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Abstract: The aerosol species separation algorithm (ASSA) is a method designed to retrieve vertical
concentration profiles of individual aerosol species by combining measurements from lidar systems
and spectrophotometers. The ASSA operates as a forward model, simulating as the first step the
attenuated backscatter and volume depolarization ratios at various wavelengths initially measured
by lidar systems. Subsequently, it extends these simulations to reproduce radiance spectra obtained
from co-located spectrophotometers by integrating a radiative transfer model. Currently, the ASSA
relies on a lookup table (LUT) of intensive aerosol properties that correspond to mixtures generated
from up to eight pure aerosol species as these are defined in the OPAC database. In this study we
are focusing on the first step and investigating the performance of the algorithm when solely fitting
nighttime data from the Thessaloniki lidar system are used. The algorithm identifies the ensemble
of mixture/mass concentration combinations that best fit the elastic and Raman 4 primary species
attenuated backscatter and depolarization ratio profiles.
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1. Introduction

In this study, we expand the aerosol species separation algorithm (ASSA) to night-time
Raman lidar measurement, using vertical profiles from the multiwavelength depolarization
Raman system operated in Thessaloniki (THELISYS). Measurements were performed
during the period 2021-2023 at the Laboratory of Atmospheric Physics of Thessaloniki
urban station (LAP; 40.6° N, 22.9° W, 680 m a.s.l.) in order to check the ASSA’s performance
and stability. LAP combines state-of-the-art active and passive remote sensing and in
situ measurements [1]. In this scope, quality assured lidar measurements in cloud-free
conditions were selected, aiming to reveal the vertical distribution of aerosol properties
over Thessaloniki regarding different aerosol sources. The input of the ASSA includes the
total elastic attenuated backscatter profiles at 355, 532, and 1064 nm, the Raman attenuated
backscatter profiles at 387, 607 nm, and the calibrated corrected volume depolarization
ratio at 532 nm. Our preliminary findings show very good quantitative and qualitative
agreement among the measured and the simulated profiles and the result to concentration
profiles per species.

2. Data and Methodology
2.1. Lidar Measurements from Thesslaoniki Lidar System (THELISYS)

A detailed view of the Laboratory of Atmospheric Physics (LAP) and the surrounding
area of Thessaloniki is shown in Figure 1. Thessaloniki is a coastal metropolitan area,
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with urban aerosols affecting the lower layers and being present during both the summer
and winter season [1]. The Thessaloniki station is equipped with a depolarization Raman-
lidar system (THELISYS; LR321-D400, Raymetrics S.A., Athens, Greece), able to provide
extensive aerosol properties, namely, three aer (355, 532, 1064 nm) and two &ger (355,
532 nm) as well as aerosol intensive properties, namely, the backscatter and extinction
related Angstrbm exponents (AEx-355/532, AE(3-355/532, AE(3-532/1064 nm), the lidar
ratio (LR), and additionally the linear volume (6v532) and particle depolarization ratio
(6p532). The necessary pre-prepossessing procedures for all signals had been performed
using the in-house semi-automated universal lidar algorithm (SULA).

e

Figure 1. The Thessaloniki lidar system (THELISYS) located in LAP.

2.2. Optical Properties of Aerosols and Clouds (OPAC)

The software package OPAC [2] consists of data sets of optical properties (extinction,
scattering, and absorption coefficients, single-scattering albedo, asymmetry factor, and the
phase function) of cloud and aerosol components in the solar and terrestrial spectral range
or different humidity conditions. Moreover, derived optical parameters like mass extinction
coefficients and Angstrém exponents can be determined. In the case of aerosols, calculations
are based on microphysical data (particle size distribution and spectral refractive index)
under the assumption of spherical particles. Aerosols originate from different sources and
processes, and thus a mixture of particles is often present in the atmosphere. The aerosol
components may be externally mixed to form aerosol types (continental (clean, average,
polluted), urban, desert, maritime (clean, polluted, tropical), Arctic, Antarctic, mineral
transported, free troposphere, stratosphere). The application of more realistic shapes for
mineral particles can improve the modeling of optical properties.

2.3. Aerosol Species Separation Algorithm (ASSA) Description

The aerosol species separation algorithm (ASSA) relies on a lookup table (LUT) of
mixtures generated from pure aerosol species modeled by the OPAC database [2,3]. A large
number of external mixtures can be produced for up to eight aerosol modes: water solubles,
insolubles, soot, accumulation and coarse mode sea salt, nucleation, accumulation, and
coarse mode mineral dust. Mineral dust species are modeled as spheroids [3] and depolarize
the backscattered light accordingly. The other species are assumed to be spherical. A
depolarization ratio value of 0.01 at 532 nm is used instead of 0 (perfect spheres) similar
to [4] in order to obtain more realistic retrievals. Hygroscopic growth calculations are
included in OPAC for 8 relative humidity classes (0-99%) for the water soluble and sea salt
species. The algorithmic procedure is summarized in Figure 2. The flowchart demonstrates
the input and output of the ASSA. The aerosol species separation algorithm (ASSA) operates
in two steps. The algorithm first tries to reconstruct the lidar attenuated backscatter profiles
by iterating over the LUT and over a number of predefined mass concentration levels
per LUT entry (step 1). Reconstruction begins from the end of the profile (reference
height) and proceeds downwards by forward-modeling the elastic lidar equation). The
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attenuated backscatter profiles are normalized by the corresponding value at reference
height. Then, through a radiative transfer model (libRadtran, [5]), it simulates radiance
spectra similar to the ones measured by passive remote sensing sensors (e.g., MAX-DOAS
spectrometer). Finally, the mixture profiles with the best general agreement given the
instrumental uncertainties are selected as the final solution. In this study we are focusing
on the first step and investigating the performance of the algorithm when solely fitting
nighttime lidar data. The fundamentals of the technique are given in [6].

