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Abstract: We consider the zeta distributions, which are discrete power law distributions that can
be interpreted as the counterparts of the continuous Pareto distributions with a unit scale. The
family of zeta distributions forms a discrete exponential family with normalizing constants expressed
using the Riemann zeta function. We present several information-theoretic measures between zeta
distributions, study their underlying information geometry, and compare the results with their
continuous counterparts, the Pareto distributions.
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1. Introduction

Zeta distributions [1,2] are parametric discrete distributions with probability mass
functions indexed by a scalar parameter s ∈ (1, ∞) whose support is the set of positive
integers N:

ps(x) = Pr[X = x] ∝
1
xs , x ∈ X = N = {1, 2, . . .}. (1)

The normalization function ζ(s) of the zeta distributions ps(x) = 1
ζ(s)

1
xs such that

∑x∈N ps(x) = 1 is the real Riemann zeta function [3–5]:

ζ(s) =
∞

∑
i=1

1
is = 1 +

1
2s +

1
3s + . . . , s > 1. (2)

The set of zeta distributions Z = {ps(x) : s ∈ (1, ∞)} forms a discrete exponential
family [6,7] with natural parameter θ(s) = s lying in the natural parameter space Θ =
(1, ∞), the sufficient statistic t(x) = − log x, and the cumulant function or log-normalizer
F(θ) = log ζ(θ). Therefore, it follows from the theory of exponential families [7] that
log ζ(θ) is a strictly convex and real analytic function (see Figure 1). Thus, the pmf of zeta
distributions can be rewritten in the canonical form of exponential families as:

ps(x) = exp(θ(s)t(x)− F(θ(s))). (3)

The characteristic function is thus φs(t) =
ζ(s+it)

ζ(s) .
Thus, a zeta distribution ps(x) can be interpreted as the discrete equivalent of a Pareto

distribution qs(x) of scale 1 and shape s− 1 with probability density function qs(x) = s−1
xs

for x > 1 (see Table 1).
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Table 1. Comparisons between the Zeta family and the Pareto subfamily. The function ζ(s) is the real
zeta function.

Zeta Distribution Pareto Distribution

Univariate Uni-Order Exponential Family exp(θt(x)− F(θ))

Discrete EF Continuous EF

PMF/PDF ps(x) = 1
xsζ(s) qs(x) = s−1

xs

Support X N = {1, 2, . . .} (1, ∞)
Natural parameter θ s s
Cumulant F(θ) log ζ(θ) − log(θ − 1)
Sufficient statistic t(x) − log x − log x

Moment parameter η ζ ′(θ)
ζ(θ)

− 1
s−1

Conjugate F∗(η) −H[ps] = −∑∞
i=1

1
isζ(s) log(isζ(s)) η − 1− log(−η)

Maximum likelihood estimator η̂ = ζ ′(θ̂)

ζ(θ̂)
= − 1

n ∑n
i=1 log xi ŝ = n

∑n
i=1 log xi

Fisher information ∑∞
i=0 Λ(i) log(i)i−s 1

(s−1)2

Entropy −F∗(η(s)) ∑∞
i=1

1
isζ(s) log(isζ(s)) 1 + 1

s−1 − log(s− 1)

Bhattacharyya coefficient Iα
ζ(αs1+(1−α)s2)
ζ(s1)αζ(s2)1−α

αs1+(1−α)s2

sα
1 s1−α

2

Kullback-Leibler divergence log(ζ(s2))−∑∞
i=1

1
isζ(s) log(isζ(s))− s2

ζ ′(s1)
ζ(s1)

log
(

s1−1
s2−1

)
+ s2−s1

s1−1

lo
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Figure 1. Plot of F(θ) = log ζ(θ), a strictly convex and analytic function.

The zeta function is known to be irrational at many positive odd integers [8–10]
and can be calculated using Bernoulli numbers [11] for positive even integers: ζ(2n) =
(−1)n+1B2n(2π)2n

2(2n)! , n ∈ N. The zeta function can be calculated fast [12] and precisely [13].
The derivatives of the zeta function have also been studied [12,14].

