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Abstract: I illustrate an approach that can be exploited for constructing neural networks that a
priori obey physical laws. We start with a simple single-layer neural network (NN) but refrain
from choosing the activation functions yet. Under certain conditions and in the infinite-width limit,
we may apply the central limit theorem, upon which the NN output becomes Gaussian. We may
then investigate and manipulate the limit network by falling back on Gaussian process (GP) theory.
It is observed that linear operators acting upon a GP again yield a GP. This also holds true for
differential operators defining differential equations and describing physical laws. If we demand the
GP, or equivalently the limit network, to obey the physical law, then this yields an equation for the
covariance function or kernel of the GP, whose solution equivalently constrains the model to obey the
physical law. The central limit theorem then suggests that NNs can be constructed to obey a physical
law by choosing the activation functions such that they match a particular kernel in the infinite-width
limit. The activation functions constructed in this way guarantee the NN to a priori obey the physics,
up to the approximation error of non-infinite network width. Simple examples of the homogeneous
1D-Helmholtz equation are discussed and compared to naive kernels and activations.

Keywords: Bayes; probability; neural networks; Gaussian process; kernels; covariance functions;
activation functions; physics-informed machine learning; differential equations; PDEs; ODEs; linear
operators; linear constraints; inverse kernel trick

1. Introduction

At the outset of this paper stands the observation that the remarkable success of
neural networks (NNs) in the computer sciences is motivating more and more studies
on their application in the natural and computational sciences. Such applications could
be automatized lab data analysis, or the employment as a surrogate model in expensive
many-query problems such as optimization or uncertainty quantification, see, e.g., [1,2].
Here, we desire not to employ ever larger off-the-shelf models, but to construct a simple
NN and incorporate into its structure our prior knowledge of the physics. For this, we will
recall two observations: First, that linear differential equations can a priori be incorporated
into a Gaussian process (GP) model by proper choice of the covariance function, as was
demonstrated by Albert [3] at the latest edition of this very meeting. Second comes the
fact that GPs correspond to Bayesian NNs in an infinite-width limit, as demonstrated
by Neal [4]. Both facts together imply that the physics can be incorporated a priori also
into a NN model if one chooses the neural activation functions such that they match the
corresponding GP’s covariance function. The aim of this work is to introduce a formal
notion of this connection between physics and NNs through the lens of probability theory,
and demonstrate a so-derived principle for the construction of physical NNs with a simple
example. It should be noted that this ansatz differs substantially from so-called “physics-
informed” learning machines [5], where a regularization term for the optimization is
introduced, but not incorporated into the structure.
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2. Background and Related Work

A brief outline is given of the basic literature on Gaussian processes, (Bayesian) neural
networks, and the infinite-width correspondence between the two. Related work on
physically inspired GPs and NNs is discussed.

2.1. Gaussian Processes

Gaussian process regression or “Kriging” has been studied for decades [6]. Today, they
are arguably the second-most popular class of machine learning models [7]. GPs have also
been popular in the closely related field of “Uncertainty Quantification” [8,9]. A Gaussian
process is essentially defined by its covariance function, often referred to as the kernel or in
a wider sense correlation function. Thus, considerable work has been devoted towards the
choice and design of such kernel functions [10].

It is known that a linear operator applied to a GP again yields a GP, but with a modified
kernel [11]. This notion was also specialized to linear differential operators [12], and then
applied to construct kernels for physical laws expressed in terms of so-defined differential
equations, e.g., divergence-free fields [13], the Helmholtz equation [3] and the Poisson
equation [14]; i.e., this resulted in GPs which, a priori, before training, are guaranteed to be
divergence-free or obey the Helmholtz equation, respectively. The incorporation of other a
priori knowledge such as boundary conditions was suggested by [15,16]. For an overview
of more general linear constraints on GPs, see also [11].

The above mentioned approaches for constructing physical kernels [3,12] are funda-
mentally different from the popular “physics-informed GP” as popularized by [17] and
earlier introduced by [15,18]. The physical GP differs from the physics-informed GP in the
sense that the model is not merely “informed” of the physics post hoc through the training,
but the model is constructed such that it obeys the physics a priori. The physics-informed
approach consists in a GP as an ansatz function and regularizing the optimization by its
residual. It is known that such a physics-informed GP generalizes better than their unregu-
larized counterparts [5]. However, the physics-informed approach does not consider the
form of the base kernel, the defining element of the GP, at all. Further, the physics-informed
approach tolerates for the regressor to actually violate the physical requirements. The
distinction of physical GPs from physics-informed GPs can also be understood as hard
constraints in contrast to weak constraints on the model. It was also proposed to impose
a GP prior on the inhomogeneity instead of the solution ansatz, and then construct the
solution from the Green’s function [19,20].

