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Abstract: Remote video imagery using shoreline edge detection is widely used in coastal monitoring
in order to acquire measurements of nearshore and swash features. Some of these systems are
constrained by their long setup time, positioning requirements and considerable hardware costs. As
such, there is a need for an autonomous low-cost system (~EUR 500), such as Timex cameras, that can
be rapidly deployed in the field, while still producing the outcomes required for coastal monitoring.
This research presents an assessment of the effect of the sampling strategy (time-lapse intervals)
on the precision of shoreline detection for two low-cost cameras located in a remote coastal area
in western Ireland, overlooking a dissipative beach–dune system. The analysis shows that RMSD
in the detected shoreline is similar to other studies for sampling intervals ranging between 1 s and
30 s (i.e., RMSDmean for Camera 1 = 1.4 m and Camera 2 = 0.9 m), and an increase in the sampling
interval from 1 s to 30 s had no significant adverse effect on the precision of shoreline detection. The
research shows that depending on the intended use of the detected shorelines, the current standard
of 1 s image sampling interval when using Timex cameras can be increased up to 30 s without any
significant loss of accuracy. This positively impacts battery life and memory storage, making the
systems more autonomous; for example, the battery life increased from ~10 days to ~100 days when
the sampling interval was increased from 1 to 5 s.

Keywords: coastal monitoring; Timex; shoreline edge; sensitivity analysis

1. Introduction

Coastal zones are unique and dynamic environments of high economic and ecological
importance, with approximately 31% of all coastal zones containing sandy beaches [1].
These are particularly dynamic and some of the most responsive environments on Earth.
In order to gain a better understanding of their dynamics, repeat topographic surveys have
become an essential part of coastal zone research, coastal engineering applications, and
coastal zone management. Indeed, survey data and their analysis are valuable resources
for quantifying long-term trends such as the erosion and/or accretion of beaches [2–4],
beach and dune response–recovery patterns due to storm events [5–7], and impacts of
engineering works [8,9], as well as identifying dynamic features such as beach cusps and
nearshore bars [10–12]. The site-specific nature and variability in coastal response means
that coastal monitoring programmes should, preferably, span years to decades and include
local environmental factors (e.g., coastal morphology, sediment budget, rates of sea-level
rise, nearshore and swash dynamics) [13]. For many decades, the logistics (e.g., time,
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cost, travel) of field monitoring precluded our ability to collect high-temporal-resolution
datasets, but the advent of commercial, low-cost camera systems in coastal science has
removed this obstacle.

In order to better understand and characterise the different coastal processes occur-
ring in the nearshore and swash zones, longer datasets with higher spatial and temporal
resolution are preferable. These can be obtained using indirect measurement/remote sens-
ing techniques which were originally developed to facilitate the collection of data in the
nearshore [14]. Remote sensing techniques provide an attractive alternative to direct mea-
suring techniques, especially in difficult environments, extreme conditions, or to achieve
high temporal resolutions. A range of indirect measuring techniques is already used in
coastal areas, including active sensors, e.g., LiDAR [15,16] and RADAR, and passive sen-
sors, e.g., time-lapse [10], video [17,18] and infrared cameras [19]; smartphones [20,21]; and
unmanned aerial vehicles (UAVs) [22–24]. The conventional products that can be extracted
from passive sensors are (1) snapshot: an instantaneous image; (2) Timex: a single image
averaging multiple snapshot images over one period, typically 10 or 15 min; (3) Variance:
similarly to Timex images, variance images contain the standard deviation computed in
time from the same set of snapshots used to generate the Timex image; and (4) Timestack:
intensity values saved at each time step at a selected array of pixels (i.e., transect) from
a snapshot. These approaches have been used to monitor a broad range of coastal and
nearshore features including, but not limited to, the extraction of beach and nearshore
bathymetry [25,26], nearshore hydrodynamics [27,28], the formation and displacement of
sand bars [29–31], and beach face morphodynamics [32–35].

