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Abstract: This paper introduces an adaptive importance sampling scheme for the computation of
group-based convolutions, a key step in the implementation of equivariant neural networks. By
leveraging information geometry to define the parameters update rule for inferring the optimal
sampling distribution, we show promising results for our approach by working with the two-
dimensional rotation group SO(2) and von Mises distributions. Finally, we position our AIS scheme
with respect to quantum algorithms for computing Monte Carlo estimations.

Keywords: group convolution; adaptive importance sampling; equivariant neural networks; natural
gradient; information geometric optimization; quantum algorithms

1. Introduction and Motivations

Geometric deep learning [1] is an emerging field receiving more and more traction
because of its successful application to a wide range of domains [2–4]. In this context,
equivariant neural networks (ENN) [5] have been shown to be superior to conventional
deep learning approaches from both accuracy and robustness standpoints and appear as a
natural alternative to data augmentation techniques [6,7] to achieve geometrical robustness.
One key bottleneck for scaling ENN to industrial applications lies with the numerical com-
putation of the associated equivariant operators. More precisely, two main approaches
have been used in the literature, namely a Monte Carlo sampling method [2] (which can be
made exhaustive for small finite groups) and a generalized Fourier-based method [4,8,9].
However, these approaches suffer from scalability issues as the complexity of the under-
lying group increases (e.g., handling non-compact groups such as SU(1,1) or large finite
groups such as the symmetric group Sn is challenging). Even for groups such as SO(2) for
which previous works on the use of spherical harmonics can be leveraged on, the efficient
computation of a reliable estimate of the convolution remains a challenge (convergence).
In this context, the authors of [10] have proposed an efficient method for building adequate
kernel functions to be used within steerable neural networks [11] by leveraging on the
knowledge of infinitesimal generators of the considered Lie group and on a Krylov ap-
proach for solving the linear constraints. We propose in this paper to cover the specific case
of group-convolutional neural networks (G-CNN) [2,12], which in particular, rely on the
computation of group-based convolution operators. By leveraging on information geometry
as proposed in [13] for quantile estimation, we introduce here an adaptive importance sam-
pling (AIS) variance reduction method based on information geometric optimization [14]
to improve the convergence of Monte Carlo estimators for the numerical computation
of group-based convolution feature maps, as used in several recent works [2,9,15]. We
illustrate our approach on the two-dimensional rotation group SO(2) by regularizing with
von Mises distributions [16], a set-up for which the Fisher information metric [17] can be
computed using closed form formulas.

Phys. Sci. Forum 2022, 5, 17. https://doi.org/10.3390/psf2022005017 https://www.mdpi.com/journal/psf

https://doi.org/10.3390/psf2022005017
https://doi.org/10.3390/psf2022005017
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/psf
https://www.mdpi.com
https://orcid.org/0000-0002-5774-636X
https://orcid.org/0000-0003-3664-3609
https://doi.org/10.3390/psf2022005017
https://www.mdpi.com/journal/psf
https://www.mdpi.com/article/10.3390/psf2022005017?type=check_update&version=1


Phys. Sci. Forum 2022, 5, 17 2 of 9

Finally, we shed some light on the benefits of working toward a quantum version
of our proposed AIS scheme in order to reach a quadratic speed-up [18]. Improving
quantum Monte Carlo integration schemes is indeed a very active topic of research [19],
mainly driven by applications within the financial industry [20]. Benchmarking with group-
Fourier transform-based approaches, such as [21], which are more theoretically involved
but with a promise of an exponential speed-up, will be of particular interest in this context.

2. Group Convolution and Expectation

We consider in the following a compact group G with corresponding Haar measure µG.
As µG(G) < ∞, we can choose µG so that

∫
G dµG = 1 by using an adequate normalization.

We are interested in evaluating the group-based convolution operator ψG defined
below for functionals f , k : G → R and g ∈ G:

ψG(g) =
∫

G
k
(

h−1g
)

f (h)dµG(h) (1)

Using a probabilistic interpretation of (1), we can write

ψG(g) = EµG
[
k
(

H−1g
)

f (H)
]

(2)

where H is a G−valued random variable distributed according to µG. The convolution can
therefore be estimated with a Monte Carlo method by using the following estimator

ψ̃G
n (g) =

1
n

n

∑
i=1

k
(

h−1
i g

)
f (hi) (3)

where hi ∼ µG and for which the efficiency could be improved through variance reduction
techniques [22]. By anchoring in [13], we describe in the following an adaptive importance
sampling approach for the computation of (1). Similar ideas were also used in [23] for
financial applications.

