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Abstract: For many scientific inverse problems, we are required to evaluate an expensive forward
model. Moreover, the model is often given in such a form that it is unrealistic to access its gradients.
In such a scenario, standard Markov Chain Monte Carlo algorithms quickly become impractical, re-
quiring a large number of serial model evaluations to converge on the target distribution. In this paper,
we introduce Flow Annealed Kalman Inversion (FAKI). This is a generalization of Ensemble Kalman
Inversion (EKI) where we embed the Kalman filter updates in a temperature annealing scheme and
use normalizing flows (NFs) to map the intermediate measures corresponding to each temperature
level to the standard Gaussian. Thus, we relax the Gaussian ansatz for the intermediate measures
used in standard EKI, allowing us to achieve higher-fidelity approximations to non-Gaussian targets.
We demonstrate the performance of FAKI on two numerical benchmarks, showing dramatic im-
provements over standard EKI in terms of accuracy whilst accelerating its already rapid convergence
properties (typically in O(10) steps).

Keywords: inverse problems; Bayesian inference; normalizing flows; Ensemble Kalman Inversion;
gradient-free

1. Introduction

Many scientific inference tasks are concerned with inverse problems of the form

y = G(x) + η, (1)

where y ∈ Rdy are the data, x ∈ Rd are the model parameters, G is the forward map, and
η is the observation noise. Throughout this work, we will assume that we do not have
access to gradients of G with respect to the parameters, and that η ∼ N (0, Γ), where Γ is a
fixed noise covariance. The assumption of additive Gaussian noise is the standard setting
for Ensemble Kalman Inversion (EKI) [1–8], and whilst we are restricted to problems with
Gaussian likelihoods, this covers a large family of scientific inverse problems. The goal of
the Bayesian inverse problem is then to recover the posterior distribution over the model
parameters given our observations, p(x|y).

Typical gradient-free inference methods often involve some variant on Markov Chain
Monte Carlo (MCMC) algorithms, e.g., random walk Metropolis [9–11] or Sequential
Monte Carlo (SMC) [12]. However, these methods typically require ≳ 103 serial model
evaluations to achieve convergence, making them intractable for problems with expensive
forward models. In contrast, EKI utilizes embarrassingly parallel model evaluations to
update parameter estimates, typically converging to an approximate solution in O(10)
iterations [2,6–8].
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EKI leverages ideas originally developed in the context of Ensemble Kalman Filtering
(EKF) for data assimilation [13]. Since its development, EKI has seen applications across a
range of disciplines, including studies of fluid flow [14], climate models [15], and machine
learning tasks [16]. EKI can be understood in the context of annealing, where we seek to
move from the prior to the posterior through a sequence of intermediate measures. In
standard EKI, this involves constructing a sequence of Gaussian approximations to the
intermediate measures. In the regime where we have a Gaussian prior π0(x) = N (m0, C0)
and a linear forward model G(x) = Gx, the particle distribution obtained via EKI converges
to the true posterior in the limit where the ensemble size J → ∞. However, outside this
linear Gaussian regime, EKI is an uncontrolled approximation to the posterior that is
constructed on the basis of matching first and second moments of the target distribution.
Nonetheless, EKI has been shown to perform well on problems with non-linear forward
models and slightly non-Gaussian targets [1,2,6].

In this work, we propose the application of normalizing flows (NFs) [17–20] to relax the
Gaussian ansatz made by standard EKI for the intermediate measures. Instead of assuming
a Gaussian particle distribution at each iteration, the NF is used to fit the empirical particle
distribution and map it to a Gaussian latent space, where the EKI updates are performed.
Thus, we are better able to capture non-Gaussian target geometries. The structure of this
paper is as follows: in Section 2 we describe the Flow Annealed Kalman Inversion (FAKI)
algorithm; in Section 3, we demonstrate the performance of the method on two Bayesian
inference tasks with non-Gaussian target geometries; and we summarize our work in
Section 4.