In addition, passive sensors such as time-lapse cameras and video cameras have been
used to detect and delineate shoreline positions [36–38]. Identifying shoreline positions
and their shift in response to hydrodynamics is essential to coastal scientists, engineers,
and managers [39]. Data of where the current shoreline position is, where it has been
in the past, and being able to predict where it will be in the future can inform coastal
protection strategies [40]. It also provides the ability to calibrate and verify numerical
models [41], assess sea-level change [42], and identify high-risk coastal zones [43]. Indeed,
the detection of shorelines from processed video images has become a standard tool in
nearshore studies [44], especially since the growth of the ARGUS system [45].

For most remotely sensed systems, the sensor is in a fixed location and collects oblique
images of the nearshore. The fixed location of the sensor means that only the lens charac-
teristics and ground control points (GCPs) are required to create a georectified image [46].
From this, objective information can be subtracted from the oblique images (e.g., shoreline
positions). The shoreline itself can be defined in optical images as the time-varying interface
between ‘wet’ pixels, representing the ocean surface, and ‘dry’ pixels, indicating beach sedi-
ments [47]. In order to identify shoreline positions from optical images, several approaches
have been proposed: localised maxima in the image intensity (SLIM) [48]; pixel cluster-
ing based on HUE and intensity (PIC) [25]; divergence in RGB colour channels [21,49];
and machine learning techniques [50]. Each of these techniques manipulates the optical
information in a slightly different manner to objectively define a proxy shoreline feature.

Finding a compromise between the optimum sampling rate and the time period
over which to average the images remains an ongoing challenge in this research area;
Refs. [47,51] found that the sampling interval of 1 Hz over 10 min has become a standard
procedure but there has been no investigation into the performance of Timex images with
different sampling rates. To the best of our knowledge, no analysis has been carried
out to investigate the optimum interval of Timex images in coastal research applications.
Such an investigation can benefit low-cost monitoring systems, as a potential increase in
sampling intervals can dramatically improve current limitations on battery requirements
and storage capacity.

This study addresses this gap by examining the role of sampling strategy on the
accuracy of shoreline detection analysis. Specifically, we assess the errors in shoreline
detection resulting from different sampling intervals, i.e., 1 s, 3 s, 5 s, 10 s, 20 s, and



Coasts 2024, 4 349

30 s, using Timex images. The justification for this research is the drive to create a more
autonomous system with a larger sampling interval resulting in longer battery life and
lower storage requirements, meaning less user intervention. Timex images were created
from high-resolution oblique imagery and shoreline positions were determined from the
different Timex images. Hence, the focus lies in evaluating how sampling strategies impact
shoreline detection accuracy, aiming to provide guidance for selecting optimal temporal
resolutions for processing Timex images.

Timex images are captured by a low-cost (circa EUR 500) monitoring system (e.g.,
an off-the-shelf time-lapse camera) and can be rapidly deployed in the field and/or in
remote areas, which can reduce the initial capital and investment in monitoring systems
and can lead to a fully autonomous system (e.g., no external power source or hardware).
The internal batteries from off-the-shelf time-lapse cameras are often small, and data are
stored on SD cards with storage in the order of hundreds of GB. This makes them fully
autonomous but also reduces the time period that they can sample at field sites.

2. Materials and Methods
2.1. Study Area

Two remote photogrammetry monitoring stations were deployed in Brandon Bay,
a semi-enclosed bay on the northern side of the Dingle Peninsula (Co. Kerry) on the
southwest coast of Ireland. The sandy shoreline extends approximately 12 km (Figure 1),
with sediment consisting of mainly well-sorted, medium sand. There is an extensive dune
system behind the dissipative beaches along the entire bay, commonly exceeding 10 m
elevation for long tracts of the coastline.
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Figure 1. Location of study site on the west coast of Ireland with a satellite image of Brandon Bay
and the datapoints used for extracting hydrodynamic data (from ESA—Sentinel 2).