3. Adaptive Importance Sampling

We consider in the following a set ΦΘ of parametric probability density functions on G,
where Θ represents the parameters space. Each density φθ ∈ ΦΘ is assumed to be absolutely
continuous with respect to the Haar measure µG of the group G, so that the corresponding
probability measure can be written as dµθ = φθdµG and the Radon–Nikodym derivative

ωθ = dµG

dµθ
can be considered.

Using the conventional importance sampling approach, we can then write:

ψG(g) =
∫

G
k
(

h−1g
)

f (h)
(

dµG

dµθ

)
(h)dµθ(h) (4)

= Eµθ

[
ωθ(H)k

(
H−1g

)
f (H)

]
(5)

The idea is then to choose a measure µθ∗ for which θ∗ minimizes the variance vk, f ,g of the
random variable k

(
H−1g

)
ωθ(H) f (H), which can be written as

vk, f ,g(θ) = Eµθ

[(
ωθ(H)k

(
H−1g

)
f (H)

)2
]
− ψG(g)2 (6)

= mk, f ,g
2 (θ)− ψG(g)2 (7)

where

mk, f ,g
2 (θ) = Eµθ

[(
k
(

H−1g
)

ωθ(H) f (H)
)2
]

(8)

= EµG
[

ωθ(H)
(

k
(

H−1g
)

f (H)
)2
]

(9)
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3.1. Monte Carlo Estimator and Convergence

We assume that we can construct a sequence of parameters (θi)
n−1
i=0 , together with

realizations (hi)
n
i=1 of the random variables (Hi)

n
i=1 such that Hi ∼ µθi−1 and that θn →

θ∗ ∈ Θ as n→ ∞. We can then consider the following Monte Carlo estimator:

ψ̂G
n (g) =

1
n

n

∑
i=1

ωθi−1(hi)k
(

h−1
i g

)
f (hi) (10)

Under usual integrability conditions, Theorem 3.1 of [13] states that ψ̂G
n (g)→ ψG(g) almost

surely as n→ ∞. Furthermore, we have the following distributional convergence result,

√
n
(

ψ̂G
n (g)− ψG(g)

)
→ N

(
0, vk, f ,g(θ∗)

)
(11)

where N
(
0, σ2) refers to the Gaussian distribution with 0 mean and variance σ2.

3.2. Natural Gradient Descent

We now discuss how to build the sequence of parameters (θi)
n−1
i=0 and corresponding

realizations (hi)
n
i=1 as introduced in Section 3.1, reminding ourselves that we have

θ∗ = arg min
θ∈Θ

vk, f ,g(θ) = arg min
θ∈Θ

mk, f ,g
2 (θ) (12)

Assuming that the parameter space Θ ⊆ Rm is a smooth manifold, we can consider
the Fisher information metric g on the density space ΦΘ, which is defined as it follows [17]:

gij = Eµθ

[
∂ log φθ

∂θi

∂ log φθ

∂θj

]
(13)

We then propose using a natural gradient descent strategy to minimize the quantity
mk, f ,g

2 , namely

θk+1 = θk − αkF−1
k ∇

(
mk, f ,g

2 (θk)
)

(14)

where Fk is the Fisher information matrix, i.e., the representation of the Fisher metric as a
m×m matrix and αk ∈ R∗+. Assuming that the considered functions are smooth enough, it
is possible to write:

∇
(

mk, f ,g
2 (θ)

)
= EµG

[
∇ωθ(H)

(
k
(

H−1g
)

f (H)
)2
]

(15)

= −EµG
[

ωθ(H)∇ log φθ(H)
(

k
(

H−1g
)

f (H)
)2
]

(16)

= −Eµθ

[
∇ log φθ(H)

(
ωθ(H)k

(
H−1g

)
f (H)

)2
]

(17)

Using a stochastic approximation scheme such as the Robbins–Monro algorithm [24]
then leads to consider the following update rule,

θk+1 = θk + αkF−1
k Λ(Hk+1, θk) (18)

where Λ(H, θ) = ∇ log φθ(H)
(
ωθ(H)k

(
H−1g

)
f (H)

)2 , Hk ∼ µθk−1
and the sequence of

numbers αk is such that ∑kαk = ∞ and ∑kα2
k < ∞.

3.3. About IGO Algorithms

Information geometric optimization (IGO) algorithms are introduced in [14] as a
unified framework to solve black-box optimization problems. IGO algorithms can be seen
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as performing an estimation of a distribution over the considered search space X leading
to small values of the target function Q when sampling according to it. More precisely, the
idea is to maintain at each iteration t a parametric probability distribution Pλt on the search
space X , for λt ∈ Λ ⊆ Rp and to have the value λt evolve over time as to shift Pλt toward
giving more weight to points x ∈ X associated with a lower value of Q.

