
Citation: Jacquet, P. Is Quantum

Tomography a Difficult Problem for

Machine Learning? Phys. Sci. Forum

2022, 5, 47. https://doi.org/10.3390/

psf2022005047

Academic Editors: Frédéric

Barbaresco, Ali Mohammad-Djafari,

Frank Nielsen and Martino

Trassinelli

Published: 7 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Is Quantum Tomography a Difficult Problem for
Machine Learning? †

Philippe Jacquet

Inria Saclay Ile-de-France, 91120 Palaiseau, France; philippe.jacquet@inria.fr
† Presented at the 41st International Workshop on Bayesian Inference and Maximum Entropy Methods in Science

and Engineering, Paris, France, 18–22 July 2022.

Abstract: One of the key issues in machine learning is the characterization of the learnability of a
problem. Regret is a way to quantify learnability. Quantum tomography is a special case of machine
learning where the training set is a set of quantum measurements and the ground truth is the result
of these measurements, but nothing is known about the hidden quantum system. We will show that
in some case quantum tomography is a hard problem to learn. We consider a problem related to
optical fiber communication where information is encoded in photon polarizations. We will show
that the learning regret cannot decay faster than 1/

√
T where T is the size of the training dataset and

that incremental gradient descent may converge worse.
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1. Introduction: Supervised Learning in General

With the invention of deep neural learning, the general public thinks there is a glimpse
of a universal machine learning technology capable of solving arbitrary problems without
any specific preparation on training data and learning strategy. Everything “is” be solvable
as long as there are enough layers, enough processing power and enough training data. We
arrived at the point that many people (among them the late Stephen Hawking) start thinking
that machines may supersede human intelligence thanks to the greater performance of
silicon neurons over biological neurons, and may be capable of cracking the last enigmas
around the physical nature of the universe.

However, we should not forget that actual Artificial Intelligence (AI) has many limi-
tations. However, due to the youth of technology, many of the present limits might be of
teething nature. To learn a language the present algorithms need to be trained over millions
of texts which is equivalent to a training period of 80 years if it were done at the learning
pace of a child! Presently, deep neural training is very demanding in processing and it is the
third major source of energy consumption among information technologies after Bitcoin
and data centers. Deep learning is not yet such a good self-organizing learning process
as some researchers would have thought [1]. There is also the obstacle of data sparsity to
learning (the machine only recognizes the data on which it has been trained over and over
as if a reader could only understand the texts on which (s)he has been trained).

To make it short the main limitations of machine learning technologies are: (i) the
data sparsity; (ii) the absence of a computable solution to learn (e.g., the program halting
problem); (iii) the presence of hard-to-learn algorithms in the solution. My present paper
will address the third limitation.

A supervised learning problem can be viewed as a set of training data and ground
truths. The machine acts as an automaton whose aim is to predict the ground truth from
data. The loss measures the difference between the prediction and the ground truth and
can be established under an arbitrary metric. The general objective of supervised machine
learning is to minimize the average loss, but since the ground truth might contain some
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inherent stochastic variations (e.g., when predicting the result of a quantum measurement)
it may be impossible to make the loss as small as we would like. Given an automaton
architecture, there exists a setting that gives the optimal average loss. However, the optimal
setting might be difficult to reach. However, there is still the question of the size of the
training set needed to converge to the optimal settings.

All problems are not equal in front of learnability [2]. Some seem to be a perfect match
with AI, some others are more difficult to adapt. In [3], the author shows that the random
parity functions are just unlearnable. In fact, in a broader perspective, the “learnability”
may not be a learnable problem [4].

The first contribution of this paper is a new definition of learning regret with respect
to a given single problem submitted to a given learning strategy. Most regret expressions
are infimum of regret over a large class (if not universal) of problems [5] and therefore lose
the specificity of individual problems.

The second contribution is the application of this new regret definition to a quantum
tomography problem. The specificity of the problem is that the hidden source probability
distribution is indeed contained in the learning distribution class. The surprising result
is that the regret is at least in the square root of the number of runs, hinting at a poor
convergence rate of the learned distribution toward the hidden distribution. We conclude
with numerical experiments with gradient descents.

