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Abstract: The electrical properties of solution-processed spinel nickel cobaltite (NiCo2O4) nanoparticulated-
based metal oxide hole transporting layers are investigated using conductivity and Hall effect
measurements. The mechanism of electrical conductivity of NiCo2O4-based electronic films as a
function of temperature indicates hopping-type carrier transport. We show that NiCo2O4 hole
transporting layers (HTLs) have suitable conductivity, low toxicity, and relatively low processing
temperature, parameters that are important for electronic materials specifications of high performance
and environmentally friendly emerging photovoltaics. As a proof of concept, NiCo2O4 and Cu-SCN
surface-modified NiCo2O4 are incorporated as HTLs for non-fullerene acceptor Organic Photovoltaics
(OPVs), and the photovoltaic performance results of the corresponding OPVs are presented.

Keywords: metal oxides; NiCo2O4; combustion synthesis; conductivity; transport mechanisms; hall
effect measurements; electrodes; organic photovoltaics

1. Introduction

To make the transition to low-carbon energy systems, research on solar energy tech-
nology that attempts to transform sunlight directly into electrical energy is essential [1].
Investigations to improve the efficiency and stability of emerging photovoltaic technologies
have been accelerated by the rapid advances of innovative electronic materials in the field
of material science.

Organic photovoltaics (OPVs) are one of the most promising emerging solar cell
technologies due to their benefits regarding low solution processing manufacturing for
large-scale roll-to-roll production and less impact on the environment after disposal in
comparison to other photovoltaics technologies [2–8]. Recently, non-fullerene acceptors
(NFAs) within the active layers of solution-processed organic photovoltaics (OPVs)have
greatly improved their power conversion efficiency (PCE) in the range of 19% [9,10].

Hole-transporting layers (HTLs) and electron transport layers (ETLs) are essential
interlayers in OPVs since they increase the collecting capabilities of hole and electron
charges toward the anode and cathode electrodes, respectively, and, therefore, increase
the power conversion efficiency (PCE) of OPVs [11,12]. However, the development of
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appropriate charge-selective contacts between the active layer and the electrodes in OPVs
presents challenges [13,14].

For the normal OPV device architecture, the most used conducting polymer HTL is
the Poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) due to its low
cost, limited toxicity, easy solution processing, and high work function (WF). However,
due to its hygroscopic and acidic properties, PEDOT:PSS creates stability issues during
solar cell operation under environmental conditions, which leads to the usage of p-type
metal oxides as HTLs in OPVs instead, which in some cases provide improved lifetime
performance due to their chemical and moisture resistance [7,15].

The most common p-type metal oxides that have been employed as HTLs in OPVs are
MoO3, NiO, WO3, Fe3O4, and CuOx [16–20]. Nevertheless, despite their aforementioned
advantages, they suffer from low electrical conductivity, which can limit the performance
of the respective solar cell devices. Furthermore, high vacuum techniques for deposition,
as well as temperatures above 400 ◦C in order to achieve enhanced metal oxide crystallinity,
are usually required for their synthesis, resulting in increased device manufacturing costs
and simultaneously restricting their application to flexible photovoltaic applications [21,22].

Nickel cobaltite (NiCo2O4) is an environmentally friendly p-type transparent con-
ductive oxide (TCO) material with the following characteristics: a wide optical band gap
(~2.4 eV), a deep-lying valence band (~5.3 eV) and a conductivity of two orders of magni-
tude greater than NiO and Co3O4. Due to those reasons, nickel cobaltite is considered a
reliable metal-oxide electronic material for use in optoelectronics [23].

We have previously reported the solution combustion-synthesized (SCS) of a smooth,
compact, and functional electronic film of the highly conductive spinel nickel cobaltite
(NiCo2O4) nanoparticles utilizing tartaric acid as a fuel to produce monodispersed particles
with mean size of ~4 nm, which was successfully introduced as hole transporting layers in
inverted perovskite solar cells (PVSCs) [24].