The IGO algorithms described [14] first transfer the function Q from X to Λ by
using an adaptive quantile-based approach and then applying a natural gradient descent
by leveraging on the Fisher information metric of the considered statistical model. The
scheme described in the Definition 5 of [14] defines the following the update rule for the
parameter λt:

λt+dt = λt + dt× I−1(λt)
N

∑
i=1

ωi
∂ ln Pλ(xi:N)

∂λ

∣∣∣∣
λ=λt

(19)

where I is the fisher matrix of the model, x1, ..., xN are N samples drawn according to Pλt

at step t, xi:N denotes the sample point ranked ith according to Q (i.e., Q(x1:N) < . . . <
Q(xN:N) ) and ωi =

1
N ω
(

i−1
2

)
, with ω(q) = 1q<q0 a quantile-based selection function of

threshold q0.
IGO algorithms could therefore be used in our context by setting Q = mk, f ,g

2 (θ) and
X = Θ to infer the optimal value θ∗ ∈ Θ. Implementing the update rule (19) requires a
priori a large number of evaluations of the term Q = mk, f ,g

2 (θ) to derive the sorted samples
xi:N , making this approach generally not well suited to our context.

4. Application to SO(2)-Convolutions

We give here an application of our AIS approach for the computation of SO(2)-
convolutions by using von Mises densities [16] for the weighting. This type of computation
is in particular relevant when working with SE(2)-ENN by exploiting the semi-direct
product structure SE(2) = R2 n SO(2), as performed in [3].

4.1. Fisher Information Metric

The Haar measure on SO(2) is simply the Lebesgue measure on the unit circle [0, 2π]
and will be denoted dα before normalization. The convolution operator (1) is therefore ap-
plied to functionals defined on [0, 2π], so that we are interested in evaluating the following
quantity for α0 ∈ [0, 2π]:

ψSO(2)(α0) =
1

2π

∫ 2π

0
k(α0 − α) f (α)dα (20)

We consider in the following a family of von Mises densities φθ on [0, 2π], for θ = (µ, κ),
and for which ∀α ∈ [0, 2π],

φθ(α) =
eκ cos(α−µ)

2π I0(κ)
(21)

where for n ∈ N, In(κ) = 1
π

∫ π
0 eκ cos(θ) cos(nθ)dθ refers to modified Bessel functions.

Denoting in the following `µ,κ = log φθ , we have ∂µ`µ,κ(α) = κ sin(α− µ) and ∂κ`µ,κ(α) =

cos(α− µ)− I
′
0(κ)

I0(κ)
and it is now possible to evaluate the metric tensor g. More precisely, we

easily obtain:

gµ,µ = Eµθ

[(
∂µ`µ,κ(α)

)2
]

(22)

=
∫ 2π

0
κ2 sin2(α− µ)φθ(α)dα (23)

= κ
I1(κ)

I0(κ)
(24)
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gκ,κ = Eµθ

[(
∂κ`µ,κ(α)

)2
]

(25)

=
∫ 2π

0

(
cos(α− µ)−

I
′
0(κ)

I0(κ)

)2

φθ(α)dα (26)

= 1− 1
κ

I1(κ)

I0(κ)
− 2

I
′
0(κ)I1(κ)

I0(κ)
2 +

I
′
0(κ)

2

I0(κ)
2 (27)

gµ,κ = Eµθ
[
∂µ`µ,κ(α)∂κ`µ,κ(α)

]
(28)

=
∫ 2π

0
κ sin(α− µ)

(
cos(α− µ)−

I
′
0(κ)

I0(κ)

)
φθ(α)dα (29)

= 0 (30)

The inverse of the Fisher information matrix in the scheme (18) can therefore be computed
with closed-form formulas, making its evaluation very efficient for the considered case.

4.2. Numerical Experiments

To numerically validate our approach, we have considered von Mises type feature
functions fκ0,α0 : α → eκ0 cos(α0−µ) and kernel functions k : [0, 2π] → R modeled as small
fully connected neural networks with one hidden layer of 128 neurons with ReLu activation
and uniform random weights initialization. To run our testing, we have used κ0 = 3 and
µ0 = π

2 .
Figure 1 shows the comparison between the results obtained with the estimator (10)

using the adaptive importance sampling scheme and those obtained with the conventional
estimator (3). We can in particular see that the adaptive importance sampling scheme
converges faster to the theoretical value (here computed by using (3) with n = 50, 000
and displayed in black in Figure 1), while providing much narrower confidence intervals
(because of lower variance) than the conventional Monte Carlo estimator. Figure 2 shows
the evolution of the parameter θ = (µ, κ) as we iterate through the update rule (18), from
which we can also observe a fast convergence.