The statistical analysis of deep-water wave data between 2011 and 2022, available
from the East Atlantic SWAN Wave Model Dataset [52], show that the wave conditions in
Brandon Bay are characterised by the mean annual significant wave height Hs = 1.91 m, a
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mean annual peak wave period Tp = 10.95 s, and a mean annual wave direction of 275◦ (W).
The hydrodynamic characteristics of the area are dominated by semidiurnal tides, available
from NEATL ROMS [53], and classify Brandon Bay as a macrotidal beach (>4 m).

Intertidal beach profiles obtained during the study indicate that the offshore slope is
relatively even and regular with a gentle slope (tan β = 0.03/1.72◦). The beach slope varies
from tan β = 0.02/1.14◦ to tan β = 0.06/3.43◦, with a tendency to decrease towards the
south of the bay. The medium grain size is d50 = 250 µm [54], which classifies the beach as
fine to medium sand, according to the Udden–Wentworth grade scale [55].

2.2. Hydrodynamics during Monitoring Period

As a number of storms occurred during the monitoring period (i.e., 8 February 2022
until 1 March 2022), we sourced hydrodynamic data (tide and wave) to determine the
energetics of the forcing conditions in the bay. In the absence of in situ measurements in the
bay, it was decided to extract hydrodynamic conditions as close to the study site as possible
from a coupled Regional Ocean Model System (ROMS)–Simulating Waves Nearshore
(SWAN) model with a horizontal resolution of the model grid of 0.025 degrees. Significant
wave height, peak wave period, and wave direction were extracted in both shallow and
deep water from SWAN datapoints, and tidal elevation from a ROMS datapoint (Figure 1).

Over a period of approximately one week, a series of low-pressure systems resulted in
the occurrence of three storms (i.e., Dudley, Eunice, and Franklin) and produced record-
breaking wind gusts over Ireland which led to severe weather impacts. This is reflected in
the hydrodynamic conditions in Brandon Bay during the monitoring period in February
2022, when significant wave height exceeded 4.5 m during storm Eunice (Figure 2). During
fair-weather conditions over this same time period, a range of lower energy conditions were
observed over the neap–spring tide cycle. Significant wave heights were much lower, e.g.,
0.6 m in early and late February.
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Figure 2. Hydrodynamics during the monitoring period with in (A) tidal elevation, (B) significant
wave height, (C) peak wave period, and (D) mean wave direction, from shallow-water SWAN
datapoint. Source: Marine Institute.

As such, the monitoring period provides an ideal scenario for the testing of the low-
cost monitoring system as a wide range of conditions are observed with both low and
extreme hydrodynamic events.



Coasts 2024, 4 351

2.3. Monitoring System

Two monitoring stations were deployed along the bay, facing the beach face and
nearshore (Table 1 and Figure 3). The cameras used were Brinno TLC2000 cameras (1920
× 1080-pixel resolution) (Figure 4). They were mounted on wooden stakes approximately
1.5 m in height at the top of the foredune. The elevation of the centre of view for Camera 1
is approximately 11 m in the Irish Transverse Mercator coordinate system (ITM), and for
Camera 2, it is 14 m ITM. The fields of view (FoVs) of the cameras cover alongshore lengths
of 200 m and 250 m, respectively. The dataset for the analysis was acquired from 8 February
2022 until 1 March 2022 during daylight hours with an acquisition frequency of 1 Hz.

Table 1. Overview of the cameras deployed in Brandon Bay.

Site
Location ITM [m] Camera Specifications

Elevation
ITM [m]

FoV
[m]Easting

(Latitude)
Northing
(Longitude) Type Pixel

Resolution Battery SD Card

1 458,967.02
(52◦15′31.08′′)

613,891.61
(−10◦3′57.41′′) Brinno TLC

2000
1980 ×
1080

16 × AA 128 GB
11 200

2 461,425.81
(52◦17′28.31′′)

617,447.31
(−10◦1′53.09′′) 14 250Coasts 2024, 4, FOR PEER REVIEW 6 
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Figure 3. (a) Overview of Brandon Bay with the location of both cameras; (b) detail of the field of
view of Camera 1, represented by the yellow triangle; and (c) detail of the field of view of Camera 2,
on a satellite image (from ESA—Sentinel 2).
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Figure 4. Photo of Brinno TLC2000 Camera 1 deployed in the field.

