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Abstract: Solving various real-life problems ultimately requires solving systems of linear equations.
However, the parameters involved in such real-life problems may be pervaded with uncertainty,
which results in fuzzy parameters rather than crisp parameters. Intuitionistic fuzzy parameters are
more suitable for some cases, since they allow us to tackle the feeling of fear or hesitation when
making a decision. These are characteristics of human beings that occur when applying knowledge
and skills. The intuitionistic fuzzy linear system (IFLS) resulting from real-life problem involves large
number of equations and equally large number of unknowns. When IFLS is in matrix-vector form,
the resulting coefficient matrix will have a sparse structure, which makes iterative methods necessary
for their solution. In this paper, the known Gauss–Seidel and SOR iterative methods for solving linear
system of equations are discussed, to the best of our knowledge for the first time, to solve (IFLS).
The single parametric form representation of intuitionistic fuzzy numbers (IFN) makes it possible
to apply these iterative techniques to IFLS. Finally, a problem of voltage input output in an electric
circuit has been considered to show the applicability and the efficiency of these methods.

Keywords: parametric form of intuitionistic fuzzy number ; intuitionistic fuzzy linear system (IFLS);
Gauss–Seidel and SOR iterative method

1. Introduction

In the real world, many of our scientific problems turn into problems related to solving
linear system of equations. Parameters involved in such equations are generally determined
through estimation, experiments and modeling. Thus, the parameters often involve some
uncertainty or impreciseness. Therefore, our preferred choice is to choose fuzzy parameters
rather than crisp parameters. Intuitionistic fuzzy parameters are more flexible in describing
uncertainty with membership and non-membership functions with hesitancy function than
fuzzy parameters. To handle this uncertainty or impreciseness, Zadeh [1] introduced the
concept of fuzzy set theory. Since then, there have been several generalizations of fuzzy
set theory made by researchers. One of them is intuitionistic fuzzy set theory, which was
introduced by Atanassov [2,3]. Friedman et al. [4] proposed a general model to solve
n× n FSLE, in which the coefficient matrix is crisp and the right-hand side is an arbitrary
fuzzy vector. Iterative methods for solving FSLE are given by Allahviranloo [5]. The SOR
method to solve FSLE is presented by Allahviranloo [6]. To solve IFLS, several authors
provided different approaches. Atti et al. [7] developed an approach to solve IFLS, in which
they converted n× n IFLS into four n× n crisp linear systems of equations. Saw et al. [8]
proposed the Jacobi iterative method to solve IFLS. They converted n× n IFLS into one
4n× 4n crisp linear system of equations. In the present work, we extended the well-known
Gauss–Seidel and SOR methods to solve IFLS.
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2. Materials and Methods

The n× n intuitionistic fuzzy system of linear equations may be written as

a11 x̃1 + a12 x̃2 + ... + a1n x̃n = ỹ1,
a21 x̃1 + a22 x̃2 + ... + a2n x̃n = ỹ2,

...
an1 x̃1 + an2 x̃2 + ... + ann x̃n = ỹn.

(1)

In matrix-vector form, the above system may be written as AX̃ = Ỹ, where the coeffi-
cient matrix A = (aij), 1 ≤ i ≤ n, 1 ≤ j ≤ n is a crisp real n× n matrix, Ỹ = (ỹi), 1 ≤ i ≤ n,
is a column vector of fuzzy numbers and X̃ = (x̃j), 1 ≤ j ≤ n, is the vector of fuzzy un-
knowns.

Definition 1. An intuitionistic fuzzy number vector (x̃1, x̃2, ..., x̃n)t given by (x̃j = (xj
+(α),

xj
+(α)), (xj

−(α), xj
−(α))), 1 ≤ j ≤ n, 0 ≤ α ≤ 1, is called solution of (1) if:

n

∑
j=1

aijxj
+ =

n

∑
j=1

aijxj
+ = yi

+, i = 1, 2, ..., n,
n

∑
j=1

aijxj
+ =

n

∑
j=1

aijxj
+ = yi

+, i = 1, 2, ..., n,

n

∑
j=1

aijxj
− =

n

∑
j=1

aijx−j = yi
−, i = 1, 2, ..., n,

n

∑
j=1

aijxj
− =

n

∑
j=1

aijx−j = yi
−, i = 1, 2, ..., n.