The zeta distributions are related to the Zipf distributions [15] ps,N(x) ∝ 1
xs for

x ∈ {1, . . . , N} and the Zipf–Mandelbrot distributions [16,17] ps,q,N(x) ∝ 1
(x+q)s for

x ∈ {1, . . . , N}, which play an important role in quantitative linguistics. See [6] for more
details. The Zipf distributions and the Zipf–Mandelbrot distributions both have finite
support and can be interpreted as truncated zeta distributions (right truncation for Zipf
distributions and both left & right truncations for the Zipf–Mandelbrot distributions) with
normalizing constants, which can be calculated approximately using properties of the
zeta function [18]. Left-only truncations of the Zeta distributions are called Hurwitz zeta
distributions [19]. Similarly, truncated Pareto distributions are used in applications [20].
Notice that truncated distributions of an exponential family with fixed truncation support
form another exponential family [21]. The zeta distributions are infinite divisible [19,22]:
A random variable following a zeta distribution can be expressed as the probability
distribution of the sum of an arbitrary number of independent and identically distributed
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random variables. In applications, it is important to quantitatively discriminate between
zeta distributions (see, for example [23,24] or [25]). Mixtures of zeta distributions have also
been used to model social networks [26]. In general, products of exponential families yield
other exponential families. The products of d zeta distributions form an exponential family
called the zeta-star distributions [22].

In this paper, we first study various information-theoretic measures between zeta
distributions by considering them as a discrete exponential family [7]: That is, we consider
the α-divergences [27] between zeta distributions in Section 2, and study their limit
Kullback–Leibler-oriented divergences when α → 1 and α → 0 in Section 3. We then
compare these results with the counterpart results obtained for the continuous exponential
family of Pareto distributions in Section 4. Finally, we conclude this work in Section 5.

2. Amari’s α-Divergences and Sharma–Mittal Divergences

To measure the dissimilarity between two zeta distributions ps1 and ps2 , one can use
the α-divergences [27] defined for a real α ∈ (0, 1) as follows:

Dα[ps1 : ps2 ] :=
1

α(1− α)
(1− Iα[ps1 : ps2 ]) = D1−α[ps2 : ps1 ], (4)

where

Iα[p1, p2] :=
∞

∑
i=1

p1(x)α p2(x)1−α = I1−α[p2 : p1], (5)

is the α-Bhattacharyya coefficient (a similarity measure also called an affinity coefficient).
It follows from [28] that the skewed Bhattacharyya coefficient amounts to a skewed

Jensen divergence between the natural parameters of the exponential family E :

Iα[ps1 : ps2 ] = exp(−JF,α(s1 : s2)), (6)

where JF,α is the skewed Jensen divergence induced by a strictly convex and smooth convex
function F(θ):

JF,α(s1 : s2) := αF(s1) + (1− α)F(s2)− F(αs1 + (1− α)s2) ≥ 0, (7)

= log
(

ζ(s1)
αζ(s2)

1−α

ζ(αs1 + (1− α)s2)

)
. (8)

Thus, we have the α-divergences between two zeta distributions ps1 and ps2 available
in closed form.

Theorem 1 (α-divergences between two zeta distributions). The α-divergence for α ∈ (0, 1)
between two zeta distributions ps1 and ps2 is:

Dα[ps1 : ps2 ] =
1

α(1− α)

(
1− ζ(αs1 + (1− α)s2)

ζ(s1)αζ(s2)1−α

)
.

It follows that when s1, s2, and αs1 + (1− α)s2 are all positive even integers, we can
evaluate exactly the α-divergences between ps1 and ps2 .

Example 1. Consider s1 = 4 and s2 = 12 with α = 1
2 so that αs1 + (1− α)s2 = 8. Using

the formula [11] ζ(2n) = (−1)n+1B2n(2π)2n

2(2n)! , n ∈ N where B2n denotes the Bernoulli numbers,

the zeta functions can be calculated exactly at 4, 8 and 12: ζ(4) = π4

90 , ζ(8) = π8

9450 , and
ζ(12) = 691π12

638512875 . The α-divergence for α = 1
2 is the squared Hellinger divergence D 1

2
[ps1 , ps2 ] =

∑∞
i=1

(√
ps1(i)−

√
ps2(i)

)2
. Thus, we find the exact squared Hellinger divergence: D 1

2
[p4, p12] =

4
(

1− 3
√

715
6910

)
' 0.139929 . . ..
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Let us report another example where the squared Hellinger divergence is expressed
using the zeta function:

Example 2. We consider s1 = 3, s2 = 7 and α = 1
2 so that αs1 + (1− α)s2 = 5. Then, we have

D 1
2
[p3, p7] = 4

(
1− ζ(5)√

ζ(3)ζ(7)

)
' 0.23261 . . .