For this study, Timex images were generated on an hourly basis. The collected
images (n = 796) from the timelapse camera can be found here: https://github.com/
NuytsSiegmund/Shoreline_Timex.git (accessed on 8 December 2023). Standard transfor-
mation from image to world coordinates (image georectification) was conducted after
applying lens distortion correction using the methodology described in [56], as well as
camera calibration. Camera calibration is intended to identify the geometric characteristics
of the image creation process and is an essential step here (in contrast to smartphones and
other cameras that internally correct for radial distortion in image pre-processing) in order
to perform analysis from camera applications. The camera that is deployed in the field is
categorised on the basis of (1) intrinsic parameters, which are the parameters necessary
to link the pixel coordinates of an image point with the corresponding coordinates in the
camera reference frame (e.g., focal length, size of pixels, radial distortion); and (2) extrinsic
parameters, which are the parameters that define the location and orientation of the camera
reference frame with respect to a known world reference frame (e.g., rotation, azimuth, tilt).
As such, camera calibration allows one to determine an accurate relationship between a 3D
point in the real world and its corresponding 2D projection in the image acquired by the
calibrated camera. This was carried out with a chessboard pattern of known side lengths
and requires the camera to observe the planar patterns at different orientations.

2.4. Image Georectification

Ground control points (GCPs) were used for georectification to obtain image planes
relative to world coordinates. With the focus on the development of a low-cost, mobile
system, road traffic cones were successfully utilised as GCPs, with a total of 10 temporary
GCPs at each of the two sites (Figure 5). In addition, as the beach is open to the public and
well used, the use of permanent GCPs was not an option. The location of the traffic cones,
at the centre of the base facing the cameras, was measured using a Trimble 10 VRS system
in ITM.

https://github.com/NuytsSiegmund/Shoreline_Timex.git
https://github.com/NuytsSiegmund/Shoreline_Timex.git
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Figure 5. Road traffic cones were placed in the field and used as temporary GCPs.

An example of the image georectification at the Camera 2 site, including the loca-
tion of the GCPs in the image, is presented in Figure 6. The image georectification, and
subsequent analyses, was conducted using MATLAB (https://www.mathworks.com/
products/matlab.html (accessed on 8 December 2023)), with some of the scripts provided
by the Coastal Imaging Network [57]. These scripts were modified and adapted to the
specific requirements and environmental settings of the study area. The scripts prominently
call and highlight a series of sub-functions that implement fundamental photogramme-
try calculations (e.g., intrinsic and extrinsic parameters). In order to adapt the scripts,
camera calibration parameters were added, GCPs were imported with their responding
geographic coordinates, and extrinsic parameters (e.g., position and orientation) were
obtained. An additional script was written to extract shoreline positions and rotate them to
local coordinates.
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Figure 7 shows the initial picture taken by the camera and the same image georectified.
The RMSD error between the entered x,y-coordinates of the GCPs and the x,y-coordinates
found, using the extrinsic solution with the distorted UV (UVd) coordinates, which denotes
the axes of the 2D image pane, were 0.58 m and 0.78 m in the x-direction and y-direction,
respectively, for Camera 1 and 0.54 m and 0.74 m for Camera 2.
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2.5. Generating Timex Images

After georectification, Timex images were generated by processing still images to
obtain a single time-averaged image. Images were captured at a 10 min interval at 1 Hz,
with little deviation from this standard procedure. Nevertheless, refs. [58,59] both used
an interval of 2 Hz over 10 min [60] and produced Timex images from 20 frames with a
sampling interval of 0.5 Hz, although their approach was not focused on shoreline detection.
Others have produced Timex images by averaging long-exposure images, e.g., 15 s over a
detection interval of 10 min [61], and 5 min time-exposure images at 10 min [18].

