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Abstract: Science aims at identifying suitable models that best describe a population based on a
set of features. Lacking information about the relationships among features there is no justification
to a priori fix a certain model. Ideally, we want to incorporate only those relationships into the
model which are supported by observed data. To achieve this goal the model that best balances
goodness of fit with simplicity should be selected. However, parametric approaches to model
selection encounter difficulties pertaining to the precise definition of the invariant content that enters
the selection procedure and its interpretation. A naturally invariant formulation of any statistical
model consists of the joint distribution of features, which provides all the information that is required
to answer questions in classification tasks or identification of feature relationships. The principle of
Maximum Entropy (MaxEnt) offers a framework to directly estimate a model for this joint distribution
based on phenomenological constraints. Reformulating the inverse problem to obtain a model
distribution as an under-constrained linear system of equations, where the remaining degrees of
freedom are fixed by entropy maximization, tremendously simplifies large-N expansions around
the optimal distribution of Maximum Entropy. We have exploited this conceptual advancement to
clarify the nature of prominent model-selection schemes providing an approach to systematically
select significant constraints evidenced by the data. To facilitate the treatment of higher-dimensional
problems, we propose HyperMaxEnt—a clustering method to efficiently tackle the MaxEnt selection
procedure. We demonstrate the utility of our approach by applying the advocated methodology to
analyze long-range interactions from spin glasses and uncover three-point effects in COVID-19 data.

Keywords: maximum entropy; inverse problems; data-driven; parameter-free; model selection;
cluster expansion; arbitrary order of associations

1. Introduction

Widespread use of parametric models enabled the tremendous success of machine
learning to classify objects and to uncover relationships between the characteristics of
these objects based on data. Choosing ad hoc an appropriate parametric model remains
a challenge in many applications, especially if the target distribution does not belong to
the exponential family. This can be attributed to the intrinsically non-linear formulation of
parametric models and reparametrization symmetries, which render the precise definition
and interpretation of their invariant content difficult. Together, these difficulties add to
the challenge of selecting the optimal model which encompasses all relevant relationships
evidenced by the data.

In model selection, different methods are commonly invoked, such as the Bayesian
Information Criterion (BIC) or the Akaike Information Criterion (AIC), and statistical tests
such as the log-likelihood ratio test. Essentially, they all try to balance the goodness of fit to
the data with the number of model parameters. A goal that becomes particularly difficult
with increasing model complexity, which is warranted by larger datasets unveiling more
complex relationships. In the literature, there is no consensus about the best approach.
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Applied to parametric models, even the derivation of these scores requires further assump-
tions which are difficult to motivate based on data. Hence, it is not surprising that an
intuitive explanation why these approaches should select an optimal model is still lacking.

Recently, we have reformulated the inverse problem to identify the joint distribution
of Maximum Entropy under phenomenological constraints [1]. This led to the insight that
phenomenological observations are related to the joint distribution via an invariant system
of under-constrained linear equations, where a unique solution can be always found by
maximizing the entropy. With this linear ansatz at hand, we can robustly define modeling
architectures and as a consequence derive and understand many information-theoretic
measures, scores and statistical tests.

In the large-N expansion around the MaxEnt distribution, we have used [2] the distri-
bution over all distributions that satisfy the provided set of phenomenological constraints
to pave the way towards systematic model selection. A deductive logic dictates how to
compare and meaningfully perform selection of significant constraints that can be distin-
guished from sampling noise in a data-driven fashion in order to draw conclusions on the
association structure in the underlying system. In particular, the MaxEnt framework gives a
clear meaning to statistical tests and information criteria used in the parametric context,
since the MaxEnt distribution satisfying the selected set of constraints can be a posteriori
parametrized in terms of Lagrange multipliers corresponding to those constraints.

Exploiting the insights and flexibility of constraint-based model selection we suggest
HyperMaxEnt—a clustering algorithm that tries to deduce significant associations from
data in a higher-dimensional problem by adaptively decomposing it into smaller inverse
problems. We benchmark its applicability by analyzing long-range interactions from
simulated spin glasses. Subsequently, we turn to biomedical data and probe a three-point
effect in COVID-19 records from publicly accessible databases. In the spirit of MaxEnt logic,
there is no prior assumption on the association structure governing patient profiles, so that
the uncovered effect constitutes a story solely told by the data. This further highlights the
merits of our framework, especially in the big-data era where larger data sets enable the
distinction of higher-order effects from mere sampling noise.

