explanation of observed phenomena such as the periodic variation in species density.

Since then, several variants of this model (called LV) have been derived. They are
discrete or continuous dynamical systems whose qualitative study most often shows the
existence of a steady state and periodic solutions around it [3,4]. Some variants of these
models incorporate the mobility (spatio-temporal distribution) of the studied species,
they are known as reaction–diffusion systems [5]. The commonality between the above-
mentioned approaches is that they are Eulerian, deterministic and known as the mean-field
approach. There are still some stochastic formulations studied in [6,7].

Recently, agent-based models (ABMs) have also been used to interpret predator–prey
dynamics [8]. This concept was first introduced to study the collective behavior of a given
species. These are self-propelled particle models (SPP); they are presented in two- or three-
dimensional space and have undergone extensive investigations [9–13]. The central issues
here include the mechanisms by which autonomous agents interact to exhibit emergent
collective behavior and the properties of the resulting behavior. On the other hand, the
mobility of certain species such as bacteria or phytoplankton is not a coherent collective
dynamic but rather a random walk. Individuals from these species are generally considered
as Brownian particles (BPs) [14–16]. In summary, self-propelled particle models were
introduced to study the collective dynamics of a single species but never considered for the
simultaneous description of two species and even less so for two species of predator and
prey. If so, what about the basic properties deduced from these models such as orientation
ordering, cluster formation, etc.?
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Our approach consists of constructing a framework interpreting a predator–prey-type
dynamic. Individuals are considered as material points inside the domain, a periodic box
of size B× B, and located by their positions on the Cartesian plane and animated with
some velocity.

To implement this approach, we develop in the first section two separate models to
simulate the mobility of prey and predators. For this purpose, we use the SPP and BP
models, respectively. Then, we mix the two with assumptions of living interactions to
illustrate via flowcharts and equations a prey–predator-type dynamic. We then make a
python program to incorporate the global model.

Throughout the analysis of this model, we look for a range of standard parameters for
which periodic oscillations between the densities of species can be found. This is followed
by an underlying analysis of the characteristics of collective behavior.

2. Models and Simulation Setting

We designed separate prey and predator models describing their motions. Then, we
constructed a predator–prey model which takes into account their living interactions.

2.1. Prey’s Motion

For the prey’s motion, np particles are randomly uniformly distributed inside the
domain and their density by unit area is ρp = np/B2. ri

p(t), vi
p(t), which represents,

respectively, the position and velocity of particle i at time t, where the index p is set for
prey. A complex type of this model using thrust force and interactions between particles is
studied in [16].

In the beginning of the simulation (t = 0), we set the prey’s velocities from a Gaussian
distribution with zero mean and σ standard deviation (i.e., each particle has a random

normal velocity in [−3σ, 3σ] and σ =
1
3

is chosen to have values in [−1, 1]). After the first

time step, each particle undergoes the action of a total force M
dvi

p

dt
, denoted as Fi, and

moves according to the Langvin Equation (1) [16]:

M
dvi

p

dt
= Fi(t) = −γvi

p(t) + Ri(t), (1)

where M is the mass of the prey and is set to 1 for simplicity; vi
p is the velocity of the prey i;

γ is the coefficient of viscous friction, which is set by the properties of the environment and
the particle geometry; and Ri(t) is a random force given by Ri(t) =

√
2γkBTζ i, where kB, T

and ζ i are, respectively, the Boltzmann constant, temperature and Gaussian white noise with
zero mean and unit variance. TB = kBT is called the Boltzmann temperature. We used a
Box–Muller transformation to compute the components of ζ i, consisting of choosing two ele-
ments u1 and u2 from a uniform distribution from [0, 1] and mapping them to two standard,
normally distributed samples: ζ i

x =
√
−2 log(u1) cos(2πu2), ζ i

y =
√
−2 log(u1) sin(2πu2).

Thus, we used the Verlet algorithm to calculate the prey’s position and the Störmer–Verlet
method for their velocities (cf. [17]): ri

p(t + τ) = 2ri
p(t) − ri

p(t − τ) + τ2Fi(t), vi
p(t) =

ri
p(t+τ)−ri

p(t−τ)

2τ .
In this system, each particle has a Brownian trajectory (random walk) and the average

velocity of all particles depends closely on two parameters γ and TB (cf. Additional
Materials) (Table 1).
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Table 1. Global and predator parameters.

