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Abstract: Considering that wind power is proportional to the cube of the wind speed variable, which
is highly random, complex power grid management tasks have arisen as a result. Wind speed predic-
tion in the short term is crucial for load dispatch planning and load increment/decrement decisions.
The chaotic intermittency of speed is often characterised by inherent linear and nonlinear patterns, as
well as nonstationary behaviour; thus, it is generally difficult to predict it accurately and efficiently
using a single linear or nonlinear model. In this study, wavelet transform (WT), autoregressive
integrated moving average (ARIMA), extreme gradient boosting trees (XGBoost), and support vector
regression (SVR) are combined to predict high-resolution short-term wind speeds obtained from
three Southern African Universities Radiometric Network (SAURAN) stations: Richtersveld (RVD);
Central University of Technology (CUT); and University of Pretoria (UPR). This hybrid model is
termed WT-ARIMA-XGBoost-SVR. In the proposed hybrid, the ARIMA component is employed
to capture linearity, while XGBoost captures nonlinearity using the wavelet decomposed subseries
from the residuals as input features. Finally, the SVR model reconciles linear and nonlinear pre-
dictions. We evaluated the WT-ARIMA-XGBoost-SVR’s efficacy against ARIMA and two other
hybrid models that substitute XGBoost with a light gradient boosting machine (LGB) component
to form a WT-ARIMA-LGB-SVR hybrid model and a stochastic gradient boosting machine (SGB) to
form a WT-ARIMA-SGB-SVR hybrid model. Based on mean absolute error (MAE), mean absolute
percentage error (MAPE), root mean square error (RMSE), coefficient of determination (R2), and
prediction interval normalised average width (PINAW), the proposed hybrid model provided more
accurate and reliable predictions with less uncertainty for all three datasets. This study is critical
for improving wind speed prediction reliability to ensure the development of effective wind power
management strategies.

Keywords: wavelet transform; short term; wind speed; XGBoost; support vector regression; ARIMA

1. Introduction
1.1. Motivation

Globally, the continuous increase (which is expected to more than double by 2050) in
electricity demand is constantly depleting the Earth’s non-renewable resources, such as
coal, natural gas, and oil [1]. With the current impetus towards renewable energy, wind
power generation is growing in popularity [2,3], as it is a cost-effective and sustainable alter-
native to generating electricity. In addition to mitigating the increase in carbon footprint by
curbing fossil fuel use, wind energy also contributes to sustainable economic progress [4].
The literature shows that adequate energy supplies improve economic stability [1,4]. Fur-
thermore, economic stability, infrastructure development, and improved quality of life are
inextricably linked to a sufficient supply of clean and renewable energy [1]. As wind power
has attained high penetration on power grids, complex management tasks have emerged
due to the high randomness and intrinsic character of wind energy resources [3,5]. Wind
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energy resources’ electric output is directly affected by various weather phenomena, such
as pressure gradient and local weather conditions. The resulting imbalance between power
supply and demand compromises grid reliability. As can be seen from the equation below,
wind power (generated from a particular wind turbine) is proportional to its speed [6].

P =
1
2

ρACpv3 (1)

where P denotes the wind power, A
(
m2) is the area intercepting wind, ρ is the density

of air (kg/m3) reliant on temperature, humidity, and air pressure, CP is the drag power
coefficient of the wind turbine, and v is the wind speed (m/s). From the equation above,
the main influencing component is the variable v (wind speed). The wind power increases
eight-fold when the wind speed doubles. Thus, a small increase in wind speed results in a
larger increase in wind power. Wind speed forecasts are essential for the effective operation
and management of electric power grids as wind energy output changes due to wind
speed fluctuations [7–9]. In particular, short-term wind speed forecasts (up to 24 h-ahead)
are essential for wind power dispatching and scheduling, load reasonable decisions, and
operational security in the electricity market [2,10,11].

The urgency for decarbonisation, coupled with an increase in electricity prices and
an abundance of wind resources in South Africa, makes investment in wind technologies
an obvious decarbonisation strategy [12]. In addition, South Africa has yet to take ad-
vantage of or consider its abundance of wind energy resources [12]. We aim to quantify
these wind energy resources in order to inform key stakeholders of their importance and
untapped potential. Hence, this study focuses on short-term wind speed forecasting as a
way of providing concise and accurate information to policymakers and strategists, thereby
facilitating the effective integration of large volumes of wind power into existing grids.

A plethora of wind speed forecasting models exist in the literature, which can be
classified into three major categories [13], viz., physical approaches, statistical methods,
and machine learning (a branch of artificial intelligence). To overcome profound challenges
to operations and planning practices to the integration of the electric system owing to
wind energy’s inherent discontinuity and limited predictability, hybrid versions of these
models exist in the literature but to a lesser extent. The prior use of individual classes of
models focused on prediction, ignoring other characteristics of the wind speed time series.
However, it is necessary to discover useful information in the data via preprocessing and to
characterise the data before prediction [14]. Thus, denoising techniques such as variational
mode decomposition (VMD) [11,15,16], empirical mode decomposition (EMD) [11,17], and
wavelet transforms (WTs) [18] are pivotal, as they aim to reduce random disturbances in the
data sequence and increase prediction accuracy. Our novelty and originality of the proposed
ensemble method are premised on the basis that wind speed is characterised by inherent
linearity, nonlinearity, and nonstationarity phenomena that cannot be simultaneously
captured by one single class of models. We summarise our motivations to exploit an
ensemble of stochastic methods, wavelets, and gradient boosting decision tree (GBDT)
modelling, namely, the following:

• The WT, which is superior to the Fourier Transform (FT) in that it can handle non-
stationary data and use different time resolutions for varying frequencies, is used to
decompose the signal into different scale components with statistically more sound
properties to improve prediction.

• We unleash the power of the technique of GBDTs, extreme gradient boosting (XGBoost),
as they have quicker training times than artificial neural networks (ANNs), improved
accuracy and flexibility, and the ability to effectively handle large datasets and inherent
nonlinearity in the data.

• We make use of the autoregressive integrated moving average (ARIMA) model to
capture inherent linearity in the data.

• We employ the support vector machine (SVR) model to reconcile ARIMA and XGBoost
predictions with high speed and accuracy.
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• Thus, our new novel hybrid model, namely WT-ARIMA-XGBoost-SVR, can capture
the inherent linearity, nonlinearity, and nonstationarity phenomena.

• The practicability and efficacy of the proposed forecasting model were confirmed
empirically via prediction metrics.

• The study has been conducted in a way that is reliable and easy to replicate.