Forward model (step 1)

Identify 20 mixtures that best
reproduce the Lidar profiles

2 Brewer Max-DOAS

Potential solutions per vertical

Instr.

level (100m resolution) § Attenuated Backscatter Profiles Direct & global Direq &diffuse
] Volume Lin. Dep. Ratio Profiles UVirradiance spectra UV-VIS radiance spectra
T :
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. ' A
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combinations starting with 8 ASSA processing
rimary aerosol species (OPAC! (1) Retrieve the aerosol species concentration profiles
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Figure 2. This flowchart demonstrates the input and output of ASSA.
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3. Results
Case Study on 30 June 2022

In the context of the study, we investigated and discussed a case study of aerosol
mixed layers that were detected over Thessaloniki by lidar measurements on 30 June 2022.
The color map in Figure 3a shows the time-height cross section of the 1064 nm range
corrected signal (RCS) from 18:30 to 19:30 UTC. The figure clearly reveals a well-defined
aerosol layer extending up to ~4.5 km. The optical properties were determined through
the application of the Raman [7] and Klett [8] lidar inversion techniques shown in Figure 4.
The profiles of the particle depolarization ratio at 532 nm (6p), the lidar ratio at 355, 532 nm
(LR), and backscatter angstrom coefficients (BAE) are also provided. The profile of the
depolarization ratio is characterized by small values (<0.08 or 8%) throughout the vertical
scene. These values point to the mixture of the continental type with the pollution through
the detected layer. The LR are relatively similar for both wavelengths and they present
low variability with the height (mean LR355: 60 £ 8 sr and LR532: 47 £ 11 sr). The
BAE values are almost equal to one across the layer (mean BAE355/1064: 1.07 £ 0.12
and BAE355/532: 1.14 4 0.11). These values are compatible with spherical particles from
combustion processes, which underwent long-range transport from their sources to the
Thessaloniki site.

The air mass backward trajectories of the NOAA hybrid single particle Lagrangian
integrated trajectory (HYSPLIT) model [9] were also used to assess the air mass transport
pathways and possible sources. Figure 3b depicts 7-day backward trajectories arriving over
Thessaloniki at 19:00 UTC at altitudes of 1.5, 2.5 and 4 km. Simulations confirmed that
the trajectories of the air masses originating from Northern and Eastern Europe reveal the
possible presence of mixed continental and polluted aerosol components.
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Time-Height cross sections
On 2022/06/30 from 18:31 to 19:33 UTC, » 0.0° off-zenith
THELISYS at Thessaloniki, Greece (lat: 40.6, lon: 23.0, elev: 60 m)
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Figure 3. (a) Temporal evolution of the range-corrected lidar signal (RCS) in arbitrary units (AU)
obtained over Thessaloniki at 1064 nm, between 18:30 and 19:30 UTC on 30 June 2022. (b) The 7d
HYSPLIT backward trajectories ending at the position of Thessaloniki at 19:00 UTC.
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Figure 4. Average lidar vertical profiles of the backscattering coefficients (355, 532, 1064 nm), the
extinction coefficients (355 and 532), the particle linear depolarization ratio (532 nm), backscatter-
Angstrt')m coefficients (355/1064, 532 /1064 nm) and lidar ratios (355, 532 nm).

Figure 5 depicts the constructed attenuated backscatter and volume depolarization
profiles of the ASSA that correspond to the potential solves of mixtures per vertical level
that show the best agreement with the measured profiles. The ASSA volume concentration
profiles, obtained by taking into account all the retrieved profiles with all possible variations,
are shown in Figure 6. For our case, we ran the ASSA for 4 species using OPAC, indicating
mixing among accumulation mode dust, soot, coarse mode sea salt, water soluble. The
ASSA outputs reveal the presence of low concentrations in a range of 0.1-20 pgr/m3
within the vertical profile. The presence of these species can be related to the advection of
anthropogenic pollutants coming from industrial activity in Europe mixed with the coastal
particles. Generally, pollution particles are relatively small, spherical, and highly absorbing,
so that they produce low depolarization and large lidar ratios. Given that Thessaloniki is a
coastal city, it is also important to consider the influence of marine aerosols. These marine
aerosols can interact with urban aerosols, further influencing the overall aerosol load and
composition in the lower layers of the atmosphere. The total particle backscatter coefficient
is illustrated in Figure 7, as the output of the ASSA procedures in contrast to retrieved
optical products by the Thessaloniki operational processing algorithm (SULA).
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Figure 5. Measured (blue) and fitted (orange) attenuated backscatter and depolarization values. The
respective molecular attenuated backscatter profiles are also included in green.
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Figure 6. Ensemble potential mass concentration solutions per aerosol species and per vertical level
for 4 aerosol species (coarse sea salt, water soluble, acc. dust, soot). The total concentration is also
provided. The potential solutions within error bars that best reproduced the measured profiles are

displayed.
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Figure 7. Optical product profiles of the backscattering coefficients produced by the ASSA in
correspondence with the lidar retrievals in Figure 4.
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4. Discussion and Conclusions

The aim of the study was to check the ASSA’s performance and stability. Attention
was focused on a case study on 30 June 2022, with lidar measurements corresponding
to the Thessaloniki station indicating the presence of a well-defined aerosol layer. The
multiwavelength Raman lidar technique was applied to obtain vertically resolved particle
optical properties and further inversion of those properties with the ASSA allowed for
retrieval of microphysical information on the studied particles. Our preliminary findings
show good quantitative and qualitative agreement among the measured and simulated
profiles and result to concentration profiles per species. Introducing new or more look-up
tables (LUTs) to account for different aerosol types is a potential future strategy to improve
the ASSA.
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