2. Methods
2.1. Regularized Ensemble Kalman Inversion

A number of versions of EKI have been proposed in the literature. Of interest here
is the regularized, perturbed observation form of EKI [6]. Starting with an ensemble
of particles drawn from the prior, {xj

0}
J
j=1, the particles are updated at each iteration

according to
xj

n+1 = xj
n + CxG

n (CGGn + αnΓ)−1(y− G(xj
n) +

√
αnξ

j
n). (2)

The empirical covariances CxG
n and CGGn are given by

CxG
n =

1
J − 1

J

∑
j=1

(xj
n − ⟨xn⟩)⊗ (G(xj

n)− ⟨Gn⟩), (3)

CGGn =
1

J − 1

J

∑
j=1

(G(xj
n)− ⟨Gn⟩)⊗ (G(xj

n)− ⟨Gn⟩). (4)

At each iteration, we perturb the forward model evaluations with the Gaussian observation
noise ξ

j
n ∼ N (0, Γ). The parameter αn is a Tikhonov regularization parameter, which can be

viewed as an inverse step size in the Bayesian annealing context. In particular, given a set
of annealing parameters β0 ≡ 0 < β1 < . . . < βN < βN+1 ≡ 1, we have the corresponding
set of target distributions

πn(x) ∝ π0(x) exp
(
− βn

2

∥∥∥Γ−1/2(y− G(x))
∥∥∥2
)

, (5)

with
αn = βn+1 − βn. (6)

EKI proceeds by constructing a sequence of ensemble approximations to Gaussian distribu-
tions that approximate the intermediate targets.

The choice of the regularization parameter, αn, controls the transition from the prior to
the posterior. Previous proposals for an adaptive choice have taken inspiration from SMC
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by using a threshold on the effective sample size (ESS) of the particles at each temperature
level [21,22]. In this work, we adopt the same approach, calculating pseudo-importance
weights at each temperature given by

wj
n = exp

(
−1

2
(βn+1 − βn)

∥∥∥Γ−1/2(y− G(xj
n))
∥∥∥2
)

. (7)

The next temperature level can then be selected by solving(
J

∑
j=1

wj
n(βn+1)

2

)−1( J

∑
j=1

wj
n(βn+1)

)2

= τ J, (8)

using the bisection method, where 0 < τ < 1 is the target fractional ESS threshold.
Throughout our work we set τ = 0.5. The full pseudo-code for EKI is given in Algorithm 1.

Algorithm 1 Ensemble Kalman Inversion

1: Input: J prior samples {xj
0 ∼ π0(x)}J

j=1, data y, observation error covariance Γ and
fractional ESS target threshold τ

2: Initialize inverse temperature β0 = 0, iteration counter n = 0
3: while β < 1 do
4: Evaluate Gj = G(xj

n), j ∈ {1, . . . , J}
5: Solve for βn+1 using the bisection method with Equation (8)
6: αn ← βn+1 − βn

7: Update particles using Equation (2) to obtain {xj
n+1}

J
j=1

8: n← n + 1
9: end while

10: Output: Converged particle ensemble {xj
N}

J
j=1

2.2. Normalizing Flows

As discussed above, standard EKI proceeds by constructing a sequence of ensemble
approximations to Gaussian distributions. The procedure works well in the situation where
the target and all the intermediate measures are close to Gaussian. However, when any of
these measures are far from Gaussian, EKI can dramatically fail to capture the final target
geometry.

To address this shortcoming, we propose the use of NFs to approximate each inter-
mediate target, instead of using the Gaussian ansatz of standard EKI. NFs are powerful
generative models that can be used for flexible density estimation and sampling [17–20].
An NF model maps from the original space x ∈ Rd to a latent space z ∈ Rd through a
sequence of invertible transformations f = f1 ◦ f2 ◦ . . . ◦ fL, such that we have a bijective
mapping z = f (x). The mapping is such that the latent variables are mapped to some
simple base distribution, typically chosen to be the standard Normal distribution, giving
z ∼ pz(z) = N (0, I).

The NF density can be evaluated through the change of variables formula,

q(x) = pz( f (x))|det D f (x)| = pz( f (x))
L

∏
l=1
|det D fl(x)|, (9)

where D f (x) = ∂ f (x)/∂x denotes the Jacobian of f . The efficient evaluation of this density
requires the Jacobian of the transformation to be easy to evaluate, and efficient sampling
requires the inverse of the mapping f to be easy to calculate. In this work, we use Masked
Autoregressive Flows (MAFs) [18], which have previously been found to perform well in
the context of preconditioned MCMC sampling within SMC without the need for expensive
hyper-parameter searches during sampling [23].
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2.3. Flow Annealed Kalman Inversion

Given particles distributed as πn(x), the subsequent target can be written as

πn+1(x) ∝ πn(x) exp
(
− 1

2αn

∥∥∥Γ−1/2(y− G(x))
∥∥∥2
)

. (10)

We may therefore view πn(x), i.e., the posterior at the temperature level βn, as an effective
prior for πn+1(x), with a data likelihood annealed by α−1

n . By fitting an NF to the particles
{xj

n}J
j=1, we obtain an approximate map from the intermediate target πn(x) to N (z|0, I).