The study uses high-resolution minute-based granularity wind speed data measured
by a R.M. Young (05103 or 03001) anemometer instrument. These data were downloaded
(http://www.sauran.ac.za) (accessed on 15 December 2022) from Richtersveld (RVD),
Central University of Technology (CUT), and University of Pretoria (UPR) radiometric
stations in South Africa. The CUT station is located on the roof of a building at the CUT
university, in the Free State province, at latitude −29.121337, longitude 26.215909, and an
elevation of 1397 m. The RVD station is located in the desert region of the Northern Cape
at latitude −28.56084061 and longitude 16.76145935, with an elevation of 141 m. The UPR
station is located on the roof of a building at the University of Pretoria, in the Gauteng
province, at latitude −25.75308037, longitude 28.22859001, and an elevation of 1410 m. We
deliberately selected the stations to test how robust the proposed modelling and prediction
approach would be under varying weather conditions. To our knowledge, a study of this
type has not been conducted at these three Southern African Universities Radiometric
Network (SAURAN) stations.

1.2. Overview of Related Studies

Several forecasting methods, including physical methods, statistical methods, hybrid
models, and machine learning techniques, have been applied in an attempt to accurately
forecast wind speed (see e.g., [5,10,11,19–24]). Although physical models (e.g., numerical
weather prediction (NWP)) can effectively predict atmospheric dynamics, they have many
limitations, including the use of a large amount of numerical weather data and the need
for large computational time [2], which is costly and beyond the reach of a developing
country such as South Africa. These methods are often reserved for medium- to long-term
forecasting [7].

Statistical methods, on the other hand, make use of historical wind speed time series
data to construct time series models, such as the linear autoregressive moving average
(ARMA) model [2,4]. These models are generally reserved for capturing short-time phe-
nomena [25–28]. For instance, ref. [15] presented an ARMA model to predict wind speed.
The ARMA model was able to represent the actual features of wind speed. However, the
ARMA model does not directly take into account changes in other related random variables
or other exogenous variables. In essence, ARMA captures only a linear relationship, and it
is generally suited to establishing a low-order time series model. To circumvent the nonsta-
tionarity inherent in the data, ARMA models have been extended to ARIMA models [29,30],
seasonal ARIMA (SARIMA) models [31,32], and multiple linear regression coupled with
SARIMA (SARIMAX) models, i.e., SARIMA models with exogenous variables [33].

Unlike statistical models, machine learning techniques are nonlinear approximators
that can effectively capture nonlinear characteristics inherent in wind speed data that are
impossible to capture using statistical methods. Hence, these techniques have gained
popularity in wind speed forecasting [34]. Recent advances in machine learning algorithms
have led to GBDTs becoming increasingly popular due to their quick training times, im-
proved accuracy and flexibility, support for central processing units (CPU) (better than
graphics processing units (GPU) used by ANNs), and ability to effectively handle large
datasets [35–42]. Among the GBDTs, XGBoost, light gradient boosting machine (LGB),
and stochastic gradient boosting machine (SGB) have been successfully applied in various
fields, ranging from finance [36] to renewable energy [35,37–40,42]. For instance, ref. [38]
employed the improved XGBoost to improve the accuracy of wind speed predictions. The
authors compared the XGBoost with backpropagation neural networks (BPNN) and linear
regression (LR) models and found that XGBoost has high predictive accuracy. In [40], the
authors explored short-term wind speed forecasting using ANNs, SGBs, and generalised

http://www.sauran.ac.za
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additive models (GAMs). The results showed that the SGB outperforms other models
based on mean absolute error (MAE) and mean percentage error (MAPE). Overall, GBDTs
have several advantages over other machine learning models: high efficiency in the predic-
tion domain, the robustness of model tuning, improved prediction accuracy, and ease of
interpretation [35–41] (also see Table 1).

Hybrid models combine more than one forecasting method to form a new one (see,
e.g., [37,43–45]). Using different time-varying datasets, ref. [46] concluded that hybridisa-
tion ensures the accurate modelling of complex autocorrelation structures that are often
inherent in time series data. As a result, hybrid methods have been proven to yield high
prediction accuracy when handling time-series data with complex structures (see, e.g., [46]).
For instance, to optimise the ARIMA model’s parameters, ref. [45] implemented an en-
hanced hybrid technique that combines an ARIMA and Kalman filter (KF) model via
particle swarm optimisation (PSO). From the study results, the proposed approach im-
proved the forecasting accuracy of the ARIMA model. In a similar study, ref. [37] proposed
a new hybrid machine learning model that combines the LGB model and the Gaussian
Process Regression (GPR) model to solve the probabilistic prediction problem of wind
speed. In predicting wind speeds for a real wind farm in the United States, the proposed
LGB-GPR model improved the point forecast accuracy and probabilistic forecast reliability
when compared to individual SVR, LR, random forest (RF), GPR, ANN, long-term short
memory (LSTM), and LGB.

To enhance the accuracy of the wind speed forecasting model, nonlinear, and nonsta-
tionary wind speed data must be pre-processed using an appropriate data decomposition
technique. In recent years, WTs have gained some attention [18] in wind speed forecasting
due to their excellent properties in both time and frequency domain time series analysis.
Furthermore, WT is known to reveal patterns, discontinuities, and trends in time series by
splitting them into low-frequency and high-frequency signals [47]. In essence, the WTs de-
compose original wind speed data to construct constitutive series that are statistically more
sound (i.e., less variant) than the original, thereby reducing forecasting complexity [2,4,8,27].
For instance, ref. [25] proposed a repeated WT-ARIMA model (RWT-ARIMA). The RWT-
ARIMA model was found to be more effective in improving the forecasting accuracy of the
WT-ARIMA model in very short-term wind speed forecasting. In a similar study, ref. [44]
combined WT, ARIMA, and machine learning algorithms (SVR and RF) in short-term wind
speed forecasting using 10-min interval wind speed data. After fitting an ordinary ARIMA
model to capture linear components, the residuals were decomposed using db3 level 5
WT and fed into the SVR or/and RF. Compared to the individual ARIMA model, the
proposed strategy produced more accurate results. The authors of [43] proposed a hybrid
model comprising WT, genetic algorithm (GA), and SVM in wind speed forecasting. A
case study of a wind farm in North China demonstrated that this method provides more
accurate and robust forecasts by fine-tuning the parameters in SVM using the GA to ensure
generalisation. In contrast to the ARIMA model, GA and SVR are advantageous since they
can avoid local optima, which is a deficiency of the ARIMA model [48–52] (also see Table 1).
Despite the GA’s greater reliability, these techniques have a slower convergence rate than
SVR algorithms.