2.2. Neural Networks

The arguably first-most popular class of machine learning models are NNs. Analo-
gously to GPs and kernels, it is widely understood that the choice and design of activation
functions is crucial for a NN. Many activations have been proposed, see, e.g., [10,21]
for a recent and comprehensive overview. Ref. [22] proposed trigonometric activation
functions, which by coincidence are very similar to the example that will be presented
below. The design and choice of these activations are, however, seldomly guided by prin-
ciples and methods, but rather trial and error. A small number of principled approaches
through kernels, mostly relying again on the infinite-width correspondence, have been
suggested [23–26], cf. Section 2.3. Vice versa, the infinite-width correspondence has also
been used to compute kernels for GPs corresponding to particular activations.

The term “physics-informed neural network” was popularized by [27], building on the
earlier work of [28,29]. Physics-informed NNs are very similar to physics-informed GPs in
the sense that it serves as an ansatz function, the optimization of which is regularized by its
residual. The “physics-informed” approach has been dominating due to its simplicity, easy
implementation and wide applicability, despite suffering from the usual problems of NNs
and inconsistencies in the multi-objective training [30]. In contrast, little attention was given
to the “physics-constrained” approach, which aims at enforcing a hard constraint in contrast
to a weak constraint implied by the physics-informed approach. For this, particularly the
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enforcement of boundary conditions has been of special interest [31]. Additionally, the
incorporation of symmetries has been investigated [32], e.g., rotation symmetries [23].
Comprehensive reviews on physics-informed learning have become available recently, yet
little attention has been given to the kernels and activations [5,33].

2.3. The Infinite-Width Correspondence

As discovered by Neal [4], GPs and single-layer NNs are, under certain conditions
and from a Bayesian point of view, equivalent in the infinite-width limit. Thus, Neal’s
insight allows to apply the theory of GPs to the analysis of NNs, and vice versa. It was
later understood that Neal’s theorem can be generalized to multi-layer networks [34],
i.e., deep learning, and also holds after training [35] (i.e., with the posterior and not just
the prior). This has led to a number of insights, e.g., that dropout regularization can be
viewed as a particular prior in a Bayesian approximation [36]. Neal’s theorem has also
been generalized to convolutional NNs [37], and transformers or attention networks [38].
The infinite-width correspondence is proven to be relevant for many real world, large
scale applications. Williams was supposedly the first to derive a GP kernel from the
infinite-width limit of a single-layer NN with ReLU activations, giving rise to what many
refer to as the “neural-net induced GP” [25]. Williams’ result has also been generalized
to multi-layer networks [23]. Others followed in deriving GP kernels from a number of
activation functions [24,39]. Ref. [26] showed that various architectures and combinations
of NNs correspond to combinations of GP kernels, e.g., multiplication of latent activations
corresponds to a product-form of the kernel. Ref. [26] also derived a kernel corresponding
to cosine functions as activation.

3. Method for Deriving Physical Activations

A formal notion of the infinite-width correspondence between GPs and NNs will be
introduced, followed by procedures for the translation of linear differential constraints be-
tween GPs and NNs. For this, we will formally introduce GPs and review principles [3,12]
for the design of physical kernels. Then, we will introduce a simple single-layer neural net-
work and analyze the limit of infinite-width, providing the infinite-width correspondence
of neural networks (NNs) to Gaussian processes (GPs). We will then show how Albert’s
principle for GPs is translated to NNs. We denote as g(x) and f (x) two learnable functions,
which are governed by the same physical laws and depend on the same input, x ∈ X ⊆ R
and g, f : X → Y ⊆ R. For g and f , we will assume a GP and a NN, respectively.

3.1. Gaussian Processes and Physical Kernels

We assume g to be a zero-mean GP,

g(x) ∼ GP
(
0, k(x, x′)

)
(1)

where k(x, x′) is the to-be-determined covariance function or, synonymously, the kernel.
An extension to non-zero mean functions should be straight forward. We further know a
priori that g is governed by a physical law expressed in terms of the linear operator Ôx as

Ôxg(x) = 0 , (2)

where Ôx is the operator defining the physical law in dependence on the variable x and
acting on g through x. This operator could be a differential operator defining a differential
equation, e.g., the Hamilton operator or more specifically the operator that defines the
Helmholtz equation:

Ôx =̂ ∇2 + ν2 , (3)

with some constant wave number ν. Other examples would be Ô=̂∇2, then this would be
the Laplace equation, and would imply that g obeys this Laplace equation. It would also
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imply that all measurements y, i.e., observed data of g(x), namely y = g(x) + η, would
obey this Laplace equation up to the measurement noise η. If the noise is independent
of the input and the operator is linear, then Ôy = η. This latter fact could hypothetically
inform us on the choice of the likelihood, but that is not the matter of this work.