In this paper, we examine the implementation of neat and Cu-SCN surface-modified
nickel cobaltite (NiCo2O4) as a hole transporting layer (HTL) on the performance of non-
fullerene acceptor (PBDB-TF-T1 (T1): ITIC-4F) based OPVs that have been processed using
the low-toxicity solvent O-xylene. Furthermore, we study the electrical characteristics of
NiCo2O4 HTLs using D.C. conductivity measurements in the temperature range of 100
to 340 K. The above measurements allow us to identify “hopping-like” charge transport
as the conductivity mechanism and calculate the “hopping” distance of the solution-
processed nanoparticulate-based NiCo2O4 HTLs. Moreover, Hall voltage measurements
were conducted, revealing the high charge carrier concentration of the NiCo2O4. The
thermal treatment of the NiCo2O4 HTLs of different thicknesses (80 nm and 120 nm) was
evaluated at 340 K for 1.5, 3, 6, and 12 h thermal aging time. Finally, the initial performance
of PBDB-TF-T1 (T1): ITIC-4F-based OPVs incorporating NiCo2O4 as hole transporting
layers is demonstrated.

2. Materials and Methods

Materials: Pre-patterned glass-ITO substrates (sheet resistance 4 Ω/sq) were pur-
chased from Psiotec Ltd. The PBDB-TF-T1 (T1) and ITIC-4F were purchased from Ossila
Ltd., (Sheffield, UK) and all the other chemicals used in this study were purchased from
Sigma Aldrich.

Synthesis of NiCo2O4 NPs films: To synthesize nickel cobaltite nanoparticles using
the solution combustion method, 15 mL of 2-methoxy ethanol was mixed with 0.5 mmol of
nickel(II) nitrate hexahydrate, 1 mmol of cobalt(II) nitrate hexahydrate, 1.5 mmol tartaric
acid and 150 uL 69% wt nitric acid, and stirred up for 30 min at 60 ◦C. The ITO substrates
were sonicated for 10 min in acetone and isopropanol, dried with N2 blow, and before
use, they were UVO3 treated for 20 min. NiCo2O4 precursor films were formed on ITO
substrate using a doctor blade and then left to dry on a hot plate for 30 min at 100 ◦C. The
spinel oxide (NiCo2O4) nanoparticulate films were combustion synthesized by heating
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the precursor films in a preheated oven at 250 ◦C in ambient air for 4 h [24]. For the Hall
measurement the films were fabricated on glass instead of ITO.

Device fabrication: The normal organic solar cells under study were ITO/NiCo2O4-
NPs/(w/ or w/o Cu-SCN)/T1:ITIC-4F/Ca/Al. The ITO/NiCo2O4 hole transporting layers
(HTL) were prepared as described above. Cu-SCN was spin-coated on NiCo2O4 from a 10
mg/mL diethyl-sulfide solution at 3000 RPM without any further treatment. The active
layer T1:ITIC-4F (1:1.2% wt) was blade coated from a 20 mg/mL solution in O-xylene,
resulting in a film thickness of ∼110 nm and annealed for 10 min at 100 ◦C in the glovebox.
Finally, 10 nm Ca and 100 nm Al layers were thermally evaporated using a shadow mask
to finalize the devices, giving an active area of 0.9 mm2. Encapsulation was applied directly
after evaporation in the glove box using a glass coverslip and an Ossila E131 encapsulation
epoxy resin activated using 365 nm UV irradiation.

Characterization: The current density-voltage (J-V) characteristics were obtained with
a Botest LIV Functionality Test System. Forward scans were measured with 10 mV voltage
steps and 40 msec of delay time. For illumination, a calibrated Newport Solar simulator
equipped with an Xe lamp was used, providing an AM1.5G spectrum at 100 mW/cm2 as
measured using a certified Oriel 91150V calibration cell. A shadow mask was attached to
each device prior to measurements to accurately define the corresponding device area. The
four-probe method was used to measure the D.C. conductivity versus temperature in a
cryostat containing inert He gas from 100 to 340 K. Platinum pressure contacts were used.
The current to the sample was supplied by a Hewlett Packard 6177C constant current source,
and the voltages and current were measured using a Keithley 195A digital multimeter
and a Thurby 1905a intelligent digital multimeter. The temperature was stabilized to ±2 K
via an Oxford ITC4 intelligent temperature controller. Nickel cobaltite films of 80 nm and
120 nm thickness, respectively, were thermally treated at 70 ◦C in a thermostated oven
under ambient air for different aging times (t = 1.5, 3, 6, and 12 h). After each heat treatment,
the conductivity versus temperature was determined. These successive measurements
yield a set of r = r(T) curves, and the entire process is repeated until conductivity reaches
saturation. The Hall measurements were performed at room temperature using the Van
der Pauw configuration and a magnetic field of 1T (ezHEMS, NanoMagnetics).