Name Standard Values Description Field (Unit)

(a) Summary of global parameters that are used in the
prey model. Standard values are used for simulations

GLOBAL VARIABLES

B 125 Length of domain R∗ (mm)

Lt 5× 105 Number of time steps N∗ (s)

τ 1 Time step R∗ (s)

PARAMETERS OF PREY MODEL

ρq 0.12 Density in number by unit area [0.01; 4] (mm−2)

γ 0.2 Coefficient of viscous friction R∗ (N)

TB 0.01 Boltzmann temperature R∗ (J)

(b) Parameters of predator model

η 0.09 Noise strength [0; 1] (1)

ρp 0.012 Density in number by unit area [0.01; 1](mm−2)

Rr 1 Radius of repulsion zone (zor) [0; L] (mm)

Ra 4 Radius of alignment zone (zoa) [0; L] (mm)

vo
q 0.5 Constant speed of any particle [0; Rr] (1)

α π Angle of perception [0; 2π] (rad)

2.2. Predator’s Motion

To describe the predator’s motion in the domain, we used a variant of the Vicsek
model and added a repulsion rule (cf. [9,12,18]). Thus, nq predator particles are distributed
inside the domain and move with a constant speed vo

q. Their density is ρq = nq/B2 and ri
q(t)

and vi
q(t) represent, respectively, the position and velocity vectors for the ith particle at time

t, where the subscript q denotes predator. For initial conditions, we set each particle with a
uniform random position ri

q(0) and velocity ri
q(0) (cf. [16]). Then, in any time step τ, the

position ri
q(t) changes according to the equation ri

q(t + τ) = ri
q(t) + τvi

q(t), and the velocity
vi

q depends on the position of the ith particle which is either in the area of repulsion (zor) or
alignment (zoa). These areas are defined by circles whose radii are denoted Rr for zor and Ra
for zoa with RrRa. The first behavioral zone, represented by a circle of smaller radius Rr,
is responsible for the maintenance of a minimum distance between neighboring particles,
while the second one with a grater radius Ra is used for aligning the particle velocities
(Figure 1a).

In the same figure, we demonstrate a flowchart illustrating the movement choices of a
predator i whose rules are described as follows:

(a) Repulsion rule: If there are nr neighbors around i in zor, the velocity vi
q(t + τ)

is given by the equation vi
q(t + τ) = R(ξi(t))Vi

r (t), where Vi
r (t) is the desired direction

of particle i and is given by the equation Vi
r (t) = −vo

q
nr
∑
j 6=i

rij
q (t)/

∣∣∣ nr
∑
j 6=i

rij
q (t)

∣∣∣, where vo
q is a

constant speed for all particles; rij
q = rj

q − ri
q is the vector in the direction of neighbor j and

R(ξi(t)) is the rotation matrix. ξi(t) is the random angular noise obtained from [−2πη; 2πη]
by a Gaussian distribution, where η ∈ [0; 1] represents the noise strength. The standard
deviation is then around 2.π

3 η.
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(a) (b)

Figure 1. Diagram of interactions. (a) (A) Schema of interactions between particles in the Vicsek-type
model. The central particle (red arrow) turns away from the nearest neighbors (blue arrows) within
the zone of repulsion (the inner circle of radius Rr, zor) to avoid collisions and aligns itself with the
neighbors (blue arrows) within the zone of alignment (the outer circle of radius Ra, zoa). The alignment
excludes particles (black arrows) within a blind angle (2π− α), where α = 4.19 rad [13]. (B) Flowchart
illustrating movement choices of a predator i. (b) Flowchart illustrating living interaction between
prey (A) and predators (B). ZOP denotes the zone of the predators and the equations satisfying the
different conditions are shown in the underlying section.

(b) Alignment rule: If there are no neighbors in the zone of repulsion, the individual i
responds to others which are in the zone of alignment with:

vi
q(t + τ) =

{
R(ξi(t))Vi

a(t), b > a
vi

q(t)vo
q, b ≤ a (2)

where b is the cosine of the angle measured between vi
q(t) and rij

q . It is evaluated to check if
particle i sees particle j. a ∈ [−1; 0] has a fixed value which is the cosine of the half angle of
perception α, and the blind angle should be 360◦ − α. Thus, if a = −1, the central particle i
interacts with all particles inside the zone of alignment. The desired direction of particle i

in the zoa is Vi
a(t) = vo

qφ(t)λ
na
∑

j=1
v f

j (t)/
∣∣∣ na

∑
j=1

v f
j (t)

∣∣∣, where na is the number of particles in the

zone of alignment; φ(t) is the polar order (or polarization), given by φ(t) = 1
na

∣∣∣ na
∑

i=1
vi

q(t)
∣∣∣;

and λ is the degree of polarization.
(c) Absolute rule: If repulsion occurs, the alignment is neglected.
(d) Alternative rule: If there are no individuals in the both zones, the particle i

maintains its previous direction and thus vi
q(t + τ) = vi

q(t)vo
q.

