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Abstract: The aim of this study is to investigate the response of the rational method in flood hazard
assessment in Potamia watershed of Thasos island, with climate data from Regional Climate Models.
The precipitation intensity–duration–frequency (IDF) curves used were calculated using available
EURO-CORDEX 0.11 regional climate model simulations, under the RCP8.5 scenario. The Corine
Land Cover dataset was utilized for the determination of the runoff coefficient of the watershed and
geomorphological and hydrographic characteristics are calculated using a Geographic Information
System software. A comparison against actual flood events of the period 1991–2019, as mapped with
satellite Synthetic Aperture Radar (SAR) imagery, is also carried out.
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1. Introduction

Natural disasters such as floods and the consequent devastation they bring about are
a widespread occurrence, affecting various regions across the globe. According to [1], the
past three decades have witnessed the highest frequency of floods in the past 500 years,
with notable increases occurring during the summer season. The Intergovernmental Panel
on Climate Change’s (IPCC) Sixth Assessment Report (AR6) has highlighted that there
is a growing threat of inundation and severe flooding in many regions, with the risk of
these events expected to increase significantly. The report also warns that the number of
individuals affected by precipitation and river flooding may double in the future [2].

Flooding is a significant issue in Greece, with many areas susceptible to the effects of
heavy rainfall and flash floods. As reported by [3], approximately 75% of the country’s
land area is characterized by hilly, semi-mountainous, and mountainous regions, which
contribute to the occurrence of floods. A detailed study of these phenomena is essential,
although in Mediterranean regions, particularly in medium and small watersheds with
ephemeral streams, data is often lacking, as highlighted by [4].

The objective of this study is to assess the current and future flood hazard in Thasos
Island, applying the rational method and utilizing climate data obtained from Regional Cli-
mate Models (RCMs). RCMs are advanced tools in climate science which are sophisticated
mathematical representations of the atmosphere. They simulate the well-known dynamic
and thermodynamic processes that govern the atmosphere comprehensively, as outlined
in [5]. When it comes to dynamic downscaling, the effectiveness of the nested RCMs is
greatly influenced by the quality of the lateral conditions of the driving Global Climate
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Model (GCM), as emphasized by [6]. In this study, RCMs are employed to assess and
project the future trend of precipitation and Intensity-Duration-Frequency (IDF) curves.

The rational method is mentioned in the English Environment Agency’s (EA) review
of methods for estimating flood peaks in small catchments [7]. Due to its suitability for
small urban or impermeable catchments and its applicability in data-limited scenarios,
the rational method is widely included in national and regional guidelines across the
globe. This method employs variables such as rainfall intensity, drainage area, and a runoff
coefficient to calculate the peak discharge.

2. Materials and Methods
2.1. Study Area

The island of Thasos is the northernmost island of the Aegean Sea, with a longitude
ranging from 24◦31′ to 24◦47′ and a latitude ranging from 40◦34′ to 40◦48′. In this study, the
rational method was applied in Potamia watershed, as illustrated in Figure 1. The Potamia
basin has an area of 8.17 km2, with a maximum altitude of 1204 m. The main stream within
the basin flows eastward, spanning a length of 6.85 km. The geological composition of the
area mainly comprises gneisses, accounting for 29.25%. Additionally, smaller proportions
of dolomite and marble horizons are also present in the region.
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Figure 1. Potamia watershed and its location within Thasos, Greece.

2.2. Data Collection

In this study, data from Euro CORDEX were utilized with a spatial resolution of
12 × 12 km. Three RCMs driven by six GCMs were used to produce Intensity-Duration-
Frequency (IDF) curves for the timeframe spanning from 1970 to 2005, as well as the
near and far future time periods of 2020–2055 and 2065–2210. These curves encapsulate
the correlation between the intensity of precipitation and the duration of precipitation
events for a specified frequency or return period. This paper examines the application
of a simple but hydrologically robust method for streamflow estimation utilizing the
Intensity-Duration-Frequency (IDF) curves derived from RCMs.
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The observed values used for evaluation were obtained following the guidelines
outlined in directive [8] using [9] methodology for country-level IDF drawing. A network
of 54 weather stations over Greece (National Weather Service, Ministry of Environment
and Energy, Ministry of Rural Development and Food) was utilized to gather time series
data on annual maximum precipitation.

Satellite data were used to confirm with Satellite Synthetic Aperture Radar (SAR)
images that the Potamia basin is flood-vulnerable and to identify past flood events. The
applicability of SAR Remote Sensing for flood mapping, due to their cloud penetration
capabilities as well as the overall independence of weather conditions and sun illumination,
has been well established since the 1990s. Nevertheless, from 1991 until the advent of Eu-
rope’s Sentinel-1 satellite mission in 2014, SAR data acquisitions were relatively sparse and
non-systematic, rendering their operational value for flood events quite limited, especially
for flash-floods [10].