The latent space target is then given by the change of variables formula as

πn+1(z) = πn+1(x = f−1
n (z))

∣∣∣det D f−1
n (z)

∣∣∣. (11)

By controlling the choice of αn, we control the distance between the Gaussianized effective
prior and this latent space target density. For FAKI, we therefore perform the EKI updates
in the NF latent space at each temperature level, allowing us to relax the Gaussian ansatz
of standard EKI by constructing an approximate map from each πn(x) to a Gaussian latent
space. It is worth noting that, whilst this method relaxes the Gaussianity assumptions of
standard EKI, it does not address the linearity assumptions used in deriving EKI.

The FAKI update for the latent space particle locations is given by

zj
n+1 = zj

n + CzG
n (CGGn + αnΓ)−1(y− G( f−1

n (zj
n)) +

√
αnξ

j
n), (12)

where the latent space empirical covariances are given by

CzG
n =

1
J − 1

J

∑
j=1

(zj
n − ⟨zn⟩)⊗ (G( f−1

n (zj
n))− ⟨Gn⟩), (13)

CGGn =
1

J − 1

J

∑
j=1

(G( f−1
n (zj

n))− ⟨Gn⟩)⊗ (G( f−1
n (zj

n))− ⟨Gn⟩). (14)

The full pseudocode for FAKI is given in Algorithm 2.

Algorithm 2 Flow Annealed Kalman Inversion

1: Input: J prior samples {xj
0 ∼ π0(x)}J

j=1, data y, observation error covariance Γ and
fractional ESS target threshold τ

2: Initialize inverse temperature β0 = 0, iteration counter n = 0
3: while β < 1 do
4: Evaluate Gj = G(xj

n), j ∈ {1, . . . , J}
5: Solve for βn+1 using the bisection method with Equation (8)
6: αn ← βn+1 − βn

7: Fit NF map fn to current samples {xj
n}J

j=1

8: Map particles to latent space zj
n = fn(xj

n), j ∈ {1, . . . , J}
9: Update particles using Equation (12) to obtain {zj

n+1}
J
j=1

10: Map back to the data space xj
n+1 = f−1

n (zj
n+1), j ∈ {1, . . . , J}

11: n← n + 1
12: end while
13: Output: Converged particle ensemble {xj

N}
J
j=1

3. Results

In this section, we demonstrate the performance of FAKI compared to standard EKI
on two numerical benchmarks, a two-dimensional Rosenbrock distribution and a stochastic
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Lorenz system [24,25]. Both models display significant non-Gaussianity at some point
during the transition from prior to posterior, severely frustrating the performance of EKI.
This manifests in both the reduced fidelity of the final ensemble approximations to the
posterior and a larger number of iterations being required for convergence following the
ESS-based annealing scheme described in Section 2.1.

In Table 1, we provide statistics summarizing the performance of EKI and FAKI on
our numerical benchmarks. We measured the quality of the posterior approximations by
computing the 1-Wasserstein distance, W1 [26,27], between the samples obtained through
FAKI and EKI against reference posterior samples obtained via long runs of the Hamil-
tonian Monte Carlo (HMC) algorithm [28,29]. These reference samples were thinned to
be approximately independent when computing the 1-Wasserstein distances (we use the
Python Wasserstein library: https://github.com/pkomiske/Wasserstein/ (accessed on
30 June 2023)). The 1-Wasserstein distance may be interpreted as the cost involved in
rearranging one probability measure to look like another, with lower values indicating the
two probability measures are closer to one another. In addition to this assessment of the
approximation quality, we report the number of iterations, Niter, required by FAKI and EKI
for convergence. For both quantities, we report the median and median absolute deviation
(MAD) estimated over 10 independent runs using different random seeds.

Table 1. Median and MAD values of Niter and 1-Wasserstein distances for each model and algorithm
combination, calculated over 10 independent runs using different random seeds. For both numerical
benchmarks, we see that FAKI resulted in a reduced number of iterations for convergence and a
lower value of the 1-Wasserstein distance between the converged samples and the ground truth.