Figure 1. Comparison between the convergence of the AIS scheme with von Mises densities (red) and
the traditional Monte Carlo approach (blue) by representing the evolution of the estimated convolu-
tion ψSO(2) at α0 = 0 (left) and α0 = π/2 (right), as a function of the number n of simulated samples.
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Figure 2. Evolution of the components of the parameter θ = (µ, κ) as updated according to (18) when
estimating ψSO(2)(0) with the AIS scheme with von Mises densities.

4.3. Extension to SO(3)-Convolutions

Generalizing the above results to cover SO(3)-convolutions is of particular interest
when using ENN for processing spherical data such as fish-eye images [4,25]. The Fisher–
Bingham distribution [26], also known as the Kent distribution, can be leveraged in this
context. More precisely, we have in this case, for x ∈ S2 (the 2D-sphere in R3):

φθ(x) = c(κ, β)−1 exp
(

κγ1.x + β
[
(γ2.x)2 − (γ3.x)2

])
(31)

where γi for i = 1, 2, 3 are vectors of R3 so that the 3× 3 matrix Γ = [γ1, γ2, γ3] is orthogonal
and c(κ, β) is a normalizing constant.

Although we defer to further work the details of the derivation of the corresponding
AIS estimator (10), we illustrate on Figure 3 that SO(3)-convolutions could also benefit
from variance reduction methods by using a simple quasi-Monte Carlo scheme [27] with a
three-dimensional Sobol sequence [28].

Figure 3. Convergence comparison for a SO(3)-convolution computation between the classical Monte
Carlo estimate (3) with numpy random numbers generator (blue) and the corresponding quasi-Monte
Carlo scheme leveraging on a Sobol sequence (red).

5. Monte Carlo Methods in the Quantum Set-Up

Monte Carlo computations can generally benefit from a quadratic speed-up in a
quantum computing set-up [18] and improving quantum Monte Carlo integration schemes
is a very active topic of research [19], mainly driven by applications within the financial
industry [20,29].
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A similar speed-up can therefore be expected in our context by estimating (1) by
leveraging on the quantum amplitude estimation (QAE) algorithm [30]. For g ∈ G, we
denote φ

f ,k
g : G → R the function such that ∀h ∈ G, φ

f ,k
g (h) = k

(
h−1g

)
f (h).

We first construct the operator UµG to load a discretized version of µG so that UµG |0〉 =
∑h∈Gε

√
p(h)|h〉, with p(h) =

∫
g∈B(h,rε)

µG(g), B(x, r) the ball of radius r > 0 centered in

x ∈ G and Gε a discrete subset of G. We scale φ
f ,k
g to φ̃

f ,k
g : G → [0, 1] and build another

unitary operator Uφ to compute and load the values of φ
f ,k
g taken on Gε, that we defined by

Uφ|h〉 =
√

1− φ̃
f ,k
g (h)|h〉|0〉+

√
φ̃

f ,k
g (h)|h〉|1〉. Using the QAE algorithm on UφUµG gives

us access to an estimate of (1) after proper rescaling, with a precision of δ in O
(√

Vk, f ,g

δ

)
queries, with Vk, f ,g = VµG

(
φ

f ,k
g (H)

)
.

As described in Section 3.1, the AIS estimator (10) leads to a precision of δ for

n = O
(

vk, f ,g(θ∗)
δ2

)
samples, which is asymptotically less efficient than the above quan-

tum estimator. However, no quantum advantage has been evidenced on current hardware
for general Monte Carlo estimations and further challenges with respect to the precision of
the evaluation of the integrand φ

f ,k
g are expected in our specific context. Keeping working

on the optimization of the estimators in the classical set-up while keeping track of the
progress made on the development of quantum hardware therefore appears a reasonable
path to follow.

6. Conclusions and Further Work

By leveraging on the approach proposed in [13] for quantile estimation, we have
introduced in this paper an AIS variance reduction method for the computation of group-
based convolution operators, a key component of equivariant neural networks. We have in
particular used information geometry concepts to define an efficient update rule to infer
the optimal sampling parametric distribution and have also shown promising results when
working with the two-dimensional rotation group SO(2) and von Mises distributions.

Further work will include the study of non-compact groups such as SU(1, 1) as to
improve the efficiency of the computations underlying to the ENN introduced in [9]. As
shown in [31], Souriau Thermodynamics can be used to build Gaussian distributions over
SU(1, 1), which appear as natural candidates for applying the AIS scheme presented in
this paper.

We have also seen that Monte Carlo computations can generally benefit from a
quadratic speed-up in a quantum computing set-up. Further work will include the study of
using AIS in this context as to provide a generic and efficient quantum algorithm for group-
convolution computation. Benchmarking with group-Fourier transform-based approaches
such as [21], which are more theoretically involved but with a promise of exponential
speed-up, will also be of high interest, as it will be the case for results coming from the
emerging field of quantum geometric deep learning [32,33].
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