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Abstract: Presented in this paper is a trigonometrically fitted scheme based on a class of improved
hybrid method for the numerical integration of oscillatory problems. The trigonometric conditions
are constructed through which a third algebraic order scheme is derived. Numerical properties of the
scheme are analysed. A numerical experiment is conducted to validate the scheme. Results obtained
reveal the superiority of the scheme over its equals in the literatur.e

Keywords: oscillatory solution; numerical scheme; trigonometrically fitted; hybrid method; trigono-
metric conditions; oscillatory problem

1. Introduction

Our interest in this paper is in the solution of a special class of second-order ordinary
differential equations (ODEs) whose solution exhibits oscillatory behaviors. In short, the
equation together with its boundary conditions (initial value problem (IVP)) takes the
following form:

y′′(x) = f (x, y(x)), y(x0) = y0, y′(x0) = y′0. (1)

It is a special case of second ODEs because the right-hand-side of the main equation is
independent of the y′ component. Over the years, researchers’ interest in this particular
problem (1) has grown. This is largely due to its applicability in a number of areas in
applied sciences including engineering, celestial mechanics, orbital mechanics, chemical
kinetics, astrophysics, chemistry, physics and elsewhere [1–12]. Unfortunately, as important
as the problems are (1), only a few of them could be solved analytically, hence the need for
numerical schemes.

Traditional numerical schemes such as the Runge–Kutta methods, Runge–Kutta–
Nyström methods, linear multistep method, etc., for solving second-order ODEs could
solve (1) only with little accuracy and efficiency due to the behaviours of the solution.
Research has shown that an adapted form of the traditional schemes could solve (1) with
reduced error and better efficiency [5].

Recently, refs. [11,12] introduced in the literature a new numerical scheme that proved
to be more promising in tackling (1). The methods are developed to be implemented in
constant coefficient fashion. The method could perform better if adapted to specifically
handle (1). This is the main motivation of this paper.

The remaining part of the paper is organized as follows: in Section 2, the proposed
scheme is derived; results of numerical experiment are presented in Section 3; discussion of
the results is presented in Section 4; and finally, the conclusion is given in Section 5.
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2. The Scheme

The general form of the improved hybrid method is

yn+1 =
3
2

yn −
1
2

yn−2 + h2
s

∑
i=1

bi f (xn + cih, Yi),

Yi =
1
2
(2 + ci)yn −

1
2

ciyn−2 + h2
s

∑
i=j

ai,j f (xn + cjh, Yj), (2)

where yn+1 and yn−2 are approximations for y(xn+1) and y(xn−2), respectively. ai,j, bi and
ci are coefficients of the method and they are real numbers. i = 1, ..., s and i > j, because
the method is explicit. The coefficients can be summarized as follows (Table 1):

Table 1. General coefficients of the scheme.

−2 0
0 0 0
c3 a31 a32 0

...
...

...
...

...

cm am1 am2 · · · amm−1 0
b1 b2 · · · bm−1 bm

2.1. Order Condition of the Scheme

Algebraic order condition of a method or scheme is a set of equations that causes the
successive terms in the Taylor series expansion of local truncation error of the method to
vanish. The order conditions of the scheme as derived and presented in [11,12] can be seen
in the Table 2 below: Note: Conditions are in terms of the general coefficients in Table 1.

Table 2. Order Conditions.

t ρ(t) Order Condition

τ 0 -

τ1 1 -

τ2 2 ∑ bi =
3
2

t3,1 3 ∑ bici = − 1
2

t4,1 4 ∑ bic2
i = 3

4
t4,2 ∑ biai,j = − 1

8

t5,1 5 ∑ bic3
i = − 3

4
t5,2 ∑ biciai,j =

3
8

t5,3 ∑ biai,jcj =
5

24

t6,1 6 ∑ bic4
i = 11

10
t6,2 ∑ bic2

i ai,j =
11
20

t6,3 ∑ biciai,jcj =
41
60

t6,4 ∑ biai,jai,k = 3
16

t6,5 ∑ biai,jc2
j = −

87
360

t6,6 ∑ biai,jaj,k = 21
240

2.2. Trigonometric Conditions

Suppose we apply the scheme (2) to solve problem (1) whose solution is a linear
combination of

{
xj exp (αx), xj exp (−αx)

}
, exactly, where α is real or complex. However,

here, we are interested in the complex value. Assume the solution is exp (iαx), where i is
imaginary. Then, the trigonometric conditions are obtained as follows:
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cos(z)− 3
2
+

1
2

cos(2 z) + z2
s

∑
k=1

bk cos(ckz) = 0,

sin(z)− 1
2

sin(2 z) + z2
s

∑
k=1

bk sin(ckz) = 0,

cos(ciz)− 1− 1
2

ci +
1
2

ci cos(2 z) + z2
i−1

∑
j=1

aij cos
(
cjz

)
= 0,

sin(ciz)−
1
2

ci sin(z) + z2
i−1

∑
j=1

aij sin
(
cjz

)
= 0.

where z = αh.

2.3. Derivation of the Proposed Scheme

The proposed scheme is based on the “Three-step third-order hybrid method” pre-
sented in [11]:

Obviously, s = 3 from Table 3. Now, substitute same in the trig. conditions while
holding all the internal coefficients (ci and aij) constant, we obtain

cos(z) =
3
2
− 1

2
cos(2 z)− z2(b1 cos(2 z) + b2 + b3 cos(3 z)),

sin(z) =
1
2

sin(2 z)− z2(−b1 sin(2 z)− b3 sin(3 z)).