Model Algorithm Median (Niter) MAD (Niter) Median (W1) MAD (W1)

Rosenbrock EKI 100 7.0 0.72 0.05
Rosenbrock FAKI 34.0 7.0 0.43 0.14

Lorenz EKI 10.0 0.0 69.8 1.08
Lorenz FAKI 8.0 0.0 5.65 0.86

3.1. d = 2 Rosenbrock

In our first numerical experiment, we considered the two-dimensional Rosenbrock
distribution. This toy model allowed us to clearly see the impact of non-Gaussianity on
the performance of EKI and how FAKI is able to alleviate these issues. For the Rosenbrock
model, we assumed a Gaussian prior over the parameters x ∈ R2,

x ∼ N (0, 102 I). (15)

The data, y ∈ R2, were distributed according to the likelihood

y ∼ N (G(x) = (x1 − x2
0, x0)

⊺, Γ = diag(0.012, 12)). (16)

To generate simulated data, we evaluated y = G((1, 1)⊺)+ η, where η ∼ N (0, diag(0.012, 12)).
The large difference in noise scales resulted in a highly non-Gaussian posterior geome-
try that posed a significant challenge for EKI. For each run of EKI and FAKI, we used
100 particles.

In Figure 1, we show pair plots comparing the final particle distributions obtained
with EKI and FAKI against samples obtained through a long run of HMC. The NF mapping
meant that the ensemble approximation obtained by FAKI was able to capture the highly
non-linear target geometry. In comparison, EKI struggled to fill the tails of the Rosenbrock
target. Moreover, whilst FAKI converged within ∼34 iterations, EKI required a median
number of ∼100 iterations to converge using the ESS-based annealing scheme.

https://github.com/pkomiske/Wasserstein/
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(a) EKI−MCMC comparison (b) FAKI−MCMC comparison

Figure 1. Pair plots for the Rosenbrock target. Panel (a): pair-plot comparison of samples from EKI
and a long HMC run. Panel (b): pair-plot comparison of samples from FAKI and a long HMC run.
Samples from FAKI were able to correctly capture the highly non-linear target geometry. Standard
EKI struggled to fill the tails of the target and required ∼100 iterations to converge, compared to
∼34 iterations for FAKI.

3.2. Stochastic Lorenz System

The Lorenz equations are a set of coupled differential equations used as a simple model
of atmospheric convection. Notably, for certain parameter values, the Lorenz equations are
known to exhibit chaotic behavior [24]. In this work, we followed [25] and considered the
stochastic Lorenz system

dXt = 10(Yt − Xt)dt + dWx
t , (17)

dYt = Xt(28− Zt)dt−Ytdt + dWy
t , (18)

dZt = XtYtdt− 8
3

Ztdt + dWz
t , (19)

where Wx
t , Wy

t , and Wz
t are Gaussian white noise processes with standard deviation σ0 = 0.1.

To generate simulated, data we integrated these equations using a Euler–Maruyama scheme
with dt = 0.02 for 30 steps, with initial conditions X0, Y0, Z0 ∼ N (0, 12). The observations
were then taken to be the Xt values over these 30 time steps, with Gaussian observational
noise ηt ∼ N (0, σ2 = 12).

The goal of our inference here was to recover the initial conditions, the trajectories
(Xt, Yt, Zt) and the innovation noise scale σ0, giving a parameter space of d = 94 dimensions.
We assigned priors over these parameters as

log σ0 ∼ N (−1, 12), (20)

X0, Y0, Z0 ∼ N (0, 12), (21)

Xt ∼ N (Xt−1 + fX(Xt−1, Yt−1, Zt−1, t− 1)dt, σ2
0 dt), t ∈ {1, . . . , 30}, (22)

Yt ∼ N (Yt−1 + fY(Xt−1, Yt−1, Zt−1, t− 1)dt, σ2
0 dt), t ∈ {1, . . . , 30}, (23)

Zt ∼ N (Zt−1 + fZ(Xt−1, Yt−1, Zt−1, t− 1)dt, σ2
0 dt), t ∈ {1, . . . , 30}, (24)

where fX, fY, and fZ are the transition functions corresponding to Equations (17)–(19),
respectively. The Gaussian likelihood has the form

X̂t ∼ N (Xt, σ2), t ∈ {1, . . . , 30}, (25)
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where X̂t are the observations of the Xt trajectory. The chaotic dynamics of the Lorenz
system resulted in a highly non-Gaussian prior distribution, with the inversion having to
proceed through a sequence of highly non-Gaussian intermediate measures towards the
posterior. This severely frustrated the performance of EKI, with the Gaussian ansatz failing
to describe the geometry of the intermediate measures. For each run of EKI and FAKI, we
used 940 particles.