Since limα→1 Dα[ps1 : ps2 ] = DKL[ps1 : ps2 ] is the Kullback–Leibler divergence [27]
(KLD)

DKL[ps1 : ps2 ] :=
∞

∑
i=1

ps1(i) log
ps1(i)
ps2(i)

, (9)

we can approximate the KLD by D1−ε[s1 : s2] for a small value of ε (say, ε = 10−3) using
fast methods to compute the zeta function [12].

Corollary 1 (Approximation of the Kullback–Leibler divergence). The Kullback–Leibler
divergence between two zeta distributions ps1 and ps2 can be approximated for small values ε > 0 by

DKL[ps1 : ps2 ] ' D1−ε[ps1 : ps2 ] =
1

ε(1− ε)

(
1− ζ((1− ε)s1 + εs2)

ζ(s1)1−εζ(s2)ε

)
.

Example 3. We let 1− ε = 0.99, 1− ε = 0.999, 1− ε = 0.9999, 1− ε = 0.99999, and find the
following numerical approximations:

DKL[ps1 : ps2 ] '1−ε=0.99 0.473 . . .

DKL[ps1 : ps2 ] '1−ε=0.999 0.482 . . .

DKL[ps1 : ps2 ] '1−ε=0.9999 0.483 . . .

DKL[ps1 : ps2 ] '1−ε=0.99999 0.483 . . .

We can also calculate the KLD DKL[p
X1
s1 : pX2

s2 ] between two truncated zeta distributions
with nested supports X1 ⊆ X2. See [21]. A truncated zeta distribution on the support
{a, a + 1, . . . , b} ⊂ N (with b > a) has pmf pa,b

s (x) = ps(x)
Φs(b)−Φs(a) where Φs(u) is the

cumulative distribution function Φs(u) = ∑x∈{1,...,u} ps(x) = 1
ζ(s) ∑x∈{1,...,u}

1
xs .

The Chernoff information [29] is defined by C[p1, p2] = − log minα∈(0,1) Iα[p1, p2]. The
unique optimal value α∗maximizing the Chernoff α-divergences Cα[p1, p2] = − log Iα[p1, p2]
is called the Chernoff exponent [29] due to its role in bounding the probability of error
in Bayesian hypothesis testing. When both pdfs or pmfs belong to the same exponential
family, we have [29]

C[pθ1 , pθ2 ] = JF(θ1 : (θ1θ2)α∗) = BF(θ1 : (θ1θ2)α∗) = BF(θ2 : (θ1θ2)α∗), (10)

where BF denotes the Bregman divergence (corresponding to the KLD) and (θ1θ2)α∗ =
α∗θ1 + (1 − α∗)θ2. For a uniorder exponential family such as the zeta distributions, a
closed-form formula for the optimal Chernoff exponent α∗ is reported in [29]: α∗ =

F′−1
(

F(θ2)−F(θ1)
θ2−θ1

)
−θ1

θ2−θ1
.

The Sharma–Mittal divergences [30] between two densities p and q is a biparametric
family of relative entropies defined by

Dα,β[p : q] =
1

β− 1

(∫ p(x)αq(x)1−αdx
) 1−β

1−α

− 1

, ∀α > 0, α 6= 1, β 6= 1. (11)

The Sharma–Mittal divergence is induced from the Sharma–Mittal entropies, which
unify the extensive Rényi entropies with the non-extensive Tsallis entropies [30]. The
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Sharma–Mittal divergences include the Rényi divergences (β→ 1) and the Tsallis divergences
(β→ α), and in the limit case of α, β→ 1, the Kullback–Leibler divergence [31]. When both
densities p = pθ1 and q = pθ2 belong to the same exponential family, we have the following
closed-form formula [31]:

Dα,β[pθ1 : pθ2 ] =
1

β− 1

(
e−

1−β
1−α JF,α(θ1 :θ2) − 1

)
. (12)

Thus, we get the following theorem:

Theorem 2. For α > 0, α 6= 1, β 6= 1, the Sharma–Mittal divergence between two zeta
distributions ps1 and ps2 is

Dα,β[ps1 : ps2 ] =
1

β− 1

( ζ(αs1 + (1− α)s2)

ζ(s1)αζ(s2)1−α

) 1−β
1−α

− 1

.