Hence, from (1), we have four crisp n× n linear systems for all i which can be extended

to a 4n× 4n crisp linear system, as follows: SX = Y =⇒


S1 S2 0 0
S2 S1 0 0
0 0 S1 S2
0 0 S2 S1




Xα

Xα

Xα

Xα

 =


Yα

Yα

Yα

Yα

, where sij are determined as follows:

aij ≥ 0 ⇒ sij = si+n,j+n = si+2n,j+2n = si+3n,j+3n = aij, aij ≤ 0 ⇒ si,j+n = Si+n,j =
si+2n,j+3n = si+3n,j+2n = aij, and sij which are not determined are zero.

Additionally, Xα =


x1

+

x2
+

...
xn

+

, Xα =


x1

+

x2
+

...
xn

+

, Xα =


x1
−

x2
−

...
xn
−

, Xα
=


x1
−

x2
−

...
xn
−


and

Yα =


y1

+

y2
+

...
yn

+

, Yα =


y1

+

y2
+

...
yn

+

, Yα =


y1
−

y2
−

...
yn
−

, Yα
=


y1
−

y2
−

...
yn
−

.

From the structure of S, it is clear that S1 contains the positive entries of the matrix A,
while S2 contains the negative entries of the matrix A and A = S1 + S2. We represent S as

S =

(
SD 0̄
0̄ SD

)
, where SD =

(
S1 S2
S2 S1

)
and 0̄ =

(
0 0
0 0

)
.

Theorem 1. Let the matrix S be strictly diagonally dominant. The Gauss–Seidel iterate converges
to S−1Y for any X0 (see [9], p. 120).
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Theorem 2. The matrix S is non-singular iff A = S1 + S2 and (S1 − S2) are both non-singular.
(see [4])

Proof. The matrix S is non-singular iff SD is non-singular. Now, SD =

(
S1 ≥ 0 S2 ≤ 0
S2 ≤ 0 S1 ≥ 0

)
is non-singular iff A = S1 + S2 and (S1 − S2) is non-singular.

Theorem 3. Let S be non-singular. Then, the unique solution X of Equation (1) is always a
intuitionistic fuzzy vector for arbitrary vector Y, if S−1 is non-negative. (see [5])

Theorem 4. Matrix A in Equation (1) is strictly diagonally dominant if the matrix S is strictly
diagonally dominant. (see [8])

2.1. Gauss–Seidel Iterative Scheme

Without loss of generality, suppose that sii > 0 for all i = 1, 2, ..., 4n.
Let S = D + L + U, where

D =


D1 0 0 0
0 D1 0 0
0 0 D1 0
0 0 0 D1

, L =


L1 0 0 0
S2 L1 0 0
0 0 L1 0
0 0 S2 L1

, U =


U1 S2 0 0
0 U1 0 0
0 0 U1 S2
0 0 0 U1


(D1)ii = sii > 0, i = 1, 2, ..., n and suppose S1 = D1 + L1 + U1.

From SX = Y, we have
D1 + L1 0 0 0

S2 D1 + L1 0 0
0 0 D1 + L1 0
0 0 S2 D1 + L1




Xα
Xα
Xα

Xα

 +


U1 S2 0 0
0 U1 0 0
0 0 U1 S2
0 0 0 U1




Xα
Xα
Xα

Xα

=


Yα
Yα
Yα

Yα


Then,

Xα = (D1 + L1)
−1Yα − (D1 + L1)

−1U1Xα − (D1 + L1)
−1S2Xα

Xα = (D1 + L1)
−1Yα − (D1 + L1)

−1U1Xα − (D1 + L1)
−1S2Xα

Xα = (D1 + L1)
−1Yα − (D1 + L1)

−1U1Xα − (D1 + L1)
−1S2Xα

Xα
= (D1 + L1)

−1Yα − (D1 + L1)
−1U1Xα − (D1 + L1)

−1S2Xα

So, the Gauss–Seidel iterative technique reads as:

(Xα)
k+1 = (D1 + L1)

−1Yα − (D1 + L1)
−1U1(Xα)

k − (D1 + L1)
−1S2(Xα)

k

(Xα)
k+1 = (D1 + L1)

−1Yα − (D1 + L1)
−1U1(Xα)

k − (D1 + L1)
−1S2(Xα)

k

(Xα)k+1 = (D1 + L1)
−1Yα − (D1 + L1)

−1U1(Xα)k − (D1 + L1)
−1S2(Xα)k

(Xα
)k+1 = (D1 + L1)