In order to provide guidance on the impact of the sampling interval on shoreline
detection, Timex images were produced using MATLAB (The MathWorks, Inc., Natick, MA,
USA) with different intervals ranging from 1 to 30 s over a 10 min period (Table 2), and a
sensitivity analysis was carried out comparing the shorelines detected for each interval.

Table 2. Overview of intervals analysed in this study.

Overview Intervals

Interval [s] Time Period [min] Total Images Memory Demand [MB]

1 10 600 93.3

3 10 200 31.2

5 10 120 18.7

10 10 60 9.5

20 10 30 4.8

30 10 20 3.2

As times of tidal elevation differ each day, the data were normalised in order to
compare Timex images during tidal cycles. As such, the data were tidally adjusted, where
“Hour 6” is always high tide, and “Hour 0” and “Hour 12” represent low tide. The x,y-
coordinates of each of the shorelines, detected by the MATLAB scripts, were analysed using
RMSD and standard deviations (σ).
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2.6. Shoreline Edge Detection

Scripts from the Coastal Imaging Research Network [57] were used for shoreline
detection using the difference between red- and blue-colour channels [21]. On the georec-
tified Timex images, transects were drawn alongshore from the swash zone to the back
beach and dune (Figure 8). The MATLAB script identified the transect with the highest
difference between the red and blue channel, after which, it located a point at the peak of
the difference, i.e., the shoreline edge.
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In order to avoid bias by shoreline outliers (i.e., in the far-field of each image), only
shoreline data within a distance of 200 m for Camera 1 and 250 m for Camera 2 alongshore
from the camera position were considered. This distance was adopted based on previous
studies with similar elevations above MSL [62] and visual inspection. The difference
between the alongshore distances was considered due to the elevation difference between
the two cameras (i.e., z = 11 m and 14 m). This series of operations generated a set of
approximately 150 x,y-datapoints for each image, i.e., one datapoint for each transect. For
each of the accepted shorelines, RMSD values of the alongshore position was estimated,
as well as the mean RMSD for all images and the standard deviation. Figure 9 shows a
flowchart of the methodology.
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3. Results and Discussion
3.1. Shoreline Edge Detection

All Timex images were processed and the automatically extracted shoreline edges
were manually checked in MATLAB, as the image-processing algorithm’s performance
occasionally produced rogue measurements when precipitation or sea spray affected image
quality or during storm/dark conditions when the contrast between sediment and water
was too low to distinguish the shoreline edge. Consequently, these Timex images were
excluded from the dataset, resulting in a total of 796 (out of 840) Timex images used in this
analysis were from both cameras deployed in Brandon Bay (Table 3). Figure 10 shows an
example of the shoreline edge detected by the MATLAB script on 26 February 2022 at high
tide (2022-02-26T13:10:00) for the six different intervals (1 s, 3 s, 5 s, 10 s, 20 s, and 30 s).

Table 3. Details on Timex images used for analysis.

Total Number of Accepted Timex Images

Hour Camera 1 Camera 2

0—Low tide 12 12

1 12 36

2 24 24

3 24 36

4 24 42

5 36 42

6—High tide 36 42

7 36 42

8 36 38

9 36 42

10 36 32

11 24 36

12—Low tide 12 24

Total 348 448

From the transects in Figure 10, the RMSD is calculated between the transect resulting
from a 1 s interval and the transects from the other intervals. The RMSD is defined by the
distance between the different transects and consequently considers both the x-direction
and y-direction of the produced transects. Figure 11 provides an example of the shoreline
edge detected from the MATLAB scripts and the resulting RMSD between two example
transects (i.e., 1 s and 5 s, as seen in Figure 10). Here, the solid line represents the transect
from the 1 s interval and the dashed line the transect from the 5 s interval on 26 February
2022 at high tide. The red shaded area is then the resulting RMSD between the two transects.
In this particular example, the x-direction RMSD is 0.368 m, and the y-direction RMSD is
0.321 m.