2. Theory of Constraint Selection

In many phenomenological studies, probability distributions p over physical realiza-
tions of categorical features are investigated. We enumerate realizations in the microstate
space A by index α so that any distribution may be viewed as a |A|-dimensional vector
with 0 < pα < 1 and normalization condition on the sum of all its entries. It is straight-
forward to extend the developed formalism to include pα = 0 (structural zeros). A set of N
observations that are summarized by moments of (possibly) various orders described by
vector m̂ ∈ RD̂ constrains admissible distributions via

|A|
∑
α=1

R̂aαpα
!
= m̂a for a = 1, . . . D̂, (1)

where R̂ denotes the invariant form mapping probabilities from A to moments with
D̂ = rank R̂. Obviously, R̂ = 11 admits the observed counts as unique solution to which we
associate the empirical distribution f. By definition, the latter is always a solution to the
constraint system.

For a generically under-constrained architecture R̂ and given the corresponding mo-
ment vector m̂, there always exists a unique distribution p̂ satisfying the linear system (1)
that maximizes Shannon’s differential entropy

H[p] = −
|A|
∑
α=1

pα log pα. (2)
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This special solution, called MaxEnt distribution [3], is the least-biased distribution
incorporating only knowledge of provided observations and nothing more, hence being
the most representative of the solution set to phenomenological problem (1). This becomes
asymptotically clear, since the (combinatorial) probability density to observe any other
viable distribution in the solution set,

p (p | R̂, f) = N
|A|−D̂

2 e−Nr2/2 r|A|−D̂−1 ,
r2

2
≡ H[p̂]− H[p], (3)

is determined [4] by the difference of its entropy H[p] from the MaxEnt. Higher corrections
to the chi-squared distribution (3) are suppressed by powers of 1/N.

Exploiting the radial symmetry of density (3), we can compute the p-value to ob-
serve under the MaxEnt model p̂ any other distribution satisfying the phenomenological
constraints. Generally, having k̂ degrees of freedom and critical value δ̂ it is given by the
cumulative distribution of chi-squared:

p-value =
N k̂/2

2k̂/2−1Γ(k̂/2)

∫ ∞

δ̂
dr rk̂−1 e−Nr2/2. (4)

Most interestingly, we focus on the probability to observe the empirical counts Nf,
where

k̂ = |A| − D̂ and δ̂ =
√

2(H[p̂]− H[f]) (5)

describe the degrees of freedom that remain unfixed by phenomenological problem (1) and
the critical value determined by the empirical entropy difference, respectively. Simplicity
dictates to decide in favor of the simplest set of constraints R̂ under which the empirical
distribution still has a p-value above a prespecified acceptance threshold.

Similarly, two architectures R̂ and R̂′ inducing nested solution sets can be compared
using the difference of their ranks and the difference of their respective MaxEnts to evaluate
the integral in (4):

k̂ = D̂′ − D̂ and δ̂ =
√

2(H[p̂]− H[p̂′]), (6)

where p̂, p̂′ denote the MaxEnt distribution associated to architectures R̂ and R̂′, respectively.
This selection of model architectures reproduces [2] the likelihood ratio test in the MaxEnt
framework reducing to the empirical test (5) for R̂′ = 11 and p̂′ = f. It turns out that
accepting p̂ deduced by simpler architecture R̂ as representative of all distributions p̂′ satis-
fying the additional constraints in R′, whenever p-value (4) lies above (2|A| − D̂− D̂′)/N,
exhibits the appropriate scaling by consistently identifying the asymptotic model. In par-
ticular, the inverse-N scaling seems to be necessary to ensure the appropriate asymptotic
limit, so that removal of any asymptotic constraint immediately drops the p-value below
the threshold. Of course, other acceptance thresholds might be used, depending on the
objectives of the modeler. At a given sample size N, higher thresholds promote more
complex models raising the number of false-positive associations.