Table 1. Summary of the strengths and weaknesses of the models employed in developing the
WT-ARIMA-GBDTs-SVR model.

Category Model Merit Demerit References

Statistical ARIMA Excellent in handling linearity. Difficulty in capturing
nonlinearity. [25,29,30,44,51,53]

Machine Learning SVR High convergence speed. Handles
small data excellently.

Inefficiency in handling
large-scale dataset. [15,48,50,52,54]

Machine Learning XGBoost
Faster and robust model tuning;
highly scalable; flexible and
versatile.

Can overfit small datasets. [35–39,55]
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Table 1. Cont.

Category Model Merit Demerit References

Machine Learning LGB
High training speed; Better accuracy;
Support GPU learning; Capable of
handling large-scale data.

It produces more complex
trees, and can overfit small
datasets.

[35–39]

Machine Learning SGB
Highly predictive accuracy and
flexibility.Can handle both
categorical and numerical values.

Require lots of trees and can
overfit data. Can be
computationally expensive.

[40–42]

Signal processing WT
Excellent features in the time and
frequency domain. Can handle
non-stationary data.

Difficult to identify the most
appropriate decomposition
level.

[56,57]

1.3. Suggested Modelling Approach

Wind speed is chaotically intermittent and is often characterised by inherent linear
and nonlinear patterns as well as nonstationary behaviour; thus, it is generally difficult to
predict it accurately and efficiently using a single linear or nonlinear model [25,46,53,54].
We suggest combining WT, ARIMA, and XGBoost via SVR to predict high-resolution
short-term wind speeds.

In the literature, wavelet decomposition of a signal is followed by separate modelling
of subseries using appropriate techniques. In the last step, sub-series predictions are recon-
ciled (through summation) (see, e.g., [25]). In addition to its simplicity, this conventional
approach (individual modelling and summation of subseries predictions) incorporates
errors from each subseries into the final predictions. This compromises the accuracy and
robustness of the final predictions. The authors of [25] discussed the difficulty in capturing
high-frequency subseries when using the ARIMA model, which led to large errors when
predicting using the WT-ARIMA model. High-frequency wind speed subseries (particularly
at low levels) with nonlinear features adversely affect the accuracy and reliability of wind
speed predictions from the ARIMA model. In this case, the uncertainty and inaccuracy
of wind power predictions will result in energy costs rising, as additional reserves are
required to maintain energy balance and ensure optimal unit commitment. Furthermore,
ref. [58] also showed that wind turbine energy costs associated with forecast errors can
reach 10% of total wind energy turnover.

Although the RWT-ARIMA model was found to reduce error accumulation to some
extent, these techniques require more computational time than highly efficient machine
learning algorithms such as the XGBoost and RF (see, e.g., [59]). Hence, this study proposes
a new novel hybrid model, namely WT-ARIMA-XGBoost-SVR to circumvent error accumu-
lation in the final wind speed predictions. In essence, the proposed strategy leverages the
advantages of WT (excellent at denoising high variant signals), ARIMA (captures linearity
very well), GBDTs (high accuracy, robust model tuning, highly scalable, sparse with compu-
tational efficiency), and SVR algorithms (high convergence speed with small sample sizes)
to predict short-term wind speed with high precision and efficiency. In the aforementioned
hybrid modelling strategy, the ARIMA model is employed to capture the linear component
infused in the original wind speed data. The resultant residuals (i.e., nonlinear component)
from fitting the ARIMA model are disaggregated into several less noisy subseries by WT.
As input features, these subseries are fed into an XGBoost model to capture the nonlinear
component that could not be captured by an ARIMA model. The final predicted value
is determined by combining the predicted values from the ARIMA model and XGBoost
using SVR. The efficacy of the proposed WT-ARIMA-XGBoost-SVR in short-term wind
speed prediction is evaluated against the WT-ARIMA-LGB-SVR and WT-ARIMA-SGB-SVR.
Although recent advances in computing power have led to more advanced and accurate
machine-learning algorithms, ARIMA is still one of the most widely used models for wind
speed short-term forecasting and benchmarking. For instance, in [60], the ARIMA model
outcompeted Gated Recurrent Unit (GRU) and LSTM algorithms in short-term wind speed



Wind 2024, 4 49

forecasting. Therefore, both the point and interval predictions of the proposed approach
are also benchmarked against the ARIMA model to better evaluate its efficacy.

Overall, the current study will contribute to the existing renewable energy literature in
the following ways: (a) In an effort to enhance short-term wind speed prediction accuracy,
boosting and vector machine learning techniques are introduced; (b) High efficient and
robust gradient decision trees are used instead of the classical ARIMA models, which are
prone to struggling with nonlinearity and large datasets; (c) The effect of each subseries
prediction error on overall wind speed prediction is minimised by utilising all wavelet
decomposed subseries as input features into the XGBoost; (d) To some extent, the developed
hybrid approach accurately, and efficiently captures nonlinear components associated with
wind speed turbulence and gusts; (e) The proposed model is applied on different datasets
from different locations as well as terrain complexity and used for forecasting over different
time spans within the short-term forecasting framework to assess its robustness.

1.4. Structure of the Paper

The rest of the paper is structured as follows. Theory and fundamentals are given in
Section 2, followed by the materials and methods presented in Section 3. Discussion of the
results and conclusions are given in Sections 4 and 5, respectively.

2. Theory and Fundamentals
2.1. Wavelet Transform

Using the WT, insightful and meaningful information can be collected, while noise and
irregular patterns are removed from the time series data. WT is superior to Fourier transforms
(which can only handle stationary data with fixed windows), as it can handle nonstationary
data and use different time resolutions for varying frequencies [4,18,22,27,56,57]. In essence,
WT decomposes the signal into different scale components with statistically more sound
properties. By modelling these components separately, the accuracy of the model can
be improved.

There are two main wavelet transform categories, namely the continuous wavelet
transform (CWT) and discrete wavelet transform (DWT). The CWT, which is the addition
of all time signal, multiplied and shifted versions of the mother wavelet

ψ(a, b) =
1√
|a|

ψ

(
t − b

a

)
, (2)

denoted by [22,56,57]:

CWTy(a, b) =
1√
|a|

+∞∫
−∞

ytψ
∗
(

t − b
a

)
dt (3)

where yt is the signal to be analysed, ψa,b(t)
∗ represents the conjugate of the mother wavelet

(ψa,b(t)) scaled by a factor a > 0 and time-shifted by parameter b. Each scale corresponds
to the width of the wavelet. The DWT differs from CWT in that the mother wavelet
scaling factor a = 2i and the shifting (translation) factor b = 2j are discrete such that DWT
decomposition is given by [22,56,57]:

DWTy(a, b) =
1√∣∣2i

∣∣
+∞∫

−∞

ytψ
∗
(

t − k2j

2i

)
dt (4)



Wind 2024, 4 50

The DWT of level m = log(int(N)) of the wind speed data yt of a sample of size N is
determined by passing yt through filter functions, resulting in the approximation coefficient
vector am and detail coefficient vector dm.

yt = am(t) +
m

∑
j=1

dj(t) (5)

2.2. Autoregressive Integrated Moving Average Models

ARMA models are parametric models for stationary univariate time series and were
discovered and popularised by [29]. In addition to their simplicity and robustness, ARMA
models are advantageous in forecasting, as they capture the linear component excel-
lently [25,29,30,44,51,53,54]. Hence, these are the most popular forecasting approaches.