Let us now find a kernel k(x, x′) such that Equation (2) is indeed fulfilled. It was
shown by van den Boogaart [12] that if Equations (1) and (2) hold simultaneously, that this
is equivalent to

ÔxÔx′ k(x, x′)
∣∣∣
x=x′

!
= 0 . (4)

That means, that if we find a kernel k such that Equation (4) is fulfilled, then the
Gaussian process in Equation (1) defined by that kernel k also obeys Equation (2) and vice
versa. It is nothing else than that we demand the GP to fulfill the PDE exactly, and the
variance or uncertainty of the GP be zero at any particular probing location aside from
a nugget that would model a measurement error. Note that Boogaart also showed this
equivalence for non-zero mean functions. Mercer’s theorem suggests a principled approach
to solving Equation (4), in that it states that a kernel can be represented by a sum of products
of basis functions φ [40],

k(x, x′) = lim
P→∞

P

∑
i,j

φi(x)Mijφj(x′) (5)

with a suitable prior covariance matrix M for the function weights (not shown). It was
argued by Albert [3] that Mercer’s kernel can be built by considering the basis functions φ
to be fundamental solutions to the differential equations, see Equation (2). Going from right
to left in Equation (5) with a given basis may also be understood as “the kernel trick” [7],
where the inner products of large bases are substituted with the corresponding kernel
in order to avoid the computation of large matrices. We will later make an attempt at
something like an “inverse” of this kernel trick, i.e., going from left to right and substituting
the kernel through its basis function representation. Substitution of Equation (5) into
Equation (4) yields

lim
P→∞

P

∑
i,j

(
Ôxφi(x)

)
︸ ︷︷ ︸

=ψi(x)

Mij

(
Ôx′φj(x′)

)
︸ ︷︷ ︸

=ψj(x′)

= 0 , (6)

where linearity was used and the operators only act on one term in the product each.
One may argue that the operator acting upon a basis function φ should give rise to a new
function ψ. It would be interesting under which circumstances this defines a new basis.

3.2. Neural Networks and the Infinite-Width Correspondence

Let us consider a NN f with a single hidden layer with N neurons with non-linear,
but bounded activation functions h,

f (x) =
N

∑
k=1

vkhk

(
wk · x + ak

)
+ b , (7)

where the index k = 1, ..., N sums over the N neurons in the single hidden layer. wk are
the input-to-latent weights, ak and b are bias terms and vk are the latent-to-output weights.
Generalization to multiple features is straightforward through adding another index to the
weights. In the infinite-width limit, N → ∞, Equation (7) converges to a Gaussian process
by the Central Limit Theorem if the activation functions hk are all identical and bounded [4].
Let b and all vk’s have zero-mean, independent Gaussian priors with variances σ2

b and
σ2

vk
, respectively. Let

〈
·
〉

denote the expectation value with respect to all weights. Then
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〈
f (x) · f (x′)

〉
is the NN’s output’s covariance. A specific NN is equivalent to a specific GP

with kernel k(x, x′) if the NN’s covariance is equal to the kernel,

k(x, x′) !
=
〈

f (x) f (x′)
〉

= σ2
b + lim

N→∞

N

∑
k=1

σ2
vk

〈
hk(x; wk) · hk(x′; wk)

〉
, (8)

= σ2
b + A2〈h(x; w) · h(x′; w)

〉
,

where we used the linearity of the expectation in the first line. In the second line, the limit
has been carried out under the assumption of identical neurons hk = h after fixing σvk =

A/
√

N for some fixed A, as argued by Neal [4] (ch.2) or Williams [25]. This relationship has
been used to compute GP kernels for given neural activation functions, e.g., a sigmoidal
activation [25]. Note that it is crucial that the prior reflects that the hidden units are
independent, as otherwise the Central Limit Theorem no longer holds. In order to design a
NN that a priori obeys the physics, it would already be sufficient to find neural activations
h such that Equation (8) holds for a particular GP kernel fulfilling Equation (4). We may,
however, observe other possibly useful relationships.