In Figure 2, we show the ensemble estimates for the mean and standard deviation
along each dimension obtained by EKI and FAKI, compared to reference estimates obtained
through long runs of HMC. FAKI was able to obtain accurate mean estimates along each
dimension, whereas EKI was unable to obtain the correct means for much of the Zt trajectory.
EKI severely overestimated the marginal standard deviations along many dimensions. This
situation was alleviated by the NF mappings learned by FAKI. The greater fidelity of the
FAKI posterior approximations is reflected in the median estimates for the 1-Wasserstein
distances, with a value of 5.65 for FAKI and 69.8 for EKI.

(a) EKI−MCMC E[X] comparison (b) FAKI−MCMC E[X] comparison

(c) EKI−MCMC Var[X]1/2 comparison (d) FAKI−MCMC Var[X]1/2 comparison

Figure 2. Comparison of first and second moment estimates along each dimension for the stochastic
Lorenz system. Panel (a): comparison between the mean estimates from EKI and a long HMC run.
Panel (b): comparison between the mean estimates from FAKI and a long HMC run. Panel (c):
comparison between the standard deviation estimates from EKI and a long HMC run. Panel (d):
comparison between the standard deviation estimates from FAKI and a long HMC run. Blue bars
indicate the moment estimates obtained via HMC along each dimension, with the adjacent orange
bars showing the estimates obtained through EKI/FAKI. EKI was unable to obtain accurate mean
estimates for much of the Zt trajectory, whilst FAKI was able to obtain accurate mean estimates for
each dimension. FAKI outperformed EKI in its estimates of the marginal standard deviations, with
EKI drastically overestimating the standard deviations along many dimensions.

4. Conclusions

In this work, we introduced Flow Annealed Kalman Inversion (FAKI), a gradient-free
inference algorithm for Bayesian inverse problems with expensive forward models. This is
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a generalization of Ensemble Kalman Inversion (EKI) where we utilize normalizing flows
(NFs) to replace the Gaussian ansatz made in EKI. Instead of constructing a sequence of
ensemble approximations to Gaussian measures that approximate a sequence of intermedi-
ate measures, as we move from the prior to the posterior, we learn an NF mapping at each
iteration to a Gaussian latent space. Provided the transition between temperature levels is
controlled, we can perform Kalman inversion updates in the NF latent space. In the NF
latent space, the Gaussianity assumptions of EKI are more closely satisfied, resulting in a
more stable inversion at each temperature level.

We demonstrated the performance of FAKI on two numerical benchmarks, a d = 2
Rosenbrock distribution and a d = 94 stochastic Lorenz system. Both examples exhibited
significant non-Gaussianity in the transition from prior to posterior that frustrated standard
EKI. In the presence of strong non-Gaussianity, we found that FAKI produced higher-
fidelity posterior approximations compared to EKI, as measured by the 1-Wasserstein
distance between FAKI/EKI samples and reference HMC samples. In addition to the
improved fidelity of the posterior approximations, we found that FAKI tended to reduce
the number of iterations required for convergence.

Whilst the application of NFs is able to relax the Gaussian ansatz of EKI, it does not
address the linearity assumptions used in deriving EKI. As such, FAKI is still not exact
for general forward models. In future work, it will be interesting to explore methods to
address this: for example, the combination of FAKI with unbiased MCMC or importance
sampling methods. It would also be interesting to consider generalizations of FAKI that
are able to accommodate non-Gaussian likelihoods and/or parameter-dependent noise
covariances. The use of NFs means that we typically require ensemble sizes J ≳ 10d to
learn accurate NF maps with the MAF architecture employed in this work. It would be
useful to explore alternative NF architectures and regularization schemes that are able to
learn accurate NF maps with smaller ensemble sizes, in order to enable FAKI to scale to
higher dimensions. In this work, we found that the MAF architecture is able to capture
a wide range of target geometries without the need for expensive NF hyper-parameter
searches. However, it may be possible to exploit NF architectures with inductive biases
that are particularly suited to common target geometries, e.g., the non-linear correlations
that often appear in hierarchical models.
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