3. The Kullback–Leibler Divergence between Two Zeta Distributions

It is well-known that the KLD between two probability mass functions of an exponential
family amounts to a reverse Bregman divergence induced by the cumulant function [32]:
DKL[ps1 : ps2 ] = B∗F(θ1 : θ2) := BF(θ2 : θ1) (with θ1 = s1 and θ2 = s2). Furthermore, this
Bregman divergence amounts to a Fenchel–Young divergence [33] so that we have

DKL[ps1 : ps2 ] = BF(θ2 : θ1) = F(θ(s2)) + F∗(η(s1))− θ(s2)η(s1), (13)

where F∗(η) denotes the Legendre convex conjugate of F, θ(s) = s and η(s) = F′(θ(s)) =
Eps [t(x)] = −Eps [log x], see [7]. Moreover, the convex conjugate F∗(η(s)) corresponds to
the negentropy [34]: F∗(η(s)) = −H[ps], where the entropy of a zeta distribution ps is
defined by:

H[ps] :=
∞

∑
i=1

ps(i) log
1

ps(i)
. (14)

Using the fact that ∑∞
i=1 ps(i) = 1 = ∑∞

i=1
1

isζ(s) , we can express the entropy as follows:

H[ps] =
∞

∑
i=1

1
isζ(s)

log is + log(ζ(s))
∞

∑
i=1

1
isζ(s)

,

=
∞

∑
i=1

1
isζ(s)

log(isζ(s)).

Since F(θ) = log ζ(θ), we have η(θ) = F′(θ) = ζ ′(θ)
ζ(θ)

. The function ζ ′(θ)
ζ(θ)

has been
tabulated in [35] (page 400). Notice that the maximum likelihood estimator [7] of n
independently and identically distributed observations x1, . . . , xn is η̂ = 1

n ∑n
i=1 t(xi). Thus

we have:

η̂ =
ζ ′(θ̂)

ζ(θ̂)
= − 1

n

n

∑
i=1

log xi. (15)

The inverse of the zeta function ζ−1(·) has been studied in [36].

Proposition 1 (KLD between zeta distributions). The Kullback–Leibler divergence between two
zeta distributions can be written as:

DKL[ps1 : ps2 ] = log(ζ(s2))− H[ps1 ] + s2Eps1
[log x],

= log(ζ(s2))−
∞

∑
i=1

1
is1 ζ(s1)

log(is1 ζ(s1))− s2
ζ ′(s1)

ζ(s1)
.
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Moreover, the logarithmic derivative of the zeta function can be expressed using the
von Mangoldt function [37] (page 1850) for θ > 1:

η(θ) =
ζ ′(θ)

ζ(θ)
= −

∞

∑
i=1

Λ(i)
iθ

, (16)

where Λ(i) = log p is i = pk for some prime p and integer k ≥ 1 and 0 otherwise. Notice
that the zeta function can be calculated using Euler product formula: ζ(θ) = ∏p:prime

1
1−p−θ .

Theorem 3. The Kullback–Leibler divergence between two zeta distributions can be expressed
using the real zeta function ζ and the von Mangoldt function Λ as:

DKL[ps1 : ps2 ] = log(ζ(s2))−
∞

∑
i=1

1
isζ(s)

log(isζ(s)) + s2

∞

∑
i=1

Λ(i)
is1

.

Example 4. Consider s1 = 4 and s2 = 12. Letting 1− ε = 0.9999 and using Corollary 1, we
obtain

DKL[ps1 : ps2 ] ' D1−ε[ps1 : ps2 ] = 0.430479743738878 . . .