Finally, the parameters involved in this model for predators are shown in Table 2. Thus,
in the next section, we will model the vital interactions simulating a prey–predator dynamic.
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Table 2. Parameters of the predator model

Name Standard Values Description Field (Unit)

η 0.09 Noise strength [0; 1] (1)

ρp 0.012 Density in number by unit area [0.01; 1] (mm−2)

Rr 1 Radius of repulsion zone (zor) [0; L] (mm)

Ra 4 Radius of alignment zone (zoa) [0; L] (mm)

vo
q 0.5 Constant speed of any particle [0; Rr] (1)

α π Angle of perception [0; 2π] (rad)

2.3. The Predator–Prey Model

In addition to previous models describing the movement of prey and predators
(Sections 2.1 and 2.2), in this section, we are interested in their dynamics of evolution as
two species living in a common environment (the domain). To describe this dynamic, we
introduced a predator–prey model by coupling these two models through underlining
assumptions.

Firstly, we treated the prey as living agents with the principal idea that any prey has
some energy state which varies according to its position with respect to the predators. It
features the life states of all individuals, i.e., survival, reproduction and mortality. Then, at
t = 0, we set np(0) as the initial size of the prey population and an initial energy Ei

p(0) to
each one. This is a random value obtained from a Gaussian distribution with zero mean
and σEp standard deviation (i.e., Ei

p(0) ↪→ ℵ(0, σEp)).
Therefore, after each time step, i prey survive when they are outside the predatory

area of all predators. They gain a survival bonus, an energy Esp , which can increase or
decrease their next state of energy. This models the fact that each prey can survive by
potentially endangering another one or just die. ∀ j |rp

i (t)− r f
j (t)|Rp, thus Ei

p(t + τ) =

Ei
p(t) + Esp . Consequently, if the energy state reaches some certain reproduction threshold

Erp , the individual will be able to reproduce by cloning. Then, a new prey k born inside
a birth zone (zobp) of radius Rbp inherits similar movement abilities from their ancestor:
Ei

p(t + τ) ≥ Erp ⇒ ith prey clone. Subsequently, its mortality is due to predators or a
deficiency of energy, and occurs when the energy become less than a fixed mortality threshold
Edp : Ei

p(t) ≤ Edp ⇒ ith prey die.
With the same order of ideas, we approached in the second instance the dynamics of

predators. Thus, for an initial size of population nq(0), we assumed that predators will
need energy to survive. It is also a normal distribution Ei

q(0) with zero mean and σEq

standard deviation.
Therefore, in each time step, predator use Emq amount of energy for metabolism (2).

Predators derive energy from predation of prey present in their predatory zone zop (a circle
of radius Rp). Thus, its state of energy decreases by the metabolism cost Emq or increases by
the predatory bonus Eaq : Ei

q(t + τ) = Ei
q(t)− Emq ; |r f

i (t)−rp
j (t)| ≤ Rp ⇒ Ei

q(t+τ)=Ei
q(t)+Eaq .

Following this energy update, a predator dies when its state of energy decreases
below the mortality threshold Edq . Otherwise, if its energy level reaches more than the
reproduction threshold Erq , a new predator k will be born with a random normal energy
Ek

q(t + τ) ↪→ ℵ(0, σEq) and a random uniform velocity inside the zone of birth (zobq) of
radius Rbq . This is the cloning reproduction principle that we used for prey, i.e., Ei

q(t) ≤
Edq ⇒ ith predator die, Ei

q(t + τ) ≥ Erq ⇒ ith predator clone.
Finally, after recapping the parameters involved in the model described above in

Table 3, we designed a python program for simulations. The files are available on this link,
where “main.py” generates the data and “anim.py” simulates interactions between the
species.

https://onlinegdb.com/fAenerATW
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Table 3. Parameters of the predator–prey model. The standard values are those who create a
pseudo-periodic regime.