3. Results and Discussion
3.1. D.C. Conductivity and Hall Effect Measurements of NiCo2O4 Electronic Films

We investigated the electrical properties of the material using D.C. conductivity studies.
The D.C. conductivity of NiCo2O4 films of 80 nm (Figure 1a) and 120 nm (Figure 1b)
thickness was examined in the temperature range of 100 to 340 K. The thermal treatment of
the samples took place at 340 K for 1.5, 3, 6, and 12 h. By increasing the time of thermal
aging, a shift of the curve to lower conductivity values appears, which indicates that this
“soft thermal treatment” has a measurable impact on the conductivity and is thus attributed
to internal structural change.

The conductivity was thermally activated, and its dependence versus temperature is
studied in the frame of Variable Range Hopping (VRH) and Nearest Neighbour Hopping

(NNH). In Mott’s model, the hopping distance is given by R = [ 9
8παTKB N(EF)

]
1
4 , where the lo-

calization length α = 1
r0

and r0 ∼ R
2 → α ≈ 1

8.14 ≈ 0.125 Å
−1 ≈ 0.125 ∗ 108 cm−1 [25]. From

the equation: T0 = [ 18
r0

3kB N(EF)
], we can calculate the density of states N(EF),

N(EF) =
[

18
r0

3kBT0

]
∼ 5.1 ∗ 10−5 electronic states

Å3ev
, where T0 ~ 80 × 105 K. In such a case, taking

T = 300 K, we find for the hopping distance: R ∼ 39 Å. This value is about four times the
lattice parameter, in good accordance to Dillep K. et al. [26].

The solution combustion synthesis of NiCo2O4 implies the formation of nanoparticles
(NPs). The typical grain dimensions range from 3.5 to 5 nm without avoiding the presence
of amorphous microregions [24]. The conductivity versus temperature measurements, in
the range of 100–340 K, reveal a Mott’s conduction according to the formula: σ = σ0 exp
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[−(T0/T)0.25]. The same model also holds after heat treatment of the samples for t = 1.5, 3,
6, and 12 h. For the thinner nickel cobaltite film of 80 nm, a short heating of 1.5 h improves
the conductivity, though longer heat treatment gradually displaces the conductivity curve
to lower values (Figure 1a). For the thicker nickel cobaltite film of 120 nm, a monotonic
decrease in the conductivity values occurs, indicating that the thickness exerts influence on
the way that the thermal heating affects the internal structure of the material (Figure 1b).
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Figure 1. The In σ = f(T−0.25) measurements for (a) 80 nm thickness of NiCo2O4 film and (b) 120 nm
thickness of NiCo2O4 film, heated at 70 ◦C under ambient air conditions for aging times 0, 1.5, 3, 6
and 12 h, respectively.

In polycrystalline metal oxide films, the grain boundaries can act as deep traps and
cause the film’s conductivity to decay or recover slowly. However, regarding NiCo2O4
films, Hu et al. 2011 have proposed that the aforementioned deep trap defect on the photo-
response behavior has been avoided due to their short decay and recovery times, which may
be attributed to their exceptional crystallinity, purity, and morphology of nanoparticles [27].
Due to the existence of physical boundaries between the NiCo2O4 nanoparticles, the charge
transfer among them is “hopping-like” [28].

In general, a “hopping-like” transport is stated by the temperature dependency of the
experimental measurements of the conductivity, where the parameter σ0 is a measure of the
conductivity, which is related to the interior of the grains of the material. The parameter T0,
on the contrary, is a measure of the potential barrier height, as thermally activated carriers
hop between localized states with distinct energies [29,30].

As seen in Figure 2, the values of σ0 and T0 increase after heat treatment at 70 ◦C
during the first three hours for both nickel cobaltite films of 80 nm and 120 nm thickness,
respectively. Specifically, regarding the thicker 120 nm NiCo2O4 film, it is depicted that
the values of σ0 range from 21 × 103 S cm−1 for t = 0 h to 30 × 103 S cm−1 for t = 3 h,
while the values of T0 increase from 59 × 105 K to 83 × 105 K, respectively. Similar
behavior is observed for the thinner 80 nm NiCo2O4 film during the first three hours whilst
depicting 12 times lower values of σ0 and about three times lower values of T0 for t = 3 h
in comparison to the thicker 120 nm NiCo2O4 film (Figure 2a,b). This indicates that
there is an improvement in conduction mechanisms during the first three hours following
a stabilization of the process, remaining nearly constant during the thermal treatment
exceeding four hours, suggesting that the conductivity, in that case, is not affected by
thermal aging. The charge carrier mobility and concentration of the solution combustion
synthesized NiCo2O4 were obtained using a 1T magnet. The p-type NiCo2O4 films exhibit
a high carrier concentration of ~3.9 × 1020 cm−3 and a mobility of ~7.4 × 10−2 cm2/V.s.