3. Higher-Dimensional Problems

It is often desirable to analyze associations among a large number of categorical
features simultaneously. This poses an obvious practical problem: the exponential growth of
the microstate space A quickly hinges upon—especially memory—limitations posed even
by state-of-the-art computer hardware. Consequently, deducing the MaxEnt distribution by
iteratively updating the uniform ansatz p

(0)
α = |A|−1 according to
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p
(n+1)
α = p

(n)
α exp

{
−

D̂

∑
a,b=1

R̂aα((J(n))−1)ab

( |A|
∑
β=1

R̂bβp
(n)
β − m̂b

)}
for α = 1, . . . , |A| (7)

in terms of the—invertible whenever R̂ is of full row-rank—matrix

J(n)ab =
|A|
∑
α=1

R̂aα p
(n)
α R̂bα , a, b = 1, . . . , D̂ (8)

becomes practically impossible. In the literature, there exists [5] a plethora of both system-
atic as well as more heuristic methods trying to approximate aspects of MaxEnt distributions.
In most cases however, such approximative methods are concerned and/or rely on limiting
assumptions such as that of pairwise interactions.

As we aim at probing significant constraints in a data-driven manner, we refrain
from assuming anything about the underlying association structure beyond the number
of features L and number of states qi ∈ N each feature may assume. This exposes another
practical limitation related to hypergraph classification which appears already before
memory limitations (due to the exponential growth |A| = ∏L

i=1 qi of the microstate space)
manifest. For example, classifying architectures R̂ depicting marginal constraints at the level
of features requires finding all distinct hypergraphs that contain no nested hyperedges. This
problem would naively scale as 22L−1, but as higher marginals imply all lower marginals,
the actual number of hypergraphs leading to distinct architectures is significantly less. Still,
the NP completeness of such classification tasks is generically expected to manifest before
the exponential growth of |A|.

At a more fundamental level, a considerable part of the microstate space Amust be
first sampled to be able to draw decisions using the powerful MaxEnt toolkit outlined in
Section 2. In a biomedical application with 33 binary features for instance, |A| = 233

exceeds the whole earth population, though. As many realistic applications have to deal
with finite populations, undersampling pragmatically limits full classification of possible
architectures in higher-dimensional problems, in most cases already before memory limita-
tions kick in.

Adaptive clustering. To circumvent both finite sampling and hardware limitations we
shall rely on some adaptive clustering scheme. The main idea is summarized by probing
constraints in smaller sets of the L features and adaptively building up bigger clusters.
In a smaller cluster of ` < L features, we anticipate that most features would not appear
significantly associated, if they were not directly associated to begin with. On the other
hand, more constraints might appear significant, because (a) the finite sample explores
larger portions of the smaller microstate space and (b) some dominant effects are induced
by marginalizing over the other features. A significant constraint hints towards feature
association, which we can denote by a hyperedge entailing all participating feature vertices.
In that way, one obtains a hypergraph in the L features providing a first estimation of their
associations.

Hopefully, the resulting hypergraph decomposes into fully-connected sub-hypergraphs
of tractable dimension, which are formed by combining all the association hints from con-
straint selection in the first step. If tractability is not achieved, one needs to increase the
cluster size in regions of features where a dense association network has been detected
and repeat the previous step. Within tractably bigger clusters now, the MaxEnt logic is
expected to explain effective associations previously uncovered in smaller clusters via
confounding to intermediate features in the bigger formation generically reducing the
number of significant constraints. However, if some higher-order association is indeed
present in the underlying system, it cannot be excluded that constraints involving more
features would appear significant, as long as the sample size offers enough evidence to
distinguish them from noise.
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Evidently, this clustering procedure tries to balance finite samples and limited re-
sources against the formation of higher-dimensional clusters. It is expected [6] to converge
to a handful of tractable sub-problems under the—often realistic—condition of an underly-
ing network with sparse strong associations. Of course, cluster formation might be assisted
by any geometric or other structural information available to the modeler, like in image
recognition, mass spectrometry or protein folding.

Contact prediction. To demonstrate the potential power of MaxEnt clustering let us con-
sider an one-dimensional spin glass comprising L sites with nearest-neighbor structure
alongside some long-range interactions. Due to mediated interactions along the Ising chain,
the association between two distant sites appears fuzzy in the inverse problem, as the
truly interacting distant sites are not easily distinguishable from their nearest neighbors,
which falsely appear to demonstrate long-range associations. Because the number of false
positives can quickly scale in larger systems, we are specifically interested in detecting
those non-trivial long-range interactions microscopically present.