This analysis was carried out for all 796 Timex images, and its result is shown in
Figure 12. Here, the overall RMSD (RMSDmean) is shown of the shoreline edges derived
from the sampling intervals of 3 s (i.e., 200 pictures, 5 s (120 pictures), 10 s (60 pictures),
20 s (30 pictures), and 30 s (20 pictures), compared to an interval of 1 s (600 pictures). The
solid line represents RMSDmean and the shaded area the standard deviation.

It is clear that the RMSD and standard deviation are lowest during high tide when
the shoreline is closest to the camera position, thus resulting in less distortion and errors.
Moreover, the RMSD for Camera 1 is clearly higher than for Camera 2; this is due to the
higher elevation of Camera 2. In general, the higher the camera is positioned above the
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mean sea level (MSL), the greater the FoV [21]. Indeed, there will be less noise in the
shoreline detection due to the greater FoV.
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Figure 12. Mean RMSD (solid blue line) and standard deviation (shaded areas) of all intervals
compared to the 1 s interval of the different daylight hours, for (Top) Camera 1 and (Bottom) Camera
2, based on 796 Timex images.

In addition, the RMSD and standard deviation tend to be higher going from high tide
to low tide, compared to the RMSD from low to high tide. Indeed, the average RMSD
at low tide—“Hour 0”—is RMSDmean = 4.1 m, RMSDmean = 1.4 m at “6”, and RMSDmean
= 3.7 m (with a higher standard deviation), and for camera 2, RMSDmean = 2.3 m at “0”,
RMSDmean = 1.03 at “6”, and RMSDmean = 2.6 m at “12”. This can be explained due to the
dissipative nature of the beach; water and surface moisture remains on the beach face in the
intertidal parts of the beach during receding tides, especially if prominent ridge and runnel
systems are present, resulting in erroneous processing of the shoreline. Figure 13 shows a
Timex image from 26 February 2022 at daylight hour “10” (Camera 1), clearly indicating
that the shoreline edge detection will be impacted by the pools of water left behind by the
receding tide.
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Figure 13. Example of (A) snapshot and (B) resulting Timex image during receding tides, showing
remaining water on the beach face resulting in shoreline edge detection not representing the actual
shoreline (from 26 February 2022 at 10 h).
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3.2. Optimisation through Sampling Intervals

In order to gain additional insights into the impact of the image intervals on shoreline
precision, the RMSD was extracted during high tide for both cameras, as the distortion and
errors were the lowest during that time period (Figure 14). This resulted in 78 shoreline
positions (36 for Camera 1 and 42 for Camera 2) for RMSD analysis. Similar to before, the
RMSD of shorelines detected using the larger time intervals were calculated relative to
those detected from the 1 s interval images; these are shown in Figure 14.
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Figure 14. Mean RMSD (solid blue line) and standard deviation (shaded areas), for intervals of 3 s,
5 s, 10 s, 20 s, and 30 s, compared to 1 s interval, for (Top) Camera 1 and (Bottom) Camera 2.

As expected, the precision decreased as the image time interval increased from 3 to
30 s. It is clear that Camera 2 (RMSDrange = 0.49–1.43 m, max σrange = 0.26–1.21) performed
better than Camera 1 (RMSDrange = 0.64–2.62 m, max σrange = 0.14–4.56), producing lower
mean RMSD values and standard deviations (Camera 1: RMSDmean = 1.4 m, σmean = 1.15;
Camera 2: RMSDmean = 0.9 m, σmean = 0.59), especially during the longer intervals (e.g.,
20 and 30 s). The mean RMSD did not increase significantly, however, with the maximum
mean RMSD for Camera 1 = 2.62 m and for Camera 2 = 1.43 m, both at an interval of 30 s.
The RMSD shows that the detected shorelines for all time intervals were close to that of the
1 s interval, which is currently used as the standard in Timex image analysis. However, the
shoreline is an ambiguous feature and always carries some uncertainties. Previous studies
have shown that the feature identified as ‘shoreline’ varies among different methods (e.g.,
shorelines extracted using the PIC method are sometimes shifted onshore [25], or the
SLIM method can be erroneous for submerged positions [63]. Nevertheless, the RMSDs
described in this study, for all intervals, are similar to RMSDs presented in other studies
using a similar analysis (Table 4); e.g., RMSDmean = 0.93 m [64], RMSDmean = 1.06 m [65],
RMSDmean = 1.41 m [61], RMSDmean = 1.71 m [62], and RMSDmean = 5.1 m [59]. As such,
sampling intervals to produce Timex images can increase taking into consideration the
influence of (1) elevation of the camera; (2) battery life and memory; and (3) the level
of shoreline accuracy required, which will depend on the intended use of the detected
shorelines. These three considerations are discussed in the following sections.
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Table 4. Comparison of results with previous studies.