ARMAs offer a parsimonious definition of a stationary method based on the auto-
regression AR (p) of order p and moving average MA (q). For stationary time series, the
ARMA model combines AR (p) and MA (q) such that [29,30]:

ARMA(p, q) : yt = c +
p

∑
i=1

φiyt−i +
q

∑
i=1

θiet−i + et (6)

where yt is a stochastic process, c is a constant, and et ∼N (0, σ2). In practice, time series
is usually nonstationary. To achieve stationarity in the time series, regular (nonseasonal)
differencing of order d, a positive integer excluding zero, is effected. Thus, the ARMA
model can accommodate a nonstationary time series by differencing it d times resulting
in the ARIMA (p, d, q) model. The ARIMA (p, d, q) can be mathematically expressed as
follows [29]:

φp(B)(1 − B)dyt = c + θq(B)et, (7)

where
φp(B) = 1 − Bφ1 − B2 φ2 − . . . − Bp φp, (8)

θq(B) = 1 − Bθ1 − B2θ2 − . . . − Bqθq, (9)

and B is the backward shift operators. According to [29], modelling using the ARIMA
model is a three-step process, namely (a) model identification, (b) parameter estimation,
and (c) diagnostic checking. Model identification (step (a)) generally involves the utilisation
of Box-cox transformation and differencing to achieve stationary of the time series, and the
use of autocorrelation (ACF) and partial autocorrelation (PACF) to determine the optimal
order of AR and MA, as proposed by [29]. The Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC) are frequently employed to elect the best parameters
(see, e.g., [30,61–63] for details).

2.3. Support Vector Regression

In addition to having strong kernel tricks and solid mathematical theory, SVRs
are nonlinear models that have a high convergence speed and can handle smaller data
well [15,48,50,52,54]. As a matter of fact, the Gauss radial basis function utilised in this
study exhibits high adaptability and high convergence areas in both low- and high-
dimensional spaces [53] (also see Table 1).

Developed by [64], the SVR is based on the notion of risk structural minimisation,
which minimises the upper limit of generalisation error as a function of the sum of training
error and confidence [65]. Consider a training dataset denoted by

D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, (10)

then the regression formula can be expressed as

f (x) = ∑ ωiϕi(xi) + b, ϕi : Rn → F, ωi ∈ F, b ∈ R, for i = 1 . . . , n (11)
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where ωi are the weights (or support vector) estimated from the training data, b is the
threshold value, and ϕi are nonlinear mapping functions which map the sample datasets to
high-dimensional feature space F [52]. Based on the structural risk minimisation principle,
the weights ωi can be obtained from the sample data by minimising the following quadratic
programming problem [48,52,64,65]:

min
ω,a,ξ,ξ∗

1
2
||ω||2 + C

n

∑
i=1

(ξi + ξi
∗) (12)

such that
yi − ωi.ϕi(xi)− b|≤ ε + ξi, ξi, ξi

∗ ≥ 0, i = 1, 2, . . . , n (13)

where ∥ . ∥ denote a Euclidean norm, a constant C is the cost coefficient, also called the
penalty factor, is greater than zero, and it controls the empirical risk degree of the SVR
model. The features are denoted by n, whilst the ξi, ξ∗i ≥ 0 are the slack variables or the
relaxation factors [65]. ξε (·) is the ε-intensive loss function and is defined as follows:

ξε (yi) =

{
0, if|yi − f (xi)| ≤ ε,

| f (xi)− yi| − ε, otherwise.
(14)

By solving the optimisation problem, the estimation function can be obtained as follows:

f (x) = ∑n
i=1 (α

∗
i − αi)K(xi, xj) + b (15)

subject to αi ≥ 0, α∗i ≤ C, ∑n
i=1

(
α∗i − αi

)
= 0, and K

(
xi, xj

)
is the kernel function. In this

study, a kernel based on the Gaussian function, which is used to overcome the nonlinear
regression problem, is given by the equation below:

K
(

xi, xj
)
= exp(−γ

∣∣|xi − xj|
∣∣2) (16)

The cost (C) and gamma (γ = 1
2 σ2) are optimisation parameters that control the

empirical risk level of the SVR model and the width of the kernel function, respectively.

2.4. Gradient Boosting Decision Tree Algorithms

As sequential ensemble techniques, GBDTs use information from previously devel-
oped weak classifiers to improve the model [35–39]. The process is repeated several times
until an accurate model is constructed [35–39]. The result is achieved by dividing the train-
ing data, using each part to train different models, and finally combining the results [36].

2.4.1. Extreme Gradient Boosting Machine

XGBoost models are highly accurate, scalable, faster, and versatile gradient boosting
techniques that support parallel computing, estimate tree matching, effectively handle
sparse data, and improve CPU [35,36,39,55]. XGBoost (built on CPU devices just like
LGBs) is developed by applying greedy algorithms to the objective function; continuously
building decision trees leads to a complete model [35,55]. This algorithm can be viewed as
an additive model that contains M decision trees given by the following equation [55]:

Yi= ∑M
m=1 fm(xi), fm ∈ F, (17)

where f m and F denote a decision tree and the function of the decision trees, respectively.
This robust algorithm has faster model tuning and training, as it employs a regulari-
sation technique. This is the same regularisation described by the following objective
function [35,55], which also enables XGBoost to control overfitting [35].

L(θ) = ∑n
i=1(L(Yi.yi)) + ∑M

m=1 φ( fm), θ = ( f1, f2,..., fm), (18)
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where L denotes the loss function and φ the regularisation function, is given by [35,55]:

φ( f ) = α| f |+ 0.5β||w||2 (19)

where | f | denotes the number of branches; α and β represents the penalty factors; and is
w a vector denoting the value of each leaf. XGBoost uses a stepwise forward algorithm
to simplify model complexity [35,55]. Every time the model adds a decision tree, it learns
a new function and its coefficients to match the residuals predicted in the last step [55].
The learning rate, maximum tree depth, and minimum child weight are the important
parameters that control overfitting in the XGBoost algorithm.