That is a system of two equations in three unknown parameters, implying one degree
of freedom. The one free parameter could be taken from Table 3 below, but we do not
want any of the update stage coefficients to be constant. Hence, we choose one additional
equation from Table 2 to augment the number of equations to be solved. The variable
coefficients are obtained as follows:

b1 = −3
4

sin(3 z)z2 + 12 sin(z) cos(z)− 12 sin(z)
z2(9 sin(2 z)− 4 sin(3 z))

,

b2 =
1
4

N1

z2(9 sin(2 z)− 4 sin(3 z))
,

b3 =
1
4

3 sin(2 z)z2 + 16 sin(z) cos(z)− 16 sin(z)
z2(9 sin(2 z)− 4 sin(3 z))

,

where

N1 =

− 3 sin(2 z) cos(3 z)z2 + 3 cos(2 z)z2 sin(3 z) + 36 sin(z) cos(z) cos(2 z)−
16 sin(z) cos(z) cos(3 z)− 36 sin(z) cos(2 z) + 16 sin(z) cos(3 z)−
36 sin(2 z) cos(z) + 16 cos(z) sin(3 z)− 18 cos(2 z) sin(2 z) + 8 cos(2 z) sin(3 z)+

54 sin(2 z)− 24 sin(3 z).
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However, observe that as z → 0, there would be heavy cancellations. So, Taylor
expansion of the coefficients would be used. The corresponding values after the expansion
are:

b1 =
3
8
+

39 z4

320
− 2627 z6

16128
+ O

(
z8
)

,

b2 =
29
24

+
3 z4

320
+

26309 z6

725760
+ O

(
z8
)

,

b3 = − 1
12
− 13 z4

240
+

2627 z6

36288
+ O

(
z8
)

.

Table 3. Coefficients of ThHM3.

−2 0
0 0 0
−3 5

4
1
4 0

3
8

29
24 − 1

12

2.4. Confirmation of Order of Convergence

The order of the scheme can be confirmed by substituting the coefficients back to
algebraic order conditions to check the conditions that are recovered.

∑ bi =
3
2
+

37 z4

480
− 243 z6

4480
+ O

(
z8
)

∑ bici = −
1
2
− 13 z4

160
+

2627 z6

24192
+ O

(
z8
)

∑ bic2
i =

3
4
+ O

(
z14

)
∑ biai,j = −

1
8
− 13 z4

160
+

2627 z6

24192
+ O

(
z8
)

.

It can be seen that the order conditions are recovered as z approaches zero. Hence, by
the order of convergence stated in [11], the scheme is of order three.

3. Numerical Results

In this section, the proposed scheme is validated by solving a few examples of prob-
lems with known exact solutions. The problems are:

Problem 1 (Inhomogeneous Problem)

d2y(x)
dx2 = −y(x) + x, y(0) = 1, y

′
(0) = 2.

Exact solution: y(x) = sin(x) + cos(x) + x.

Source: [1,11,12]. x ∈ [0, 100]
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Problem 2 (Duffing Problem)

y′′ + y + y3 = F cos(vx), y(0) = 0.200426728067,

y′(0) = 0. where F = 0.002 and v = 1.01.

Exact solution: y(x) =
4

∑
i=0

υ2i+1 cos[(2i + 1)vx],

where υ1 = 0.200179477536, υ3 = 0.246946143× 10−3,

υ5 = 0.304014× 10−6, υ7 = 0.374× 10−9, and

υ9 < 10−12 α = 1.

Source: [11,12]. x ∈ [0, 100]

4. Discussion

The proposed scheme is applied on two test problems alongside its base method.
The problems are linear nonhomogeneous and nonlinear homogeneous, respectively. The
methods maintained a remarkable level of accuracy in solving the problems. It is also
obvious that as h approaches zero, the max. error decreases, which indicates convergence.
That is to say, the fitted scheme converges faster, as its error decreases more than that of the
base method, especially on Problem 2. See Tables 4 and 5.

Table 4. Maximum Error for Problem 1.

h TThMH ThHM

0.125 1.09000000× 10−05 9.14000000× 10−05

0.0625 6.81778300× 10−07 5.74000000× 10−06

0.03125 4.27171140× 10−08 3.59427562× 10−07

0.015625 2.67374400× 10−09 2.24843520× 10−08

0.0078125 1.67950000× 10−10 1.40043000× 10−09

Table 5. Maximum Error for Problem 2.

h TThMH ThHM

0.125 1.53000000× 10−06 1.13900000× 10−05

0.0625 9.93512828× 10−08 7.19084606× 10−07

0.03125 6.33294855× 10−09 4.51587658× 10−08

0.015625 4.00945820× 10−10 2.83063643× 10−09

0.0078125 2.63143000× 10−11 1.78347304× 10−10

5. Conclusions

A fitted numerical scheme for numerical integration of oscillatory problems is pro-
posed and derived. The scheme is validated using test problems whose analytical solutions
are known. From the results obtained, it can be concluded that the fitted form of the im-
proved hybrid method can be more promising in tackling oscillatory problems, especially
nonlinear ones.
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