Name Standard Values Description Field (Unit)

PREY

Rbp 0.5 Zone of birth radius (zobp) [0; L] (mm)

σEp 2.73 Standard deviation of energy distribution R∗ (1)

Erp 6 Reproduction threshold R∗ (J)

Esp ℵ(0,σEp ) Survival bonus R∗ (J)

Edp −8 Mortality threshold R∗ (J)

PREDATORS

Rp 6 Zone of predators radius (zop) [0; L] (mm)

Rbq 1 Zone of birth radius (zobq) [0; L] (mm)

σEq 2.73 Standard deviation of energy distribution R∗ (1)

Emq 0.01 Metabolism cost R∗ (J)

Eaq 0.025 Predatory bonus R∗ (J)

Erq 8 Reproduction threshold R∗ (J)

Edq −8 Mortality threshold R∗ (J)

3. Results and Discussion

We performed computer simulations to analyze the predator–prey model. Unless
explicitly stated, we kept all parameters standard as indicated in Table 1. The standard
parameters provide a regime where the density of species oscillates over time, inferring a
pseudo-periodic regime for all trials performed. However, by varying certain parameters,
one can have other types of regime such as the simultaneous extinction of two species or
the survival of one and the extinction of the other.

We began with running the model by focusing mainly on three characteristic times
[3 × 103, 8 × 103]. We chose the characteristic times with respect to predator density as
(ρqmin ← tmin), (ρqmid ← tmid) and (ρqmax ← tmax), where the subscripts min, mid and
max denote, respectively, the minimum, middle and maximum densities. Note that in
this notation, tmin might be greater than tmax, etc., because the subscripts here are only
attached to density values. These three cases typically represent the different phases of
predators’ collective dynamics. In this sense, we illustrated the spatial distribution of
species in snapshots in Figure 2A(a–c), i.e., the locations inside the domain of predators
(blue) and preys (orange) at a specific time (tmin, tmid or tmax). We noticed that the prey
density is less important and that of predators is elevated and vice versa. Such a fact infers
a cyclic evolution of the species, which is represented in Figure 2A(d). For global picture,
we recorded the range of densities for predators and prey, respectively, in [0.089, 0.25]
and [0.29, 0.89]. The corresponding characteristic densities are (ρqmin, ρqmid, ρqmax) =
(0.089, 0.21, 0.25). Hence, we observed that density variations have an impact on the
collective dynamics, notably on the particle orientation ordering and cluster formation
groups. This result is also found in many studies of Viscek-type models.

For this, we investigated particle orientation ordering by evaluating the polar order
parameter Φ(t), which quantifies the alignment of predator particles to the average in-

stantaneous velocity vector Φ(t) = 1
nq(t)vo

q

∣∣∣ nq(t)
∑

i=1
vi

q(t)
∣∣∣. This parameter ranges from zero in

the case of a disordered phase to one in the case of a completely ordered phase. We have
shown in Figure 2A(e) the evolution of the polar order parameter Φ(t), where particles
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seem less ordered at a low density. A correlation between the variation in particle den-
sity and the polar order parameter is not obvious because the appearance of newborns
disturbs the alignment of particles, and we observe the emergence of a spontaneous local
phase transition.

(a)-  tmin (b)- tmid (c)-  tmax

0.50

0.75

ρ p
(t)

(d)
0.1

0.2

ρ q
(t)

tmin

tmid
tmax

(d)

3000 4000 5000 6000 7000 8000
t (s)

0.00

0.25

0.50

 Φ
(t)

(e)

tmin

tmid tmax

(e)

0.45

0.50

0.55

0.60

 ρ̄
p̄
t)

0.16

0.18

0.20

 ρ̄
q̄
t)

̄a)

43000 44000 45000 46000 47000 48000 49000 50000
t ̄s)

0.5

0.6

 Φ̄
̄t)

̄b)

0.15 0.20
 ρ̄q̄t)

0

20

40

Fr
eq

ue
nc

y --- fq( ̄ρq̄(c̄

0.4 0.5 0.6
 ρ̄p(t̄

0

5

10 --- fp( ̄ρp̄(d̄

0.4 0.5 0.6
 Φ̄(t)

0

5

10
--- fϕ(Φ̄)(e)

(A) (B)

Figure 2. Snapshots of particles and related indicators. (A) Snapshots of particle distributions in
the predator (blue) and prey (brown) domains, respectively, for three cases of predator density:
(a) minimum density ρqmin = 0.10, (b) maximum density ρqmax = 0.20 and (c) medium density
ρqmid = 0.18. (B) Subfigures (d,e) show, respectively, the density evolution of species and the polar
order parameter Φ(t) (green) versus time. tmin, tmid and tmax indicate the three cases mentioned
above. (a) Average density evolution of predators ρ̄q(t) (blue) and prey ρ̄p(t) (brown) and (b) the
corresponding average polar order parameter Φ̄(t) (green). The average is taken from 18 independent
runs within standards parameters with a total time equal to 50,000. Subfigures (c–e) show, respectively,
the distribution of ρ̄q(t), ρ̄p(t) and Φ̄(t). The dashed lines are the corresponding fitted functions of
fq, fp, and fφ.