2.4.2. Light Gradient Boosting Machine

The LGB is a type of GBDT that utilises a novel gradient-based one-sided sampling
(GOSS) technique that downsamples the instances on the basis of gradients [35,36]. This
technology allows the LGB model to work faster (than XGBoost [35]) while maintaining a
high level of accuracy. Furthermore, LGB is different from other GBDTs in that it grows
decision tree leaf by leaf instead of checking all previous leaves for each new leaf [35–37]. This
technique, which is designed to improve the implementation time (of other GBDTs such as
the XGBoost) and lower memory usage, also supports CPU learning, and is very efficient
when handling large-scale data [35–37]. Suppose that there is a dataset V = {(x1, y1),
(x2, y2), . . ., (xN , yN)}, such that xi ∈ Rn, x ∈ R, and N are the number of samples, then an
LGB model can be described by the following equation [37]:

fM(x)= ∑M
m=1 V(x; εm), (20)

where V(x; εm) denotes a single binary regression tree, εm is the parameter of the tree, and
M is the number of the trees. In the LGB model, the final prediction result is obtained by
fusing (linearly) the prediction results of several decision trees [37,55]. Since this algorithm
can easily overfit small datasets [35–37,55], setting a maximum number of tree depth
parameters is essential to address this drawback [37].

2.4.3. Stochastic Gradient Boosting

SGBs are machine learning algorithms created by building a series of shallow and
weak trees that each learns and improves from its predecessors [40–42]. Stage-wise fitting
is used with this technique. In spite of the SGB’s high flexibility and prediction accuracy,
this algorithm can easily overfit the training dataset [40–42]. The SGB model is given by
the following equation:

f (x)= ∑M
m=1 βmb(x; γm), (21)

where b(x; γm) ∈ R are functions of x characterised by the expansion parameters βm and
γm which are fitted in a stage-wise to delay over-fitting the model. Hence, when fitting SGB,
the following parameters are critical to ensure optimal performance of the model: Number
of trees: This is the total number of trees that need to be adjusted or fitted by the algorithm.
Overfitting can occur if the number of trees is set too high; Interaction depth: This is the
number of splits in each tree, and it controls the difficulty of the boosted ensemble; and
Learning rate: In gradient descent algorithms, shrinkage controls the speed of descent.
When values are smaller, overfitting is reduced, but it also takes longer to find the most
appropriate fit.

3. Materials and Methods
3.1. Proposed Approach

The combinations of various models, such as wavelets and machine learning, are
known as hybrid models. The rationale behind hybrid modelling is to improve overall
forecast accuracy by retaining the advantages of each technique. The contribution of each
model to the proposed WT-ARIMA-XGBoost-SVR model is described as follows:
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• The ARIMA was chosen as it is excellent at capturing linear components when fore-
casting wind speed on a short-term horizon. Furthermore, the ARIMA model is simple
to use, flexible, and can detect trends and patterns in time series.

• In addition to being a time-frequency domain technique, WT is preferred for the
decomposition of wind speed residuals since it is efficient and can effectively handle
nonstationary fluctuations. The WT also enhances the predictive ability of models, as
it presents high-frequency resolution at low frequencies and high time resolution at
high frequencies such that noise is removed and patterns or trends are revealed.

• To circumvent ARIMA’s deficiency in capturing the nonlinearity (such as wind tur-
bulence) component inherent in wind speed data, a highly accurate, scalable, fast,
versatile, and flexible nonlinear XGBoost is used to predict the decomposed nonlinear
wind speed residuals.

• In addition to its high convergence speed, a nonlinear SVR model is preferred for
prediction combination over a linear combination method (such as direct summation),
as it considers nonlinear structure when combining predictions, thereby minimising
error accumulation.

An alternative approach would be to substitute the ARIMA part for neural network
autoregression (NNAR), which is more efficient and less sensitive to stationarity and
nonlinearity. The XGBoost could be replaced by a more robust but less efficient LSTM.
However, the study scope is limited to the proposed approach, whose process is shown in
Figure 1. Algorithm 1 lays out the detailed steps for the process shown in Figure 1.
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Algorithm 1. WT-ARIMA-GBDTs-SVR

INPUT: Wind speed time series data Yt

A. Data cleaning

1. The original wind speed data from three datasets of interest are cleaned to handle anomalies, such as invalidities and
missing data, that might occur due to environmental factors or instability of the data collection system. We treat all
observed wind speeds greater than 15 m/s as outliers (and are removed). Over 15 m/s, the wind turbine’s blades spin
rapidly, which might cause the turbine to break down; thus, its operation is usually restricted. In some instances, wind
turbines are switched off when the velocity exceeds 22 m/s, which is also referred to as feathering.

B. Data partition

2. Each dataset is divided into two sets, namely the training set (80%) and the testing set (20%).
3. In the proposed strategy, the training set is utilised to build the model, while the testing set validates each of the

established models.

C. Train and predict using the ARIMA model

4. Determine ARIMA orders using the “auto.arima” function in the R program using the training dataset.
5. Predict wind speed data to capture (predict) linear components using the optimal ARIMA model such that the predictions

are denoted by Ŷτ .
6. Generate the ARIMA residuals using the entire wind speed dataset such that residuals are calculated by Ryt = Yt − Ŷε with

Ŷε being the fitted values.
7. Validate the efficacy of ARIMA predictions based on root mean square error (RMSE) and MAE.

D. Data decomposition

8. The ARIMA residuals (or nonlinear components) are decomposed into less noisy subseries using level 3 and 4 maximal
overlap DWT (MODWT).

9. Divide decomposed subseries (Ryt ) into training set (80%) (Rtrain) and testing set (20%) (Rtest)

E. Train and predict using the XGBoost model

10. Using a grid search, determine model hyperparameters such as the interaction depth, learning rate, maximum number of
trees, and minimum child using the training dataset (Rtrain) of the decomposed subseries as input features. The objective is
to obtain those parameters that minimise the RMSE and MAE.

11. To capture the nonlinear component, the testing set (Rtest) of the decomposed subseries is utilised as input features into the
optimal XGBoost model for prediction.

12. The efficacy of the predictions (R̂test) from the XGBoost model is validated using the decomposed subseries based on
RMSE and MAE.

F. Combination of predictions via SVR

13. Use a grid search to identify hyperparameters, such as the Cost and Gamma, before the SVR is utilised to combine
sub-series predictions.