As customary in condensed-matter literature, nearest-neighbor couplings are sampled
from a Gaussian with mean J and σ variance. In this setting, we distinguish three regimes
for J > 0 pointing towards ferromagnetism: weak, intermediate and strong coupling
(conversely high, moderate and low temperature). For simplicity, we assume no site-specific
bias. In the pure spin glass without long-range interactions, the spin-spin correlation, when
averaged over the Gaussian from which the couplings are drawn, scales as

〈sisj〉 = J|i−j| + ... for i, j = 1, . . . , L (9)

with subleading corrections in σ and J. Motivated by this attenuation of correlations
along the chain, we start to investigate pairs of spins differing at least by λcut-off > 1 sites.
Varying the cut-off we can later probe the resolution power of the clustering algorithm
which evidently depends on the ferromagnetic coupling strength and N.

For concreteness, we take L = 100 and free boundary conditions at the ends of the
chain. We have generated 103 instances of the spin glass at each J = 0.1, 0.5, 1, 2, 3, 4 with
up to 10 randomly injected long-range couplings and sampled N = 107 times from each
instance. Using these 6000 Monte Carlo samples, and assuming geometric knowledge of
the position of the sites along the chain (to be able to distinguish neighbors and impose
a cut-off), we attempt to reconstruct the interaction map. As long as J ≤ 2, i.e., avoiding
the low-temperature regime, the algorithm precisely detects all long-range interactions
and nothing more (e.g., using λcut-off > 2). In the low-temperature regime, strongly
correlated spins along the chain require a higher cut-off to avoid erroneous interactions,
decreasing the resolution power of the clustering algorithm. Aside from the specifics of the
adaptive clustering, the critical slowdown as the temperature approaches zero enhances
finite-sampling effects, decreasing thus the sensitivity of model selection in general.

For demonstrative purposes, we look at one of the randomly generated spin-glasses
with J = 1 and four long-range interactions depicted in Figure 1 as a (hyper)graph. In the
first pass along the chain, we look for significantly low p-values (5) under the independent-
spins model among all distant pairs of spins differing more than λcut-off = 3 sites. Keeping
those pairs that appear significantly associated, three fully-connected clusters were found.
In our statistical tests, we use an acceptance threshold that scales with O(1/N) as ex-
plained in Section 2. Already at the pairwise level, the hyper-MaxEnt logic correctly detects
the regions of the chain that are associated via long-range interactions. However, erro-
neous interactions (denoted by gray lines in Figure 1) appear due to marginalization over
neighboring spins that are entailed in non-local interactions. Among all non-local associa-
tions found in the first pass, only the actual (anti)-ferromagnetic long-range interactions
subsequently survive model selection: The nearest-neighbor model in each cluster with
additionally all interactions found in the first pass has a finite p-value (6) under the simpler
MaxEnt model incorporating only nearest-neighbor and true long-range interactions. Ac-
cording to HyperMaxEnt logic, the latter must be selected as optimal. Note that removing
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any of the true associations would immediately reduce the p-value far below the acceptance
threshold.

Version November 28, 2022 submitted to Proceedings 6 of 8
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Figure 1. Graph representation of the three spin clusters found over the first pass of constraint selection
within pairs of spins. The gray lines represent erroneous non-local interactions, while the actual
(anti)-ferromagnetic long-range interactions are signified by blue (red) lines. Among all non-local
associations found in the first pass, only true interactions remain significant in the subsequent constraint
selection within the three clusters, at least away from the strong coupling regime.
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Figure 1. Graph representation of the three spin clusters found over the first pass of constraint
selection within pairs of spins. The gray lines represent erroneous non-local interactions, while the
actual (anti)-ferromagnetic long-range interactions are signified by blue (red) lines. Among all non-
local associations found in the first pass, only true interactions remain significant in the subsequent
constraint selection within the three clusters, at least away from the strong coupling regime.

The clustering algorithm adapts to the specifics of the problem using the MaxEnt
constraint selection as guiding principle. For this reason, HyperMaxEnt can facilitate any
order of actual or effective interactions with no modification in its algorithmic steps. Al-
ready in an ordinary spin glass with quadratic interactions, the hypergraph representation
makes this higher-order possibility apparent. Even if we do not assume a nearest-neighbor
structure in the second pass, we can test simpler models against the more complex model
that incorporates all long-range associations previously found, where all architectures learn
the empirical distribution within each local subcluster by heart. A local cluster is signified
with a colored hyperedge in Figure 1. Using local distributions directly from the data
amounts to claiming that a model with up to `-th order interactions governs a subcluster
with ` spins. As long as ` remains sufficiently small and N is large enough to justify the use
of empirical distributions within smaller formations of spins, the conclusion of the cluster
expansion remains unaltered.