−1Yα − (D1 + L1)
−1U1(Xα

)k − (D1 + L1)
−1S2(Xα)k

The results in the matrix-vector form of the Gauss–Seidel iterative technique are
X(k+1) = MGSXk + C, where

MGS =


−(D1 + L1)

−1U1 −(D1 + L1)
−1S2 0 0

−(D1 + L1)
−1S2 −(D1 + L1)

−1U1 0 0
0 0 −(D1 + L1)

−1U1 −(D1 + L1)
−1S2

0 0 −(D1 + L1)
−1S2 −(D1 + L1)

−1U1

,

C =


(D1 + L1)

−1Yα

(D1 + L1)
−1Yα

(D1 + L1)
−1Yα

(D1 + L1)
−1Yα

, X =


Xα

Xα

Xα

Xα

.

From Theorem (1) and (4), the Gauss–Seidel iterates converge to the unique solution
X = S−1Y, for any X0. The stopping criterion with tolerance ε > 0 is
‖(Xα)

k+1−(Xα)
k‖

‖(Xα)
k+1‖ < ε, ‖(Xα)k+1−(Xα)k‖

‖(Xα)k+1‖ < ε, ‖(Xα)k+1−(Xα)k‖
‖(Xα)k+1‖ < ε, ‖(Xα

)k+1−(Xα
)k‖

‖(Xα
)k+1‖

< ε.
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2.2. SOR Iterative Scheme

If we decomposed the S1 matrix as S1 = D1 + L1 + U1, with diagonal component D1,
and strictly lowered triangular component L1 and upper triangular component U1, then
the decomposed matrix S became similar to S = D + L + U, where

D =


D1 0 0 0
0 D1 0 0
0 0 D1 0
0 0 0 D1

, L =


L1 0 0 0
S2 L1 0 0
0 0 L1 0
0 0 S2 L1

, U =


U1 S2 0 0
0 U1 0 0
0 0 U1 S2
0 0 0 U1


From SX = Y, we rewrite the system as

(D + L + U)X = Y (2)

Using relaxation parameter ω, we rewrite the above system in the new form as

(D + ωL)X = ωY− [(ω− 1)D + ωU]X, (3)


D1 + ωL1 0 0 0
ωS2 D1 + ωL1 0 0

0 0 D1 + ωL1 0
0 0 ωS2 D1 + ωL1




Xα
Xα
Xα

Xα

 =

ω


Yα
Yα
Yα

Yα

−


(ω− 1)D1 + ωU1 ωS2 0 0
0 (ω− 1)D1 + ωU1 0 0
0 0 (ω− 1)D1 + ωU1 ωS2
0 0 0 (ω− 1)D1 + ωU1




Xα
Xα
Xα

Xα


Then, we get

Xα = (D1 + ωL1)
−1ωYα − (D1 + ωL1)

−1[ωU1 + (ω− 1)D1]Xα − (D1 + ωL1)
−1S2Xα

Xα = (D1 + ωL1)
−1ωYα − (D1 + ωL1)

−1[ωU1 + (ω− 1)D1]Xα − (D1 + ωL1)
−1S2Xα

Xα = (D1 + ωL1)
−1ωYα − (D1 + ωL1)

−1[ωU1 + (ω− 1)D1]Xα − (D1 + ωL1)
−1S2Xα

Xα
= (D1 + ωL1)

−1ωYα − (D1 + ωL1)
−1[ωU1 + (ω− 1)D1]X

α − (D1 + ωL1)
−1S2Xα

So, the SOR iterative technique read as:

(Xα)
k+1 = (D1 + ωL1)

−1ωYα − (D1 + ωL1)
−1[ωU1 + (ω− 1)D1](Xα)

k − (D1 + ωL1)
−1S2(Xα)

k

(Xα)
k+1 = (D1 + ωL1)

−1ωYα − (D1 + ωL1)
−1[ωU1 + (ω− 1)D1](Xα)

k − (D1 + ωL1)
−1S2(Xα)

k

(Xα)k+1 = (D1 + ωL1)
−1ωYα − (D1 + ωL1)

−1[ωU1 + (ω− 1)D1](Xα)k − (D1 + ωL1)
−1S2(Xα

)k

(Xα
)k+1 = (D1 + ωL1)