Study Camera Type Sampling Rate Method Camera
Elevation [m] FoV [m] RMSD

[m]

This study Brinno TLC2000 10 min at 1 Hz Red minus blue
channel 11 and 14

Camera 1:

• Alongshore: 200
• Cross-shore: 200

Camera 2

• Alongshore: 250
• Cross-shore: 250

1.4
0.9

[51] Surfcam 10 min at 5 Hz Pixel intensity 80 Alongshore: 800
Cross-shore: 400 /

[61] / 10 min at 2 Hz / / Alongshore: 100
Cross-shore: 16 1.41

[59] ARGUS 10 min at 2 Hz ASLIM method 43 Alongshore: 1500
Cross-shore:120 5.1

[64] Bullet cameras Averaged over short
periods (30 s)

Colour contrast
between water and
beach

11 Alongshore: 1340 0.93

[62] Point Gray
Blackfly 5 MP

900 video frames at
1.5 Hz

Four methods:

- Max grayscale
intensity

- Colour channel
divergence

- Pixel intensity
clustering

- Otsu method

15.9 Alongshore: 250
Cross-shore: 112 1.71

[65] Mobotix M22 10 min at 1 Hz ANN 20 Alongshore: 700
Cross-shore: 200 1.06

3.3. Elevation of Camera

A higher elevation of the centre of the camera above MSL will increase the FoV
and, consequently, the alongshore distance that can be analysed from the Timex images.
Shorelines are two-dimensional features that inherently display greater dependence on the
alongshore direction compared to the cross-shore direction. The authors of [21] already
pointed out the dependency of elevation compared to the alongshore distance that can be
analysed. As such, an increase in elevation above MSL will benefit the analysis that can be
carried out.

Due to the local topography, the cameras positioned in this study had a low elevation
above MSL (z < 15 m), which is substantially lower than other studies that report elevation
of 20 m above MSL [65], up to 80 m [51] (Table 4). Nevertheless, this study shows that low
elevations of the camera will still produce shoreline edges with an RMSD that is similar to
other studies. In addition, this study shows that a ratio of x,y/z = 15, with x,y representing
the alongshore distance analysed from the camera and z being the elevation of the centre of
the camera above MSL, will lead to no substantial errors or adverse impacts. The authors
of [45] showed that the principal loss of resolution with distance from the camera is the
worsening of range resolution as pixel footprints stretch out. There is no easy fix for this
technical challenge other than to use the maximum possible camera height or prioritise
alongshore views that inherently have much smaller spatial gradients (compared with
cross-shore views).

We acknowledge that the RMSD results reported for this study (Table 4) are based on
comparing video-derived shorelines with themselves which inevitably should have greater
precision than shorelines observed outside of the monitoring period when conditions have
changed (e.g., changing light; changing elevation).
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3.4. Battery Life and Memory Requirements