2. Expressing the Convergence Regret

Let T be an integer and let xT = (x1, . . . , xT) be a sequence of features which are
vectors of a certain dimension which define the problem (the notation with T is not for
“transpose”, which should be noted Tx, but for a sequence with T atoms). Each feature x
generates a discrete random label y. Let denote PS(y|x) (S for “source”) the probability to
have label y given the feature x. If yT is the sequence of random labels given the sequence
of feature xT : PS(yT |xT) = ∏t PS(yt|xt). The sequence of features and labels defines the
problem for supervised learning.

The learning process will give as output an index L(yT) which will be taken from a set
of L, such that each L ∈ L define a distribution PL(yT |xT) (L for “learning”) over the label
sequence given the feature sequence. In absence of side information the learning process
leads to L(yT) = arg maxL∈L{PL(yT |xT)}. Our aim is find how close PL(yT)(y

T |xT) is to
PS(yT |xT) when yT varies.

The distance between the two distributions can be expressed by the Kullback–Leibler
divergence [6]

D(PS‖PL) = ∑
yT

PS(yT |xT) log
PS(yT |xT)

PL(yT)(yT |xT)
(1)

However, it should be stressed that the quantity PL(yT)(y
T |xT) does not necessarily de-

fine a probability distribution since L(yT)may vary when yT varies, making ∑yT PL(yT)(y
T |xT)

equal to 1 unlikely. Thus, D(PS‖PL) is not a distance, because it can be non-positive. One

way to get through is to introduce P∗L (y
T |xT) =

PL(yT )
(yT |xT)

SL(xT)
with S(xT) = ∑yT PL(yT)(y

T |xT)

which makes P∗L () a probability distribution. Thus, we will use D(PS‖P∗L ) which satisfies:

D(PS‖P∗L ) = ∑
yT

PS(yT |xT) log
PS(yT |xT)

P∗L (y
T |xT)

= D(PS‖PL) + log S(xT), (2)

and is now a well-defined semi distance which we will define as the learning regret
R(xT) = D(PS‖P∗L ) [5].

3. The Quantum Learning on Polarized Photons

We now include pure physical measurements in the learning process. There are
several applications that involve physic, ref. [7] describes a process of deep learning over
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the physical layer of a wireless network. The issue with quantum physical effects is the
fact that they are not reproducible and not deterministic. We consider a problem related to
optical fiber communication where information is encoded in photon polarizations. The
photon polarization is given by a quantum wave function of dimension 2. In the binary
case, the bit 0 is given by polarisation angles θQ and the bit 1 is given by angle θQ + π/2.
The quantity θQ is supposed to be unknown by the receiver and its estimate θT is obtained
after a training sequence via machine learning.

For this purpose, the sender sends a sequence of T equally polarized photons, along
angle θQ, the receiver measures these photons over a collection of T measurement angles
x1, x2, . . . , xT , called the featured angles. They are pure scalar and are not vector (d = 1),
therefore we will not depict them in bold font as in the previous section which is there-
fore of dimension 1. The labels, or ground truths, y1, . . . , yT are the sequence of binary
measurement obtained, yt ∈ {0, 1}, there are 2T possible label sequences.

This problem is the most simplified version of tomography on quantum telecom-
munication since it relies on a single parameter. More realistic and more complicated
situations will occur when noisy circular polarization is introduced within a more complex
combination of polarizations within groups of photons. This will considerably increase the
dimension of the feature vectors and certainly will make our results on the training process
more critical. However, in the situation analyzed in our paper, we show that this simple
system is difficult to learn.