2.3. Geospatial Modeling

To accomplish this work ArcGIS software was utilized for the geomorphological
analysis of the study region. The delineation of Potamia basin was conducted, and the
morphometric and hydrographic attributes of the stream were assessed.

The Corine Land Cover 2018 [11] database was employed to analyze the land uses and
calculate the runoff coefficient for the watershed. The runoff coefficient CN was determined
using the methodology [12] provided by the United States Department of Agriculture-
Natural Resources, which has also been adopted by the European Union in accordance
with the directive [8].

The rational method can be described as a straightforward equation [13] establishing
a relationship between peak discharge, catchment area, upstream land cover, and mean
rainfall intensity for a storm of a specific return period through a link,

Qp = 0.278 × C × I × A, (1)

where Qp is peak discharge (m3/s), C is the runoff coefficient, which is a dimensionless
number, i is the average storm rainfall intensity (mm/hr), and A is the watershed area
(km2). The constant 0.287 is required to convert the original units from the North American
system, where the model was first developed, to the SI (International System of Units)
system.

Regarding the remote sensing approach for flood mapping, the entire European
Remote Sensing (ERS), Envisat, and Sentinel-1 archive of the European Space Agency (ESA)
was investigated for suitable satellite SAR imagery, with respect to the known flood events
on Thasos Island since 1991.

3. Results

According to National databases, relevant studies [14,15], and public media, several
flood events have been reported on Thasos Island during the last 30 years. Several of these
have occurred in the vicinity of Potamia (Figure 1). Taking into account the reference period
considered for this study (1970–2005), as well as the availability of satellite-based SAR data
(1991 onwards), two indicative flash-flood events (in 2002 and 2019, respectively) were
processed with multi-temporal SAR data (Figure 2), providing thus observational evidence
on the flooding potential of the area.

Figure 3 illustrates the peak water discharge estimated through the rational method
(colored dots) and the observed values (black dots) over the Potamia watershed. The figure
legend indicates the six GCMs (hereafter CNRM, ICHEC, IPSL, MOHC, MPI, NCC) driving
the three RCMs (HadREM3, RCA4, RegCM4), the latter shown in the different panels. The
X-axis indicates the three time periods considered in this study: 1970–2005 (historical),
2022–2055 (near future), and 2065–2099 (far future).
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Figure 3. Maximum water discharge (Qmax100) of observed data (black dot) and RCM climate
simulations (color dots) driven by different GCMs, for the Potamia hydrological basin, on the island
of Thasos.
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The observed Qmax100 was found to be 83.4 m3/s. The peak discharge Qmax100 was
systematically underestimated in all cases during the historical period, with the exception
of the HadREM3 model driven by CNRM, which provided a quite accurate estimation
(84.0 m3/s). The most severe underestimation was assessed with the use of the RegCM4
model followed by RCA4 (62% and 65% underestimation, respectively).

In the near future, the peak discharge exhibits an upward trend of 22% according to
the HadREM3 regional model or remains the same according to RCA4 and RegCM4. Peak
discharges range from 25 to 100 m3/s, indicating quite a large uncertainty. The behavior of
the CNRM-RCA4 member is quite distinct, which indicates an abrupt decrease in Qmax100

57% in mid-century and a sharp increase 71% in the far future compared to the historical
period.

In the far future, there is a notable increase in peak discharges when utilizing the
HadREM3 model data (103–142 m3/s), irrespective of the GCM forcing. On the other
hand, the peak discharges remain relatively constant for RCA4 (25–50 m3/s), and slightly
decrease for RegCM4 (<32.5 m3/s).

4. Conclusions

In this study, an effort was made to assess the applicability of the Rational Method
by incorporating climate data obtained from RCM simulations of the EURO-CORDEX
database. The obtained results were then compared against the runoff values derived from
observational data. The main conclusions are:

• Satellite (SAR) data indicate that the Potamia region is a watershed that has shown
historical evidence of flooding.

• From a remote sensing perspective, the requirements for operational flash-flood map-
ping are even more demanding than the current state of the art. In particular, the
availability of one high-resolution (10 m or better) SAR image per day would be a
major improvement for small basins like in the case of Thasos, were the disastrous
phenomena have a limited extent in space and time, but still with severe effects for the
local communities.

• The modeled runoff values are underestimated when compared to the observations
for the historical period (1970–2005).

• The near future (2020–2055) shows a small or no increase in the maximum peak
discharge.

• There is no agreement for the far future (2065–2099) as one regional model (HadREM3)
indicates a 60% increase in peak discharge, but not the other two (RCA4 in most cases
and RegCM4).

• Despite being driven by different GCMs, the RCMs exhibit similar behavior, indicating
that the characteristics of the RCMs overcome that of the GCMs.
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