3.3. Physical Neural Activation Functions

We may now insert the Mercer representation of the kernel, Equation (5), on the left
hand side of the infinite-width correspondence, Equation (8),

lim
P→∞

P

∑
i,j

φi(x)Mijφj(x′) = σ2
b + lim

N→∞

N

∑
k=1

σ2
vk

〈
hk(x; wk) · hk(x′; wk)

〉
. (9)

Let the biases be known and fixed, i.e., σb = 0, then one solution to this equation is

Mij = σvi δij , (10a)

p(wk) = δ(ŵk) , (10b)

hm(x; wm) = φm(x) . (10c)

The input-to-latent weights wm now correspond to the implicit parametrizations of the GP
basis functions φm. That would mean that the functions defining the Mercer representation
of a GP-kernel can be particularly useful for finding the activation functions of the corre-
sponding equivalent NN in the infinite-width limit if the weights’ prior is chosen according
to the Mercer representation. For some cases, there will be analytical solutions. We may
now coerce the GP to obey some physical law Ô and find

lim
P→∞

P

∑
i=1

P

∑
j=1

ψi(x)Mijψj(x′)= lim
N→∞

N

∑
k=1

〈
Ôxhk(x; w)︸ ︷︷ ︸

=h̃k(x;w)

· Ôx′hk(x′; w)︸ ︷︷ ︸
=h̃k(x′ ;w)

〉
w . (11)

The application of the differential operator to activation functions h yields new functions h̃.
By finding the Mercer representation of a kernel, which coerces a GP to obey a physical law,
we can find corresponding neural activation functions that are capable of forcing a NN to
obey the same physical law, too.
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3.4. Training

Given pairs of input–output data D = {x(d), y(d)}Nd
d=1, we ought to choose a criterion

or loss function for the optimization. The optimal parameters w∗ are defined by the loss
function, here

w∗ = arg min
w

[
Nd

∑
d=1

(
y(d) − f (x(d))

)2
+ λ

Np

∑
p=1

∥∥∥(Ôx f (x)
)∣∣∣

x=x(p)

∥∥∥] , (12)

which consists of a ‘data loss’, i.e., the sum of squared errors, and a ‘physics-loss’, i.e.,
the residual of Equation (2) if network f is substituted as ansatz function, and a tuneable
regularization parameter λ. The second term on the right hand side is to be understood
as the differential operator applied to the function f , which is then evaluated at Np pivot
points x(p). A suitable norm ‖·‖ is to be chosen. For the proposed physics-constrained
network, the physics-loss vanishes and λ can be arbitrary. For a vanilla neural network, λ
would be set to zero. For a physics-informed network (see also [27]), a finite λ is chosen. The
outcome is generally highly sensitive to the choice of λ, hence usually a hyperparameter
optimization must be conducted.

4. Numerical Example

The approach shall be illustrated with the simple example of the one-dimensional
homogeneous Helmholtz equation, i.e.,

( ∂2

∂x2 + ν2
)

f (x) = 0 . (13)

The kernel derived from our first principles for the Helmholtz equation, referred to as the
(1D-) Helmholtz kernel from hereon, has the following simple form [41]:

k(x, x′) = cos
(
α(x− x′)

)
. (14)

It should be noted that cos
(
α(x − y)

)
= sin(αx) sin(αy) + sin(αx + ∆) sin(αy + ∆) with

phase ∆. Following Equation (8) and under Equation (10), we may then choose sinusoidal
activation functions

h(x) = sin (x) , (15)

which correspondingly will be referred to as the (1D-) Helmholtz activation. The ‘frequency’
α and ‘phase’ ∆ are then to be learned by the NN as weights wk and biases ak. We now
proceed to illustrate the example numerically. The implementation is remarkably simple,
and with high-level libraries such as PyTorch amounts circa to the re-writing of one line of
code in a vanilla NN. For the following experiments, 11 noisy observations at equidistant
pivot points from the fundamental solution to Equation (13) have been generated with a
noise level of 20%, a frequency of ω = 0.51 and φ = 0.50001. The role of the choice of pivot
points is not of primary concern here. As optimizer we choose ADAM [42] with a learning
rate of 0.02. In the case of the physics-informed NN, the weight for the physics-loss was set
to λ = 0.1. We note that experiments with stochastic gradient descent (various learning
rates between 0.001 and 1.0) usually did not lead to sufficient convergence of the physics-
informed NN (ReLU activations and training regularization, λ 6= 0) and the vanilla NN
(ReLU activations and no training regularization, λ = 0) within a few thousand iterations,
while the here constructed physical NN still converged (albeit slower). Figure 1 (right)
presents the learned solutions to the Helmholtz equation, Equation (13), and Figure 1 (left)
shows convergence plots. For reference, our physically-constructed NN is compared to a
merely physics-informed NN (i.e., regularized training as discussed in Section 3.4) with
ReLU activations as well as a plain vanilla NN with ReLU activations. Unsurprisingly, the
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NN that has the physics incorporated into its structure and design vastly outperforms its
merely informed or non-informed counterparts.