If we assume that the experiment results are delivered in batches to the training process,
that is the estimate θt = θ does not vary for 0 < t < T, the learning class of probability
distribution is a function of θ with PL(yT |xT , θ) = ∏yt=0 cos(θ − xt)2 ∏yt=1 sin(θ − xt)2.
The source distribution is indeed PS(yT |xT) = PL(yT |xT , θQ), thus the source distribution
belongs to the class L of learning distribution. For a given pair of sequence (yT , xT), let θ∗

be the value of θ which maximizes PL(yT |xT , θ). Since we will never touch the sequence
xT which are the foundation of the experiments, we will sometimes drop the parameter
xT and denote `yT (θ) = − log PL(yT |xT , θ). The quantity θ∗ which maximizes PL(yT |xT , θ)

will satisfy `′yT (θ
∗) = 0. We have

`yT (θ) = −2 ∑t log | cos(θ − xt + ytπ/2)|
`′yT (θ) = 2 ∑t tan(θ − xt + ytπ/2)

`”yT (θ) = 2 ∑t
1

cos(θ−xt+ytπ/2)2

we notice that for all θ `”yT is always strictly positive (but `′′ and `′ are not continuous
so ` is not convex). We now turn to displaying and proving our main results (two theorems),
whose proof would need the following two next lemmas.

Lemma 1. We have the expression

`yT (θ∗) =
1

2π

∫ 2π

0
`yT (w)`”yT (w)dw

∫
R

exp(−i`′yT (w)z)dz. (3)

Proof. Let gyT (θ) = `′yT (θ) which is homomorphic and is locally invertible (since `”yT (θ)

is never zero). Let a ∈ R we denote lyT the function a→ `yT (g−1
yT (a)). We have `yT (θ∗) =

lyT (0). For z ∈ R, let l̃yT (z) be the Fourier transform of function lyT (a). Formally we have

l̃yT (z) =
∫
R

lyT (a)e−iazda (4)

=
∫ 2π

0
`yT (w)`yT ”(w)e

−i`′
yT (w)z

dw (5)
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and inversely

lyT (a) =
1

2π

∫
R

l̃yT (z)eiazdz (6)

Thus

`yT (θ∗) =
1

2π

∫
R

l̃yT (z)dz (7)

=
1

2π

∫ 2π

0
`yT (w)`yT ”(w)dw (8)

×
∫
R

e
−i`′

yT (w)z
dz. (9)

In fact, the function `yT (θ) may have several extrema as we will see in the next section,

thus `′yT (θ) may have several roots, thus g−1
yT (a) is polymorphic. In order to avoid the

secondary roots which contribute to the non-optimal extrema, we will concentrate on the
main root in the vicinity of θQ.

Let pT = (p1, . . . , pT) and qT = (q1, . . . , qT) be two sequence of real numbers. We
denote p(yT) = ∏t p1−yt

t qyt
t .

Lemma 2. For any 1 ≤ t0 ≤ T we have the identity

∑
yT

yt0 p(yT) = qt0 ∏
t 6=t0

(pt + qt). (10)

For t1 6= t2, we have

∑
yT

yt1 yt2 p(yT) = qt1 qt2 ∏
t 6=t1,t2

(pt + qt). (11)

Proof. This is just the consequence of the finite sums via algebraic manipulations.

Theorem 1. Under mild conditions, we have the estimate

∑
yT

P(yT |xT) log
PS(yT |xT)

PL(yT)(yT |xT)
= O(

√
T) (12)

Proof. Let C(xT) = ∑yT PS(yT |xT)`yT (θ∗). Applying both lemma with pt = cos(θQ −

xt)2e−2i tan(θ−xt)z and qt = sin(θQ− xt)2e−2i tan(θ−xt+π/2)z, thus p(yT) = PS(yT |xT)e−i`yT (θ)

we get

C(xT) = ∑
yT

1
2π

∫ 2π

0
`yT (θ)`”yT (θ)dθ

∫
R

exp(−i`′yT (w)z)dz

=
1

2π

∫ 2π

0
dθ
∫
R
(`(θ, z)`”(θ, z) + ∆(θ, z))∏

t
(pt + qt)dz
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with

`(θ, z) = −2 ∑
t

pt

pt + qt
log cos(θ − xt) +

qt

pt + qt
log sin(θ − xt)

`”(θ, z) = 2 ∑
t

pt

pt + qt

1
cos(θ − xt)2 +

qt

pt + qt

1
sin(θ − xt)2

∆(θ, z) = −2 ∑
t

ptqt

(pt + qt)2

(
log cos(θ − xt)

cos(θ − xt)2 +
log sin(θ − xt)

sin(θ − xt)2

)
We notice that ∏t(pt + qt) = exp(2im(θ)z + v(θ)z2 + O(z3T)) with

m(θ) = ∑
t

tan(θ − xt) cos(θQ − xt)
2 + tan(θ − xt + π/2) sin(θ − xt)