Due to the autonomous setup (e.g., no connection to power or other hardware) of a
shoreline imaging system, battery life or memory (in the form of SD cards) can impose
limitations on the system performance. The system used in this study can function with
internal AA batteries or an external power bank and has the option to use an SD card up to
128 GB capacity. Figure 15 shows how the operation time of the system is impacted by AA
battery life and SD card memory depending on the imaging interval. When the imaging
interval is set to 1 s, the maximum battery life is 10 days, which is the limiting factor in this
setup as ten daylight hours will only produce 5 GB of data. As expected, the battery life
increases when the imaging interval increases, and the time-lapse camera can last up to
550 days when set to sample every 30 s. The limiting factor then becomes the memory, i.e.,
the SD card capacity. For the maximum 128 GB card and a 30 s interval, the maximum
capacity is reached after approximately 300 days.
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3.5. Application of Timex Images

For event scales (storm and other extreme events), often resulting in rapid changes in
the beach and dune morphology, intervals of 1 s are generally preferred. Such intervals are
necessary in order to delineate areas of preferred wave breaking in the surf zone [37,66] or
rip currents [67], as well as to estimate intertidal and subtidal bathymetries [25], and also
to produce time stack images [12,44]. Increasing the interval up to 30 s will potentially lead
to erroneous analyses in these types of applications.

Figure 14 shows that there was a relatively small increase in the mean RMSD of the
shoreline edge positions (of the order of 1–2 m) detected using a 30 s interval compared
to that using a 1 s interval. If long (seasonal to annual) time scales are considered for
the application of the research, the analysis carried out here shows that low-frequency
processes (e.g., seasonal erosion and accretion trends or beach cusp evolution on time scales
from tidal cycles to years) may be adequately analysed and assessed using an interval of
up to 30 s with a relatively small loss of accuracy compared to the current norm of 1 s
sampling. This would, in turn, significantly improve the autonomous operation time and
require little-to-no modification of the off-the-shelf cameras.

4. Conclusions

Timex images are an attractive low-cost option for the detection of shorelines and other
coastal features. The current standard for detecting shoreline edge using Timex images is
averaging 600 pictures over a 10 min period, with a sampling interval of 1 s. In the absence
of any literature demonstrating the need for such high-frequency sampling, this research
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used images from two time-lapse cameras in Brandon Bay, Ireland, to investigate the effect
of image sampling rate on accuracy of shoreline detection. Shoreline edge detection was
carried out in MATLAB from Timex images produced from sampling frequencies of 1 s, 3 s,
5 s, 10 s, 20 s, and 30 s over a 10 min period, and the results were compared to determine
any loss in accuracy when using lower-frequency sampling.

The results in this study showed that there is limited loss of the precision in shoreline
edge detection when increasing the time-lapse interval from 1 s up to 30 s. Increasing the
sampling interval to 10 s resulted in a mean RMSD in the 150 detected shoreline points
(measured relative to the 1 s sample-rate shoreline) of the order of 1 m, and increasing
further to 30 s resulted in mean RMSD of the order of 1.5–2.5 m. In addition, the RMSDs in
shoreline edges presented in this study are in a similar range to other studies, highlighting
that the presented dataset is of sufficient precision to be used for coastal monitoring
applications. Moreover, the sensitivity analysis carried out shows that battery life and
memory do not necessarily need to be a limiting factor on autonomous operation time.
Indeed, the system used in this study showed that autonomy can be increased from 10 days,
using a 1 s imaging interval, to approximately 300 days if the interval is increased to 30 s,
without having an adverse effect on the shoreline precision; however, the choice of sampling
rate should of course be dependent on the aims of the study and its sampling strategy.

Overall, the analysis of the presented dataset from a low-cost monitoring system
showed several advantages over existing techniques reported in similar remotely sensed
approaches in coastal monitoring. Firstly, coastal monitoring systems do not necessarily
require sophisticated hardware or sophisticated image-processing techniques, making
their applications easier to replicate. Secondly, the off-the-shelve time-lapse cameras used
in this study can be easily and quickly deployed in the field, as well as in remote areas,
while still producing outcomes similar to very expensive systems like ARGUS. Thirdly,
while elevation above MSL is a limiting factor, this study shows that low elevations can
produce meaningful insights into coastal processes. As such, the analysis outlined in this
paper results in a better understanding of the setup of coastal imaging systems, which can
improve the current methods available for coastal engineers and coastal managers.
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