−1ωYα − (D1 + ωL1)
−1[ωU1 + (ω− 1)D1](Xα

)k − (D1 + ωL1)
−1S2(Xα)k

This can be written in matrix-vector form as X(k+1) = MSORXk + C where
MSOR =
−(D1 + ωL1)

−1 [ωU1 + (ω− 1)D1 ] −(D1 + ωL1)
−1S2 0 0

−(D1 + ωL1)
−1S2 −(D1 + ωL1)

−1 [ωU1 + (ω− 1)D1 ] 0 0
0 0 −(D1 + ωL1)

−1 [ωU1 + (ω− 1)D1 ] −(D1 + ωL1)
−1S2

0 0 −(D1 + ωL1)
−1S2 −(D1 + ωL1)

−1 [ωU1 + (ω− 1)D1 ]

,

C =


(D1 + L1)

−1Yα

(D1 + L1)
−1Yα

(D1 + L1)
−1Yα

(D1 + L1)
−1Yα

, X =


Xα

Xα

Xα

Xα

.

3. A Practical Application

The authors of [10] considered the electrical circuit shown in Figure 1, where ṽ1 and
ṽ2 are the input voltages, and ṽ3 and ṽ4 are the output voltages. The circuit is a kind of
summing amplifier with two inputs and two outputs. The relationship between input and

output voltages is as follows:
(

3 0.5
−2 −3

)(
ṽ1
ṽ2

)
=

(
ṽ3
ṽ4

)
.
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Figure 1. Electrical Circuit.

They considered the output voltages as type-2 fuzzy numbers. In this paper, we treat
the same example, but we consider the output voltages as intuitionistic fuzzy numbers, as
considered by the authors in [7]:
ṽ3 = (14 + 2α;−14− 2α; 16− 3α; 16 + 3α) and
ṽ4 = (−18 + 2α;−14− 2α;−16− 3α;−16 + 3α).

Here, we are looking at how to calculate the input voltages when the output voltages
are known but uncertain. That is, ṽ3 is “about 16 volts” and ṽ4 is “about –16 volts”. Different
experts may have different viewpoints on the output voltage’s uncertainty.

Now, if we choose to focus on one expert’s interpretation, then the linear system
shown in Equation (1) will be type-1 FLSE, as mentioned in [10].

In addition, we consider the hesitation of the expert, which is quite natural when
making a decision, because of characteristics of human beings applying knowledge and
skills. Then, the linear system shown in Equation (1) will be an intuitionistic fuzzy linear
system of equations. This is more realistic than type-1 FLSE.

If we want to consider more than one expert’s opinion, then we obtain the system of
equations as type-2 FLSE, originally considered in [10].

Now, if we consider different experts’ opinions individually, together with their
hesitations, then we can take, for example, the arithmetic average of different IFNs to
determine the output voltages, and the system can be better represented as IFLS.

In this case, the above system reduces to{
3ṽ1 + 0.5ṽ2 = (14 + 2α; 18− 2α; 16− 3α; 16 + 3α)

−2ṽ1 − 3ṽ2 = (−18 + 2α;−14− 2α;−16− 3α;−16 + 3α)
(4)

The exact and approximated solutions are plotted and compared for ṽ1.
The exact and approximated solutions are plotted and compared for ṽ2.

4. Conclusions

As can be seen in Figures 2 and 3, the solutions obtained by both the methods for
tolerance ε = 10−6 agreed quite well with the exact solution for both ṽ1 and ṽ2. The
convergence history in Figure 4 shows that the Gauss–Seidel method requires nine iterations
and the SOR method requires eight iterations to converge in this case. As expected, the SOR
method with wopt = 0.9 is faster than the Gauss–Seidel method, even for this relatively
small ( f or n = 2 IFLS, i.e., 8× 8 crisp) system of equations. Certainly, for large system of
equations, convergence will be accelerated using the SOR method rather than the Gauss–
Seidel method.
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Figure 2. Graphical representation of ṽ1 with continuous (exact solution) and approximate values for
α = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 for both Gauss–Seidel and SOR methods.

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Gauss−Seidel

SOR

Exact

Figure 3. Graphical representation of ṽ2 with continuous (exact solution) and approximate values for
α = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 for both Gauss–Seidel and SOR methods.
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Figure 4. Convergence history of Gauss–Seidel and SOR methods.

In future, we try to accelerate the convergence of the linear system using more efficient
iterative methods, such as the Krylov subspace methods or Multigrid methods.
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