4. Higher-Order Associations

In this section, we analyze COVID-19 records from public databases. Specifically, we
look at hospitalized patients that were admitted to the ICU in Canada [7], USA [8] and
Argentina [9]. From the provided de-identified data, we were able to minimalistically
define a patient’s profile based on age (under/over 40) and sex (female/male). In addition,
we used the record date to assign cases to pandemic waves (wild-type/alpha, delta and
omicron), according to the prevalence of major variants of concern (VoC) in different
regions. To determine when a VoC prevailed in a given country we use [10]. This allows
us to align datasets from the three American countries in order to obtain—after removing
missing/corrupted values—one dataset in four features with N = 229, 939 entries.

One epidemiological question of interest concerns the space-temporal variation of the
profile of patients that were admitted to an ICU due to COVID-19 over pandemic waves and
among countries. As a first line of attack, this could be quantified by plotting the relative
risk (RR). Given age, sex and the country of residence, the risk to be hospitalized at an ICU



Phys. Sci. Forum 2022, 5, 28 7 of 9

in the second and third wave compared to the beginning of the pandemic is defined as a
probability ratio via

p(age, sex, country, wave)/p(age, sex, country, reference wave). (10)

Analogously,

p(age, sex, country, wave)/p(age, sex, reference country, wave) (11)

quantifies differences among countries. In the left column of Figure 2, the logarithm of such
risk measures could be directly calculated from empirical distribution f of the combined
dataset. At this point, it is reasonable to first work with f, as the dataset represents a
considerable portion of the population (before data cleaning it is claimed to contain all cases
recorded in the affected countries). Hence, statistical fluctuations due to finite sampling are
expected to be minimal.

Canada USA Argentina
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Figure 2. Relative risks in log scale computed using directly the COVID-19 data on the left side and
using the selected MaxEnt model on the right. The first row shows the RR against the first wave, while
the second row depicts the RR against one of the three countries (Canada).

Generally, we recognize from the RR reduction in the upper-left plot that the first
wave appears to be the most dangerous for all profiles in all three countries. From the
lower plot on the left, we see a RR increase in the profiles from the USA compared to
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Canada over all waves, while the corresponding relative risk of profiles from Argentina
fluctuates over the waves around the reference line. To systematically resolve significant
differences in the various risks from accidental fluctuations biomedical research tries to
uncover associations between the features under investigation. Starting from R̂ = 11 and the
empirical distribution, we progressively remove constraints and compare models defined
over the |A| = 2× 2× 3× 3 = 36 microstates. After classifying all possible architectures R̂,
there significantly remain three pairwise associations and one cubic effect depicted in the
hypergraph of Figure 3. Incidentally, the same hypergraph exhibits the lowest Bayesian
Information Criterion,

BIC = D̂ log N + 2NH[p̂], (12)

which essentially tells us to choose the architecture that maximizes density (3) and hence
the integrand of (4) whenever evaluated at empirical distribution f. Using the MaxEnt
distribution p̂ of the selected architecture, we calculate again relative risks (10) in the right
column of Figure 2.

Version November 28, 2022 submitted to Proceedings 8 of 8
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Figure 3. Hypergraph representing the association structure probed at size N by MaxEnt techniques
on COVID-19 data. Associations, i.e., marginal constraints flowing into linear problem (1), are depicted
as hyperedges encompassing the associated features.

The upper-right plot clearly demonstrates the pairwise associations between wave and
the other three dimensions. During both delta and omicron waves, there exists an overall
country-specific decrease of the log-RR. Independently of the country, a further decrease
is observed due to older age and in turn, independently of age, the log-RR decreases in
male patients. On the other hand, the plot below shows the three-point association among
age, sex and country. While for Argentina the MaxEnt model recognizes again independent
shifts in the log-RR for age and sex over the waves, in the USA the three-point effect becomes
significant: A male patient over 40 has significantly lower RR than a female patient of the
same age, while the picture is reversed at younger ages. Hence, solely specifying either
age or sex in a profile from the USA is not enough to tell the exact change in RR around the
overall wave-specific estimate. Of course, choosing another country as reference would
lead to identical conclusion, demonstrating the natural reparametrization invariance of
MaxEnt constraint selection.
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