14. To arrive at the final prediction, the ARIMA and XGBoost predictions are combined through the SVR algorithm to form the
WT-ARIMA-XGBoost model such that

Ŷf inal = SVRrb f

(
Yt

T , Ŷτ
T , R̂test

)
(22)

G. Final prediction evaluation

15. The efficacy of the final predictions is validated using error metrics (MAE, MAPE, R2, and RMSE) and prediction interval
indices (PINAD and PINAW) against the original wind speed testing dataset.

OUTPUT: Predictions Ŷf inal performance metrics (MAE, MAPE, RMSE, and R2), prediction interval indices (PINAD and PINAW).

3.2. Case Study Description

In this study, univariate time series of wind speed data were analysed from three
radiometric stations in South Africa, namely the CUT, the RVD, and the UPR. Table 2 is a
description of these three stations.

These minutely averaged wind speed data were collected from SAURAN (https://
sauran.ac.za/) (accessed on 15 December 2022) and their details are provided in Table 3
(also see Figure 2). The three stations are equipped with an R.M. Young (05103 or 03001)
anemometer that measures wind speed accurately. All measurements are conducted at sub-
6 s intervals using South African Standard Time (SAST) [66]. There were two sampling sets
per station: a training set and a testing set, with an 80%:20% split. To assess the forecasting

https://sauran.ac.za/
https://sauran.ac.za/
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performance of the proposed methodologies, locations with varying meteorological patterns
are chosen over days, months, and years.

Table 2. Location coordinates of the stations.

Station Longitude Latitude Altitude (m) Topography

RVD −28.56084061 16.76145935 141 Inside enclosure in desert region
CUT −29.121337 26.215909 1397 Roof of a building
UPR −25.75308037 28.22859001 1410 Roof of a building

Table 3. Details of sampled data division.

Station Number of Days Month Sample Size Training Set Testing Set

RVD 1 7 September 2019 1440 1152 288
CUT 3 15–19 August 2019 4320 3456 864
UPR 5 1–5 June 2021 7200 5760 1440
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Figure 2. Minute wind speed data for RVD (top left panel), CUT (top right panel), and UPR (bottom
centre panel).

3.3. Computational Tools

The models described in the previous section were trained and tested on an Intel
Core i5 processor running in the HP notebook development environment (R package 4.2.2).
The best-fit ARIMA model was developed through the “forecast” library. The library
“waveslim”, through the function “modwt”, decomposes the three wind speed datasets. To
tune the SVM models, the “svm” functions of the “e1071” library are used. XGBoost and
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SGB were implemented through the libraries “xgboost” and “gbm”, respectively. The LGB
was fitted using “lightgbm”.

3.4. Prediction Evaluation Metrics
3.4.1. Point Prediction Evaluation Metrics

The forecasting performance of all fitted models is assessed and compared using the
MAE (in m/s), RMSE (in m/s), and MAPE (%). Smaller values of these performance metrics
imply a better model [67]. Suppose that yt and ŷt are the actual and predicted wind speed
values at time t, respectively. The error terms are denoted by et = yt − ŷt, where t = 1, . . . , m.
Then, the forecasting accuracy measures are given by the following expressions:

MAE =
1
m ∑m

t=1|et|, (23)

RMSE =

√
1
m ∑m

t=1 et2, (24)

MAPE =
1
m

m

∑
t=1

|et| × 100. (25)

MAE and RMSE are based on absolute errors and are scale-dependent [30,63,67]. These
are the most widely used error indicators. MAE indicator changes are linear and intuitive.
Due to the square of the error value, the RMSE penalises larger errors more than smaller
ones. The MAPE indicator is often used to compare predictive performance between two
datasets [30]. Similar to the RMSE, the normalised MAPE indicator is highly sensitive to
distribution bias and skewness. Additionally, MAPE imposes a heftier penalty on minus
errors rather than on positive errors [30,68].

The coefficient of determination R2 ∈ [0, 1] is also employed to examine the predictive
strength of the fitted models (see [68] for details). The coefficient of determination deter-
mines the linear correlation between the actual data and the predictive model. The closer
the values of R2 to 1, the better the prediction model:

R2 = 1 − ∑m
t=1(ŷt − yt)

2

∑m
t=1(yt − yt)

2 , (26)

where yt and yt respectively represent the actual and mean wind speed value. The R2 metric
is preferred for model selection as compared to the aforementioned metrics. However,
larger model deviance can affect the performance of this indicator [68].

3.4.2. Residual Analysis

Summary statistics and boxplots of residuals denoted by etj = ytj − ŷtj for each of the
models, Mj, j = 1, . . . , k, are used to evaluate the over and under predictions of each model.
Negative residuals (etj < 0) imply over-predictions, whereas positive residuals (etj > 0)
imply under-predictions.

3.5. Prediction Interval Evaluation Metrics
3.5.1. Prediction Interval Width

The prediction interval (PI) represents a wide range of possible probabilistic values
within which the actual values of the wind speed should lie with a certain specified
probability. In general, the lower and upper boundaries cover the unidentified target
value of the future value with any probability (1 − β)% referred to as confidence level.
When dealing with the uncertainty associated with point forecasts, it is essential to provide
forecast intervals to cater for uncertainties [69]. The prediction interval width (PIW) denoted
by PIWt, t = 1, . . . , m; is given by:

PIWt = ULt − LLt (27)
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where ULt denotes the upper limit, whilst LLt is the lower limit of the prediction interval.

3.5.2. Prediction Interval Indices

A PI with nominal confidence (PINC) with (1 − β)100% is defined as the probability
that the forecasted ŷt ∈ (LLt, ULt) and is calculated as follows:

PINC = (yt ∈ (ULt, LLt) = (1 − β)100%) (28)

In this study, we employ two well-known PI indices, namely the prediction inter-
val normalised average deviation (PINAD) and prediction interval normalised average
width (PINAW) [69]. These PI performance measures are respectively represented by the
following mathematical equations [69]:

PINAD =
1

mR ∑m
i=1 Zt, (29)

Zt =


LLt − yt, yt < LLt,
0, yt ∈ (LLt, ULt),
yt − ULt, yt ≥ ULt,

(30)

and

PINAW =
1

mR

m

∑
t=1

(ULt − LLt), (31)

where ULt and LLt are the upper and lower limits of the PI, respectively. R = range (yt)
is the variation in the range of the actual wind speed values. It is preferable to have a
lower PINAD value, as it indicates less deviation from the target value. Smaller PINAW
values are also preferred since they resemble narrower PIs. However, PIs are often com-
putationally expensive, as they require long training times and are sensitive to deviations
from normality [30,68]. Furthermore, the PI size increases with an increase in the forecast
horizon length [30,68].

