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Abstract: A weather forecast is a result of applying science and technology to predict the conditions
of the atmosphere in a selected location and time in the future. The main input is a collection of data
(atmospheric, land, and ocean), and the resulting output is meteorology (how atmospheric conditions
will change). People have been trying to predict the weather by observing nature for thousands
of years, but in a scientific way only since the 19th century. First manually and based mostly on
changes in barometric pressure, and later in modern times with the contribution of computer-based
models (numerical weather prediction). Despite the high inaccuracy of numerical weather prediction
beyond 10 days, the interest in long-term weather forecasts is very high due to social reasons—energy
sector, civil protection, etc.—and the scientific effort is constant. Here, we propose a statistical
weather model for long-term weather forecasts based on weather/climate data time series. We will
analyze atmospheric data in 850 hPa for a period of 35 years, resulting in temperature ensembles
and temperature deviations for specific periods. Finally, we will contrast the results of the statistical
weather model (prediction) with the real data to check the accuracy of the model.

Keywords: long-term weather forecast; seasonal forecast; statistical analysis; temperature deviation;
statistical model

1. Introduction

A long-term weather forecast is the Holy Grail of meteorology. Supercomputers and
numerical methods [1] are combined to improve weather forecasts beyond 10 days. Despite
the applied high science and technology, results are poor due to fundamental obstacles
in numerical forecast [2]. Therefore, long-term weather forecast is produced mostly from
models based on statistical analysis.

Statistical analysis is the in-depth study of a problem using calculations, tables, and
charts in order to produce statistical conclusions [3]. The presentation of the primary
statistical material is called classification [4], with geometrical classification and time series
classification as the most important subsets.

Time series classification (TSC) [5] is the tracking of the evolution of a variable over
time. Time series are described with one or more of the following features:

A long-term trend.
A periodical trend.
Some irregular or random variations.
Statistical analysis of a time series is recommended to describe the regularity that may

exist between successive values of a variable having as a purpose to predict the future
behavior of that series.

2. Method

The method is based on a time-series analysis of temperature data at 850 hPa. The
layer of 850 hPa is selected because it is not affected by surface conditions like the Foehn
effect [6], temperature inversion [7], or urban heat island effect [8].
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Ten major administrative regions of Greece (Thrace, Macedonia, Epirus, Thessaly,
Ionian islands/West Greece, Central Greece/Attica/Euboea, Peloponnese, North Aegean,
Crete, and South Aegean) are selected, representing the grids of the study. For each grid,
a dataset of daily temperatures in 850 hPa for the last 35 years is downloaded from the
Physicals Science Laboratory, NOAA [9], and registered in a database.

Since the registration is completed, the database is simplified in 5-day periods and
interfaced with the formula of the model.

The formula is a machine learning algorithm based on climate and astronomical
cycles—El Nino, La Nina, and solar cycles—and statistical weights, sums, and possibilities.
It is described by four main processes:

1. Calculation of average temperatures in periods of 35, 22, 9, and 7 years (A35, A22, A9,
and A7 values) (Figure 1);
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Figure 3. C values and D values. 

4. Calculation of prediction values based on the formula: 

[A35 value] + or − (depending on the D22 value) [ABS of A22 value] + or − (depending 

on the D9 value) [ABS of A9 value] + or − (depending on the D7 value) [ABS of A22 value] 

For each season, the model produces 18 prediction values (6 per month), resulting in 

a temperature ensemble for each studied region (Figure 4). 