To further understand the evolution of predator–prey densities (ρq(t), ρp(t)) and the
equivalent predator polar ordering (Φ(t)), we ran 18 trials with a total time of Lt = 5× 104.
The results were very similar, i.e., the density of predators ρq(t) oscillates in [0.013; 0.33]
and that of prey ρp(t) oscillates in [0.12; 1.32]. The results show that in the first trial,
ρq(t) increases when ρp(t) decreases and vice versa. Thus, there is an equilibrium point
(ρ̃q(t), ρ̃p(t)) and a limited cycles around it. We also highlight that the curve of ρq is
smoother than the curve of ρp, this is due to the height impact of randomness in prey
dynamics assumptions. This randomness effect appears also in the polar order parameter
Φ(t), which is bounded in [0.076, 0.67]. Therefore, predators could be completely disordered
for some time, and they cannot reach a degree of order more than 0.67. This indicates that
the presence of prey has an impact on predator collective dynamics as a disordering factor.

We continued our analysis by looking at histograms of (ρ̄q(t), ρ̄p(t), Φ̄(t)), which denote
the instantaneous average (quadratic mean) of (ρq(t), ρp(t), Φ(t)), where t ∈ [4.3 × 104,
5 × 104]. We found approximate functions fq, fp and fΦ to fit, respectively, predator and prey
density distributions and the polar order parameter distribution (subfigures (c–e) in Figure 2),
where fq(ρ̄q(t)) = N (µq, σq) = N (0.18, 0.011); fp(ρ̄p(t)) = N (µp, σp) = N (0.5, 0.041);
fΦ̄(Φ̄(t)) = N (µΦ̄, σΦ̄) = N (0.54, 0.31).

Since only the evolution of the predator density does not follow a Gaussian distribu-
tion, we are interested in the fluctuation in the number of predator particles in the system:

〈∆nq(l)〉 =
√
〈nq(l)2〉 − 〈nq(l)〉2, where nq(l) denotes the number of predators in a box of

linear size l. 〈∆nq(l)〉 is in general proportional to 〈nq(l)〉β. β = 0.5 corresponds to normal
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fluctuation, while β0.5 is a significant fluctuation. In our system, the extent of fluctuation
of predator particles was estimated for the three density cases. For minimum and middle
densities, the critical exponent is β ' 0.8, this corresponds to a significant fluctuation. For
the maximum density, the fluctuation is normal because β ' 0.5 (Figure 3a).

We finally examined the cluster distribution of predator particles. Formally, the
cluster dynamics of the SPP system can be described by deriving a master equation for the
evolution of the probability p(m), where m = m1, m2, . . . , mN , with m1 being the number
of isolated particles, m2 being the number of two-particle clusters, m3 being the number
of three-particle clusters, etc. Clusters in our model are defined as a group of particles
with a distance between neighbors smaller or equal to the radius of alignment zone Ra, i.e.,
particles interacting directly or via neighboring agents are included in one cluster ([13]).

100 101 102 103

<n>

10−2

10−1

100

<Δ
n>

NumberΔFluctiationΔΔofΔpredatorΔparticles
Δtmin

Δtmid

Δtmax

Δ ∼ < n> 0.8

Δ ∼ < n> 0.55

(a) (b)

Figure 3. Number fluctuation and cluster statistics. (a) Fluctuation in the number of predator particles
for three characteristic times: minimum density tmin, middle density tmid and maximum density
tmax. The critical exponent β is in [0.55; 0.8]. (b) Cluster statistics for three ranges of predator density:
ρq ≤ ρqmin, ρqmin ≤ ρq ≤ ρqmax and ρq ≥ ρqmax. ρ

q
min = 0.16 and ρqmax = 0.21. Lt = 105 and the rest

of the parameters are standard.

4. Conclusions

In summary, we built a predator–prey model from a collective dynamics and self-
propelled particles approach. Despite the plethora of assumptions, stability of the system
is possible with appropriate parameters which give a quasi-periodic regime.

The main results related to SPP and BP models are maintained with the particularity
that the densities are dynamic here. Let us note, however, the difficulty in the design of the
algorithm caused by the large sizes of parameters.
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