4. Empirical Results
4.1. Exploratory Data Analysis

Table 4 summarises the descriptive statistics for wind speed measurements at the
three radiometric stations of interest. All three datasets are platykurtosis (kurtosis less
than 3). However, the RVD dataset is peakier than the other two datasets (CUT and UPR).
Furthermore, UPR has the least variation whilst RVD exhibits the most variation.

Table 4. Descriptive statistics for wind speed data (m/s).

Station RVD CUT UPR

Min 0.036 0 0
Q1 3.382 1.588 1.063

Mean 7.125 2.770 2.229
St. Dev. 3.603 1.651 1.488

Q3 10.030 3.819 3.154
Max 14.400 9.130 10.790

Skewness −0.218 0.479 0.646
Kurtosis −1.055 −0.066 0.368

4.2. Empirical Results and Discussion
4.2.1. Model Parameter Settings

A stepwise searching approach (grid search) was used to select the optimal hyperpa-
rameters for the regression models. The resultant optimal intervals of important parameters
are presented in Table 5. We adjusted the model hyperparameters with changes in the
prediction horizon to try to improve the model’s performance.
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Table 5. Model hyperparameter optimisation interval.

Model Hyperparameter Optimisation Interval

ARIMA
Autoregressive term 0–3

Moving average term 0–3
Integrated term 0–1

WT
wf

n.levels
boundary

‘la8’
3–4

‘periodic’

SVR
RBF kernel: Cost 1–50

RBF kernel: Gamma 0.5–10

XGBooost
Max Tree depth 3–15
Learning rate 0.05–0.95

Min child 1

LGB
Max Tree depth 3–15
Learning rate 0.05–1

SGB
Interaction depth 3–7

Learning rate 0.005–0.3
Number of trees 6–59

The computational time for each model on the training and testing datasets is pre-
sented in Table 6. The WT-ARIMA-LGB-SVR is the most efficient, followed by the WT-
ARIMA-XGBoost-SVR and ARIMA models. The WT-ARIMA-SGB-SVR produced the least
(but reasonable) computational time among all models.

Table 6. Implementation time (in seconds) for the fitted models on the wind speed data.

Model Training and Testing Dataset (s)

ARIMA ~7–15
WT-ARIMA-XGBooost-SVR ~4–11

WT-ARIMA-LGB-SVR ~3–9
WT-ARIMA-SGB-SVR ~7–30

4.2.2. Wavelet Transform

The three residual wind speed datasets were decomposed into detailed signals and
one approximation signal using a level 3 (for RVD) and level 4 MODWT (for CUT and UPR),
as shown in Figure 3. The three datasets show an increase in variation as decomposition
levels decrease.

Table 7 compares the point prediction results for the four models fitted to the RVD,
CUT, and UPR data. In this paper, M1, M2, M3, and M4 refer to WT-ARIMA-XGBoost-
SVR, WT-ARIMA-LGB-SVR, WT-ARIMA-SGB-SVR, and ARIMA. The metric values for
the best model are bolded in Table 7. For all three datasets, model M1 outperformed
all other models in terms of RMSE, MAPE, MAE, and R2. Except for M1, model M2
demonstrated superiority for CUT and UPR datasets, followed by M3 and M4 across all
performance indicators. Based on RMSE and MAE for RVD data, model M4 performed
second compared to model M1. For the same dataset, model M2 outperformed model M3
based on RMSE. Model performance is higher for smaller datasets and lesser for larger
datasets. Additionally, as the prediction horizon lengthens, the prediction task becomes
more challenging. The performance of each model varies with the dataset size, locations,
terrain complexity, and forecasting time spans. Furthermore, the prediction task becomes
more complex as the prediction horizon increases. Overall, model M1 (followed by M2)
provides better prediction performance for the three wind speed datasets (see also Figure 4).
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Figure 3. MODWT results for minutely averaged wind speed data for RVD (top left panel), CUT
(top right panel), and UPR (bottom centre panel).

Table 7. Comparative analysis using error metrics.

Indicator M1 M2 M3 M4

RVD

RMSE (m/s) 0.174 0.180 0.181 0.179
MAE (m/s) 0.132 0.135 0.135 0.134
MAPE (%) 8.6 8.8 8.8 9.2

R2 0.976 0.974 0.974 0.974

CUT

RMSE (m/s) 0.813 0.871 0.894 0.912
MAE (m/s) 0.549 0.624 0.659 0.697
MAPE (%) 14.4 16.7 17.4 18.3

R2 0.693 0.648 0.628 0.613

UPR

RMSE (m/s) 0.934 0.958 0.968 0.979
MAE (m/s) 0.694 0.720 0.727 0.752
MAPE (%) 23.1 24.0 24.4 24.7

R2 0.416 0.386 0.373 0.359
Bold = Best model.
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Figure 4. Comparison of predicted wind speeds and actual wind speed data for RVD (top panel),
CUT (middle panel), and UPR (bottom panel) datasets.

4.2.3. Percentage Improvement

The percentage improvement in prediction accuracy between M1 and the other three
models is presented in Table 8. Model M1 reduced RMSE by 3.2% for RVD data, 9.8% for
CUT data, and 3.6% for UPR data. For RVD and CUT datasets, M1 reduced MAE by 2.3%
and 20.3%, respectively, while MAE for UPR data was reduced by 5.6%. In terms of MAPE,
model M1 reduced MAPE by an average of 3.3% for RVD, 20.9% for CUT, and 5.2% for
UPR. The highest average improvement for the R2 indicator was observed for UPR (10.3%),
followed by CUT (9.1%) and RVD (0.2%) data. Across all performance indices, it can be
observed that M1 improves M4 the most, followed by M3 for larger datasets (CUT and
UPR). This implies that M2 has the second-best predictive strength behind M1 for CUT and
UPR. Furthermore, the least improved model for RVD data is M4, followed by M2, based
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on RMSE, MAE, and R2. Although all models are hyrestetic (see Figure 4), the proposed
M1 provides a better and more reliable improvement when compared to the other three
models. Furthermore, there still exists some lag in the predicted values when wind speed
irrupts, particularly for CUT and UPR (largest) data.

Table 8. Percentage improvement rates (%).