Figure 1. Plot of convergence (left) and corresponding solutions (right). For the visualization only,
only the data loss is shown since the physics loss vanishes in the physics-constrained case. ‘Vanilla’
(blue) refers to an ordinary NN with ReLU activations. ‘Physics-informed’ (green) refers to the
same NN, but with additional training regularization by the physics-loss, Equation (12). ‘Physics-
constrained’ (red) refers to the same NN, but with our physics-based activations.

5. Discussion

In the above presented example, it turns out that the obtained activation function is
also the fundamental solution to the differential equation, Equation (2). Since the kernel
may be built from fundamental solutions as basis functions φ in Mercer’s representation,
Equation (5), it seems that under the conditions of Equation (10) the neural activations
h should also be proportional to those fundamental solutions. It may seem sensible to
construct the solution from a combination of fundamental solutions, as it amounts to for
this example. It should also be observed that our so-constructed NN also has the form
of a Fourier series. Curiously, at the outset of the modern day perspective on regression
through NNs, we have arrived at the conclusion that the proper physical NN assumes the
simple forms that have been known all along. While this could be perceived as a circular
journey, it seems reasonable that the result should be consistent with earlier perspectives
on the same problem.

The here discussed connection can, in theory, be exploited to obtain a principled
catalog of equivalences between physical laws and their corresponding kernel functions
as well as activation functions. There are at least three conceivable procedures for finding
solutions to Equation (11). One procedure would be to find matching examples in a
forward manner, similar to [25], by defining neural activations by trial and error until
they match a particular kernel. Any of the several representations from above may be
used for that. This can be guesswork, if not less effective or necessarily less efficient. A
more systematic approach would be through Mercer’s kernel representation, e.g., with
fundamental solutions as basis functions as argued before, implying an “inverse kernel
trick”. For many physical laws, this might be possible numerically only, if at all, which
could be crucial for adoption of the procedure to more complex physical laws. It is also
argued that it is possible to “skip” the construction of the kernel and directly find the
activation function by demanding the right hand side of Equation (11) be zero. It should
further be noted that Boogaart [12] also displayed equivalent formulations of Equation (4)
and gives “four methods, too old to be found in the books I read”. These should be useful
for constructing physical activations, too.

A limitation of the approach consists in the fact that our basic assumption were linear
operators, i.e., non-linear equations cannot be treated in this way directly in the sense
that non-linear operators applied to GPs do not yield GPs anymore. Hence, Equation (4)
for constructing physical kernels does not hold anymore. As a consequence, no physical
activations can be derived in the infinite-width correspondence either. A mitigation of
this problem could lie in the linearization of the non-linear equations in order to retain the
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original assumptions. For highly non-linear effects, such an approximation may however
be problematic. Another limitation is that, in reality, NNs always have finite width. It
remains unclear how wide a NN really needs to be for behaving approximately like a GP
in this context.

We also seek to address the limitations of the experimental study. For one, no optimiza-
tion of architecture details and hyperparameters has been carried out. ‘Vanilla’ NNs should
be well capable of learning the Helmholtz equation if enough neurons are added, and if the
optimization scheme is chosen appropriately. Particularly, the performance of the vanilla
physics-informed NN depends strongly on the choice of the weighting hyperparameter
λ in the multi-objective loss. It is well possible that, if chosen appropriately, such a NN
might outperform. How an appropriate λ can be found efficiently, however, is an open
problem to date. The claim of this paper is not that the here-constructed physical neural
activation functions generally outperform physics-informed NNs, although it does in the
above presented example. This work merely points out that the connection between GPs
and NNs can be exploited for the principled design of physical neural activations based
on linear differential equations. In contrast to a physics-informed NN, the physics-loss
in Equation (12) rhs then vanishes a priori, and hence the tuning of the highly sensitive
hyperparameter λ becomes obsolete.

Finally, many open questions remain, particularly also in anticipation of the various
generalizations and other applications of the infinite-width correspondence, cf. Section 2.3.
Can the approach be extended to deep NNs or even more complex architectures like
LSTMs, Transformers or Graph Neural Networks? Do the assumptions still hold during
training? A heuristic idea would be to simply replace the activations in the last hidden
layer of a deep NN with physical activations. How can we include symmetries, boundary
or initial conditions systematically, and are Green’s functions a viable path for that? Can the
approach be beneficial for differential equations without known fundamental solutions?
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