3.2. Normal Device Architecture OPVs with Neat NiCo2O4 and Cu-SCN Surface Modified
NiCo2O4 HTLs

The above observation of suitable conductivity, low toxicity, and relatively low pro-
cessing temperature of NiCo2O4 are important parameters for high-performance and
environmentally friendly OPVs. In this section, we fabricate a normal device structure
OPVs based on the T1:ITIC-4F active layer using NiCo2O4 and Cu-SCN surface-modified
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NiCo2O4 HTLs. Importantly, for the processing of the presented OPVs, the low-toxicity
solvent O-xylene is used instead of commonly used, replacing the high-toxicity halogenated
solvents (e.g., chloroform, chlorobenzene) commonly used for reporting high-performance
OPVs in the literature. Furthermore, both NiCo2O4 and Cu-SCN surface-modified NiCo2O4
HTLs, as well as the OPV active layer, were deposited using blade coating, which is a
scalable technique compatible with the fabrication of large-area OPVs.

Environ. Sci. Proc. 2023, 26, 63 FOR PEER REVIEW 5 of 8 
 

 

observed for the thinner 80 nm NiCo2O4 film during the first three hours whilst depicting 
12 times lower values of σ0 and about three times lower values of T0 for t = 3 h in compar-
ison to the thicker 120 nm NiCo2O4 film (Figure 2a,b). This indicates that there is an im-
provement in conduction mechanisms during the first three hours following a stabiliza-
tion of the process, remaining nearly constant during the thermal treatment exceeding 
four hours, suggesting that the conductivity, in that case, is not affected by thermal aging. 
The charge carrier mobility and concentration of the solution combustion synthesized 
NiCo2O4 were obtained using a 1T magnet. The p-type NiCo2O4 films exhibit a high carrier 
concentration of ~3.9 × 1020 cm−3 and a mobility of ~7.4 × 10−2 cm2/V.s. 

 
Figure 2. The parameters (a) σ0 and (b) T0 versus the aging time for 80 nm thickness of NiCo2O4 film 
and 120 nm thickness of NiCo2O4 film, respectively, during thermal treatment at 70 °C under ambi-
ent air. 

3.2. Normal Device Architecture OPVs with Neat NiCo2O4 and Cu-SCN Surface Modified 
NiCo2O4 HTLs 

The above observation of suitable conductivity, low toxicity, and relatively low pro-
cessing temperature of NiCo2O4 are important parameters for high-performance and en-
vironmentally friendly OPVs. In this section, we fabricate a normal device structure OPVs 
based on the T1:ITIC-4F active layer using NiCo2O4 and Cu-SCN surface-modified 
NiCo2O4 HTLs. Importantly, for the processing of the presented OPVs, the low-toxicity 
solvent O-xylene is used instead of commonly used, replacing the high-toxicity halogen-
ated solvents (e.g., chloroform, chlorobenzene) commonly used for reporting high-perfor-
mance OPVs in the literature. Furthermore, both NiCo2O4 and Cu-SCN surface-modified 
NiCo2O4 HTLs, as well as the OPV active layer, were deposited using blade coating, which 
is a scalable technique compatible with the fabrication of large-area OPVs. 

Thus, the neat and Cu-SCN surface-modified NiCo2O4 HTLs were used as hole-trans-
porting layers in OPVs with the following structure: ITO/HTL/T1:ITIC-4F/Ca/Al. Figure 3 
presents the light J-V curves of the corresponding solar cells under 1 sun-simulated light 
(A.M.1.5) using neat NiCo2O4 and surface modified with Cu-SCN as HTLs. The respective 
photovoltaic parameters, open circuit voltage (Voc), short circuit current (Jsc), fill factor 
(FF), and power conversion efficiency (PCE) are presented in Table 1. The OPVs with neat 
NiCo2O4 HTL provide a PCE = 4.38%, with a Voc = 0.89 V, Jsc = 12.00 mA/cm2 and FF = 
40.75%. The proposed Cu-SCN surface treatment of the NiCo2O4 improves the PV param-
eters: a Voc = 0.92 V, Jsc = 15.06 mA/cm2, and FF = 44.76% and thus improves the corre-
sponding PCE value to 6.20%. The PCE enhancement is ascribed to the Cu-SCN surface 
treatment of the NiCo2O4 HTL that provides passivation of the surface defects of NiCo2O4, 

reducing the interface charge carrier recombination as it can be derived from the increased 
Voc value of the corresponding OPVs. Moreover, the Cu-SCN surface treatment of the 
NiCo2O4 HTL improves the electron-blocking properties of the bottom OPV electrode, re-
sulting in increased Jsc and FF values for the corresponding OPVs. The above initial device 
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film and 120 nm thickness of NiCo2O4 film, respectively, during thermal treatment at 70 ◦C under
ambient air.