Indicator M1:M2 M1:M3 M1:M4 Mean

RVD

RMSE 3.3 3.7 2.5 3.2
MAE 2.5 2.7 1.7 2.3

MAPE 1.4 1.5 6.9 3.3
R2 −0.2 −0.2 −0.1 −0.2

CUT

RMSE 7.1 10 12.2 9.8
MAE 13.7 20.1 26.9 20.3

MAPE 15.8 20.4 26.6 20.9
R2 −6.5 −9.4 −11.5 −9.1

UPR

RMSE 2.5 3.6 4.8 3.6
MAE 3.7 4.8 8.4 5.6

MAPE 3.7 5.2 6.6 5.2
R2 −7.1 −10.3 −13.6 −10.3

4.2.4. Residual Analysis

Table 9 summarises the residuals for the fitted models for RVD, CUT, and UPR datasets.
The best models’ values are bolded. Except for M4, residuals for all models are positively
skewed for all three datasets, indicating frequent small losses (underestimation) with fewer
chances of extreme gains (overestimation). For RVD, residuals for model M4 are more or
less normally distributed (skewness = −0.020). As anticipated, the ARIMA model seems
to fit the smaller dataset very well at a shorter prediction horizon. Kurtosis tests for all
datasets and models indicate positive values of less than 3. Thus, the distributions are
mesokurtic compared to the normal distribution. All models have light-tailed residuals
with minimal outliers. The low variation within observations suggests that the data are
highly concentrated around the mean as well (also see Figure 5). Overall, M1 predicts RVD,
CUT, and UPR data with the highest accuracy than any other model.

Table 9. Comparison of models’ residuals (m/s).

Statistic M1 M2 M3 M4

RVD

Std.Dev 0.175 0.180 0.181 0.179
Skewness 0.156 0.239 0.273 −0.020
Kurtosis 1.510 1.524 1.556 1.498

CUT

Std.Dev 0.812 0.870 0.894 0.912
Skewness 0.302 0.315 0.292 0.236
Kurtosis 1.939 1.081 0.925 0.594

UPR

Std.Dev 0.934 0.957 0.968 0.980
Skewness 0.308 0.353 0.344 0.197
Kurtosis 1.015 0.732 0.907 0.574

Bold = Best model.
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4.2.5. Evaluation of Probabilistic Predictions

Table 10 compares model performance based on 90% PI indices, PINAW and PINAD.
The values of the best model are shown in bold. PINAD values were the smallest for CUT
and UPR data using models M1 and M3, respectively, and the smallest for RVD data using
model M3. The narrowest PINAW was achieved by M1 for CUT and UPR data, followed by
M4 for the same datasets. PINAW was the narrowest for RVD data for model M4, followed
by models M2, M3, and M3. For all three datasets, M1 produced the fewest values outside
the 90% prediction interval. In general, model M1 quantifies CUT and UPR data more
reliably and with less uncertainty than any other model.
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Table 10. Comparative analysis of models using PI indices.

Indicator M1 M2 M3 M4

RVD

PINAW (%) 12.464 12.496 13.208 12.355
PINAD (%) 0.203 0.229 0.197 0.215
OL (count) 27 29 28 30

OL (%) 9.4 10.1 9.7 10.4

CUT

PINAW (%) 33.790 36.535 37.373 36.468
PINAD (%) 0.616 0.550 0.522 0.569
OL (count) 84 89 86 84

OL (%) 9.9 10.5 10.2 9.9

UPR

PINAW (%) 37.245 38.166 38.707 38.105
PINAD (%) 0.517 0.499 0.516 0.486
OL (count) 143 142 142 145

OL (%) 9.9 9.9 9.9 10.1
OL = Number of predictions outside limits. Bold = Best model.

5. Conclusions

With consideration of linear and nonlinear components (volatility and noise) infused
in wind speed data, this paper presents a comparison of hybrid strategies to short-term
wind speed predictions using a combination of wavelet transforms (WT), autoregressive
moving averages (ARIMA), gradient boosting decision trees (GBDTs), and support vector
regression (SVR). Thus, the study compared the predictive performance and robustness of
the WT-ARIMA-XGBoost-SVR against the WT-ARIMA-LGB-SVR, WT-ARIMA-SGB-SVR,
and benchmark ARIMA using minutely averaged wind speed data from the RVD, CUT,
and UPR radiometric stations located in South Africa.

In summary, the following conclusions could be reached from the comparative analysis:
(a) The wavelet decomposition of the highly variable and nonlinear components of the wind
speed data reduced noise and volatility, thereby improving the prediction performance of all
three hybrid strategies; (b) The ARIMA was successfully implemented in all three datasets
to capture the linear component of wind speed, while the GBDTs captured the complex
nonlinear component; (c) Both XGBoost and LGB successfully saved computational time and
improved the prediction performance of the WT-ARIMA-XGBoost-SVR and WT-ARIMA-
LGB-SVR, respectively. Furthermore, LGB was more efficient (required less training time),
followed by XGBoost, and ARIMA. Similar results were found in [35–37,39,40]; (d) The RBF
kernel SVR effectively reconciled ARIMA and GBDT predictions with faster convergent
speed for RVD and CUT than for large samples (UPR). These results are consistent with
those in [15,48,50,52]; (e) Based on RMSE, MAE, MAPE, and R2 a comparative study
of point predictions showed that WT-ARIMA-XGBoost-SVR is the most suitable model
for predicting all three datasets; (f) For shorter prediction intervals (288 min), ARIMA
has the second best performance (WT-ARIMA-XGBoost-SVR), while for longer intervals
(1440 min), it has the poorest performance. These results concur with those in [25–28,35–39].
In general, all models’ performance declines with increased prediction horizons. Compared
to the other three models, the proposed WT-ARIMA-XGBoost model has less sensitivity to
terrain changes and a prediction horizon; (f) The WT-ARIMA-XGBoost model significantly
outperformed all other models in residual analysis, achieving the least standard deviation
(i.e., spread) across all datasets. Thus, this model predicts the three wind speed data with
the highest accuracy than any other model; and (g) Based on PINAWs, all three datasets can
be quantified more reliably with less uncertainty through the WT-ARIMA-XGBoost-SVR
model than through any other model.
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From the overall comparative analysis, we can conclude that the WT-ARIMA-XGBoost-
SVR model overcomes the individual models’ inherent limitations and achieves better
accuracy, efficiency, robustness, and reliability across all datasets. These results (which are
consistent with some studies reviewed in the literature, such as [38,55]) can be used by
utility managers and policymakers to develop effective grid management strategies for
integrating large volumes of wind power into their electric grids. Furthermore, the findings
can be applied to effectively manage wind power voltage fluctuations and ensure power
system dispatch safety.

Despite its ability to predict wind speed over short prediction horizons on different
terrains (with varying climatic conditions) within South Africa, the proposed approach
displays some gaps when wind speed changes abruptly. It will be interesting to see
how high-variant and large wind speed datasets (outside South Africa) will affect model
accuracy and robustness. This is our future research problem.
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