Let us now calculate the KLD using Theorem 3; we obtain log(ζ(s2)) = log 691π12
638512875 ,

H[ps1 ] ' 0.3337829096182664 . . . (using 100 terms), and η(s1) = −0.06366938697034288 . . .
(using 100 terms) so that we have

DKL[ps1 : ps2 ] = log(ζ(s2))−
∞

∑
i=1

1
isζ(s)

log(isζ(s)) + s2

∞

∑
i=1

Λ(i)
is1

, (17)

' 0.430495790304827 . . . (18)

It is well-known that the KLD between two arbitrarily close zeta distributions ps and
ps+ds amounts to half of the quadratic distance induced by the Fisher information:

DKL[ps : ps+ds] ≈
1
2

I(s)ds2, (19)

where
I(s) = Eps [(log ps(x))′2] = −Eps [(log ps(x))′′], (20)

where the first-order and second-order derivatives are taken with respect to the parameter
s. Thus, for uniorder exponential families, the Fisher information matrix is

I(s) = −Eps [(log ps(x))′′] = (log ζ(s))′′ =
ζ(s)ζ ′′(s)− ζ ′(s)2

ζ2(s)
. (21)

This second-order derivative (log ζ(s))′′ has been studied in [38]. We have

I(s) =
∞

∑
n=1

Λ(n) log(n)n−s (22)

where Λ(n) is the Von Mangoldt function.

4. Comparison of the Zeta Family with a Pareto Subfamily

The zeta distribution is also called the “pure power-law distribution” in the literature [2].
We can compute the α-divergences between two Pareto distributions qs1 and qs2 with

fixed scale 1 and respective shapes s1 − 1 and s2 − 1. The Pareto density writes qs(x) = s−1
xs

for x ∈ X = (1, ∞). The family of such Pareto distributions forms a continuous exponential
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family with natural parameter θ = s, sufficient statistic t(x) = − log(x), and convex
cumulant function F(θ) = − log(θ − 1) for θ ∈ Θ = (1, ∞). Thus we have [28]:

Iα[q1 : q2] =
∫

qs1(x)αqs2(x)1−αdx = exp(−JF,α(θ1 : θ2)), (23)

=
αs1 + (1− α)s2

sα
1s1−α

2

, (24)

and we obtain the following closed form for the α-divergences between two Pareto
distributions qs1 and qs2 :

Dα[qs1 : qs2 ] =
1

α(1− α)

(
1− αs1 + (1− α)s2

sα
1s1−α

2

)
. (25)

The moment parameter is η(θ) = F′(θ) = − 1
θ−1 so that θ(η) = 1− 1

η and F∗(η) =
θ(η)η − F(θ(η)) = η − 1− log(−η). It follows that the KLD is

DKL[qs1 : qs2 ] = BF(θ2 : θ1) = log
(

s1 − 1
s2 − 1

)
+

s2 − s1

s1 − 1
. (26)

The differential entropy of the Pareto distribution qs is

h[qs] = −
∫ ∞

1
qs(x) log qs(x)dx = −F∗(η(s)) (27)

with η(s) = − 1
s−1 . We find that

h[qs] = 1 +
1

s− 1
− log(s− 1). (28)

Example 5. For comparison, we calculate the KLD between two Pareto distributions with parameters
s1 = 4 and s2 = 12. We find

DKL[qs1 : qs2 ] = log
3

11
+

8
3
' 1.367383682536406 . . .

5. Conclusions

Table 1 compares the discrete exponential family of zeta distributions with the continuous
exponential family of Pareto distributions with fixed scale 1.

In general, it is interesting to consider discrete counterparts of continuous exponential
families. For example, the discrete Gaussian distributions or discrete normal distributions
defined as maximum entropy distributions have been studied in [39,40]. The log-normalizer
or cumulant function of the discrete Gaussian distributions are related to the Riemann theta
function [41]. Given a prescribed sufficient statistics t(x), we may define the continuous
exponential family with respect to the Lebesgue measure µ as the probability density
functions p(x) maximizing the differential entropy under the moment constraint Ep[t(x)] =
η. The corresponding discrete exponential family is obtained by the distributions with
probability mass functions maximizing Shannon entropy under the moment constraint
Ep[t(x)] = η.

Additional material is available online at https://franknielsen.github.io/ZetaParetoE
xpFam/index.html (accessed on 18 October 2022).
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