Thus, the neat and Cu-SCN surface-modified NiCo2O4 HTLs were used as hole-
transporting layers in OPVs with the following structure: ITO/HTL/T1:ITIC-4F/Ca/Al.
Figure 3 presents the light J-V curves of the corresponding solar cells under 1 sun-simulated
light (A.M.1.5) using neat NiCo2O4 and surface modified with Cu-SCN as HTLs. The
respective photovoltaic parameters, open circuit voltage (Voc), short circuit current (Jsc),
fill factor (FF), and power conversion efficiency (PCE) are presented in Table 1. The OPVs
with neat NiCo2O4 HTL provide a PCE = 4.38%, with a Voc = 0.89 V, Jsc = 12.00 mA/cm2

and FF = 40.75%. The proposed Cu-SCN surface treatment of the NiCo2O4 improves the
PV parameters: a Voc = 0.92 V, Jsc = 15.06 mA/cm2, and FF = 44.76% and thus improves
the corresponding PCE value to 6.20%. The PCE enhancement is ascribed to the Cu-SCN
surface treatment of the NiCo2O4 HTL that provides passivation of the surface defects of
NiCo2O4, reducing the interface charge carrier recombination as it can be derived from the
increased Voc value of the corresponding OPVs. Moreover, the Cu-SCN surface treatment of
the NiCo2O4 HTL improves the electron-blocking properties of the bottom OPV electrode,
resulting in increased Jsc and FF values for the corresponding OPVs. The above initial
device performance results demonstrate the potential of NiCo2O4 and Cu-SCN surface-
treated NiCo2O4 HTLs for the fabrication of environmentally friendly OPVs.
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Table 1. PV parameters of the normal device architecture T1:ITIC-4F based OPV using NiCo2O4 and
NiCo2O4/Cu-SCN as hole transporting layers.

HTL Voc (V) Jsc (mA/cm2) FF (%) PCE (%)

NiCo2O4 0.89 −12.00 40.75 4.38
NiCo2O4/Cu-SCN 0.92 −15.06 44.76 6.20

4. Conclusions

In conclusion, we studied the electrical properties of NiCo2O4 films using D.C. con-
ductivity and Hall effect measurements. The D.C. conductivity measurements via a soft
thermal aging treatment of NiCo2O4 films of different thicknesses (80 and 120 nm) that
have been processed to identical conditions to NiCo2O4 HTLs incorporated within OPVs
showed a detectable impact on the conductivity, which was accredited to internal structural
change. Specifically, for the thinner nickel cobaltite HTL of 80 nm, a short heating time
of 1.5 h increased the conductivity, whereas a prolonged heating time gradually shifted
the conductivity curve to lower values, whilst for the thicker nickel NiCo2O4 HTL of
120 nm, the conductivity values decreased monotonically. Those measurements enabled us
to identify a “hopping-like” charge transport as the primary mechanism that determines
the conductivity and consequently calculate the “hopping” distance of solution-processed
nanoparticulate-based NiCo2O4 HTLs. Moreover, hall effect measurements revealed a high
carrier concentration of ~3.9 × 1020 cm−3 and mobility of ~7.4 × 10−2 cm2/V.s for p-type
NiCo2O4 HTLs. Furthermore, we examined the implementation of low toxicity NiCo2O4
and Cu-SCN surface modified NiCo2O4 as hole transporting layers on the performance
of non-fullerene acceptor (T1:ITIC-4F) based OPVs that have been processed by blade
coating using non-chlorinated solvents such as O-xylene and alcohols, thus giving the
opportunity for the development of eco-friendly solution-processed OPVs. The initial
reported solar cell device results for the proposed Cu-SCN surface treatment of NiCo2O4
HTL showed improved photovoltaics characteristics, yielding Voc = 0.92 V, Jsc = 15.06
mA/cm2, and FF = 44.76%, and thus enhancing the corresponding PCE value to 6.20%
compared to untreated NiCo2O4 HTL based OPVs with PCE of 4.38%.
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