2

v(θ) = ∑
t

tan(θ − xt)
2 cos(θQ − xt)

2 + tan(θ − xt + π/2)2 sin(θQ − xt)
2

−∑
t

(
tan(θ − xt) cos(θQ − xt)

2 + tan(θ − xt + π/2) sin(θQ − xt)
2
)2

We notice that m(θ) ∼ 2(θ − θQ)T and v(θ) = T + O(θ − θQ) when θ → θQ. The
expression is obtained via saddle point method approximation, under the mild conditions
being that it can be applied as in the maximum likelihood problem [8] (the error term
would be the smallest possible)∫

R
(`(θ, z)`”(θ, z) + ∆(θ, z))∏

t
(pt + qt)dz =

∫
R
(`(θ, z)`”(θ, z) + ∆(θ, z))

exp
(
−im(θ)z− v(θ)z2/2 + O(T|z|3)

)
dz (13)

= (`(θ)`”(θ) + ∆(θ))
√

π√
v(θ)

exp(−m(θ)2

v(θ)
)

(1 + O(1/
√

T)) (14)

with `(θ) = `(θ, 0), `”(θ) = `”(θ, 0) and ∆(θ) = ∆(θ, 0) Since m(θ)2

v(θ) = 4(θ − θQ)
2T +

O(|θ − θQ|3T), the factor ∏t(pt + qt) behaves like a gaussian function centered on θQ with
standard deviation of order 1/

√
T. Thus, via saddle point approximation again, it comes:

C(xT) =
1

2
√

π

∫ 2π

0
(`(θ)`”(θ) + ∆(θ))

√
π√

v(θ)
exp(−m(θ)

v(θ)
)(1 + O(1/

√
T))

=
1

2
√

π

∫ 2π

0

`(θ)`”(θ) + ∆(θ)√
v(θ)

exp
(
−4(θ − θQ)

2T + O(|θ − θQ|3T)
)
(1 + O(1/

√
T))

=
`(θQ)`”(θQ) + ∆(θQ)

2
√

v(0)
(1 + O(1/

√
T))

= h(θQ)(1 + O(1/
√

T))

with h(θQ) = (`(θQ)`”(θQ) − ∆(θQ))/2T with h(θ) − ∑t cos(θ − xt)2 log cos(θ − xt)2 +
sin(θ − xt)2 log sin(θ − xt)2 is clearly O(T).

Furthermore, h(θQ) = −∑yT PS(yT |xT) log PS(yT |xT), thus we have

∑
yT

P(yT |xT) log
PS(yT |xT)

PL(yT)(yT |xT)
= O

(
h(θQ)√

T

)
= O(

√
T).
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Theorem 2. We have

log S(xT) = log

∑
yT

PL(yT)(y
T |xT)

 =
1
2

log T + O(1). (15)

Remark 1. This order of magnitude is much smaller than the main order of magnitude provided
in Theorem 1, confirming that the overall regret is indeed

√
T. The regret per measurement is

O(1/
√

T) therefore the individual regrets nevertheless tend to zero when T → ∞.

Proof. It is formally a Shtarkov sum [5,9]. Using Lemmas 1 and 2 gives

S(xT) = ∑
yT

PL(yT)(y
T |xT) = ∑

yT

1
2π

∫ 2π

0
P(yT |xT , w)`yT ”(w)dw

∫
R

exp(−i`′yT (w)z)dz. (16)

=
1

2π

∫ 2π

0
dθ
∫
R
˜̀”(θ, z)∏

t
(pt + qt)dz (17)

with pt = cos(θ − xt)2e−2i tan(θ−xt)z and qt = sin(θ − xt)2e−2i tan(θ−xt+π/2)z, thus p(yT) =

P(yT |xT , θ)e−i`yT (θ); ˜̀”(θ, z) has same expression as `”(θ, z) but with the new expression of
pt and qt:

˜̀”(θ, z) = 2 ∑
t

pt

pt + qt

1
cos(θ − xt)2 +

qt

pt + qt

1
sin(θ − xt)2

Developing further:

S(xT) =
1

2π

∫ 2π

0
dθ
∫
R
˜̀(θ, z) exp

(
−2Tz2 + O(T|z3|)

)
, (18)

via the saddle point estimate (which consists to do a change of variable z→ 1√
T

z′ under
the same conditions of Theorem 1 we get

S(xT) =
1

2π

∫ 2π

0
dθ
∫
R
˜̀(θ, 0)

√
π√
2T

(1 + O(1/
√

T)). (19)

We terminate with the evaluation ˜̀”(θ, 0) = 4T, thus S(xT) =
√

T√
π/2

(1 + O(1/
√

T)).

4. Incremental Learning and Gradient Descent

We investigate gradient descent methods to reach the value θ∗. There are many
gradient strategies. The classic strategy, which we call, the slow gradient descent, where
we define the loss by loss(yt, θt|xt) = (yt − sin(θt − xt)2)2, since the average value of yt is

sin(θQ)
2, thus the average loss is (sin(θQ− xt)2− sin(θt− xt)2)2 +

sin(2θQ−2xt)
2

4 (minimized
at θt = θQ) and the gradient θt updates is

θt+1 = θt − r
∂

θt
loss(yt, θt|xt). (20)

In Figure 1 we display our simulations as a sequence θt starting with a random initial
θ1. We assume that for all t the transmitted bit is always 0 i.e., the polarization angle is
always θQ. The learning rate is r = 0.0002. We simulate nine parallel gradient descents
randomly initialized sharing the same random feature sequence xT , with T = 3,000,000. On
Figure 1 we plot the parallel evolutions of quantity θt. The initial points are green diamonds
and the final points are red diamonds. Although we start with nine different positions, the
trajectories converge toward θQ ± π. However, the convergence is slow, confirming the
1/
√

T and worse rate. In fact, some initial positions converge even more slowly, and even
after 3,000,000 trials, are still very far. The reason is that the target function log P(yT |xT , θ)
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has several local maxima as it is shown in Figure 2 where the xt belongs to the set of values
2πk/10 for k = 1, . . . , 10. It is very unlikely that a communication operator would tolerate
so many runs (3,000,000) in order to have a proper convergence. However, it would be
possible to run the gradient descents in parallel and act like with particle systems in order
to select the fastest in convergence.

Figure 1. Angle estimate θt versus time of nine slow gradient descents randomly initialized. Green
diamonds are starting points, red diamonds are stopping points.

Figure 2. Target function ∑t cos(θQ− xt)
2 log cos(θ− xt)

2 + sin(θQ− xt)
2 log sin(θ− xt)

2 as function
of θ.

A supposedly faster gradient descent would be defined by the inverse derivative

θt+1 = θt + r
yt − sin(θt − xt)2

∂
∂θt

sin(θt − xt)2
(21)

We notice that in stationary situation (where we suppose that θt very little varies) we

have E(θt+1) = θt + r sin(θQ−xt)
2−sin(θt−xt)

2

∂
∂θt

sin(θt−xt)2 which is equal to θt when θt = θQ. In Figure 3,
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we display our simulations as a sequence θt starting with a random initial θ1. The learning
rate is r = 0.0002. We simulate nine parallel fast gradient descents randomly initialized
sharing the same random feature sequence xT , with T = 3,000,000. The gradient descent
converges fast but does not converge on the good value θQ ± π. Again it is due to the fact
that the target function log P(yT |xT , θ) has several local maxima which act like a trap for
the gradient descent.

Figure 3. Angle estimate θt versus time of nine fast gradient descents randomly initialized. Green
diamonds are starting points, red diamonds are stopping points.

5. Conclusions

We have presented a simple quantum tomography problem, the photon unknown
polarization problem and have analyzed its learnability via AI over T runs. We have
shown that the learning regret cannot decay faster than 1/

√
T (i.e., a cumulative regret of√

T). Furthermore, the classic gradient descent is hampered by local extrema which may
significantly impact the theoretical convergence rate.
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