MARCH
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

March 1–5 ‒1.3 4.2 2.8 1.3 4.7 3.3 7.9 6.4 ‒2.6 3.6 6.5 6.6 2.0 7.1 12.2 0.4 3.5 4.1 4.2 6.2 8.6 5.4 9.1 5.2 0.2 2.6 3.8 4.7 4.9 6.7 7.7 3.7 3.0 3.1 ‒0.7

March 6–10 2.2 1.4 4.6 7.9 ‒1.1 ‒3.5 0.4 1.9 ‒3.5 ‒0.1 6.8 5.3 0.7 6.5 12.5 1.2 ‒0.4 1.2 1.0 6.9 5.6 3.6 5.8 ‒2.8 4.6 5.3 1.5 2.2 6.6 3.8 6.7 8.1 3.1 3.6 ‒0.1

March 11–15 1.2 2.5 4.9 3.4 0.7 ‒1.6 2.5 1.5 2.1 3.0 0.8 5.7 3.5 6.6 4.9 2.6 2.0 1.3 2.4 2.4 5.1 0.6 3.6 4.9 1.1 8.8 2.7 1.2 3.6 1.3 6.3 4.6 3.3 4.2 ‒5.5

March 16–20 3.1 9.6 5.3 6.4 ‒2.0 2.2 6.0 3.7 1.9 3.1 ‒3.4 3.0 ‒0.5 11.0 5.6 ‒1.2 5.8 7.6 2.1 5.0 8.2 0.1 1.1 7.8 3.7 3.5 8.4 0.7 3.0 5.5 9.3 7.3 3.8 1.5 ‒2.6

March 21–25 5.1 9.3 8.1 10.5 1.3 10.0 6.7 ‒1.3 ‒1.3 ‒2.6 ‒3.3 1.0 1.4 11.7 4.0 ‒3.8 7.2 4.2 7.2 4.6 8.7 1.2 8.1 1.5 7.0 7.4 6.3 5.9 8.8 8.6 6.0 5.6 5.5 2.3 ‒1.0

March 26–31 2.8 5.5 7.6 9.2 4.3 6.1 5.3 4.5 5.2 2.7 ‒0.5 5.5 9.6 13.4 ‒1.1 4.3 9.9 9.3 7.5 5.0 3.7 5.5 7.5 6.2 5.2 8.7 5.8 6.1 4.5 6.2 6.6 3.5 6.1 1.1 5.5

2.17 5.43 5.55 6.46 1.32 2.76 4.79 2.80 0.29 1.60 1.16 4.52 2.79 9.38 6.35 0.59 4.64 4.61 4.07 5.01 6.66 2.73 5.87 3.81 3.63 6.04 4.74 3.47 5.23 5.36 7.10 5.47 4.13 2.65 ‒0.73

0.48 1 0.20 1 0.00 1

0.57 0 0.60 0 0.33 1

0.52 0 0.80 0 0.67 0

0.48 1 0.40 1 0.00 1

0.61 0 0.60 0 0.33 1

0.52 0 0.40 1 0.33 1

Figure 1. Average temperatures in 850 hPa.

2. Comparison of last period temperatures with A35 values—0 for lower values and 1
for higher values (B values) (Figure 2);

Figure 2. B values (deviation to 35 years’ average temperature).

3. Calculation of average B values in periods of 22, 9, and 7 years (C22, C9, and C7
values—grey) and calculation of corresponding D values (statistical weights) (D22,
D9, and D7 values—red) (Figure 3);
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Figure 3. C values and D values.

4. Calculation of prediction values based on the formula:

[A35 value] + or − (depending on the D22 value) [ABS of A22 value] + or − (depending
on the D9 value) [ABS of A9 value] + or − (depending on the D7 value) [ABS of A22 value]

For each season, the model produces 18 prediction values (6 per month), resulting in a
temperature ensemble for each studied region (Figure 4).

Predictions proceed into a second-level analysis resulting in temperature deviations
(Figure 5), and they are plotted in weather maps (Figure 6).

The total amount of information (temperature ensembles, temperature deviations, and
weather maps) is combined for translating data into text. Short paragraphs are published
with reference to possible dates with significant changes in weather circulation.
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3. Results

We will examine the accuracy of the model for the period 1 December 2021 till
30 November 2022 in terms of deviation trend, separated into four (4) seasons and with
respect to the grid of Attica.

We start with the registration of the predicted deviation values and real deviation
values downloaded from the Physicals Science Laboratory, NOAA [9]. Since we built the
dataset, we proceeded to the transformation of values—1 for positive values and 0 for
negative values. Identical values result in 1, and non-identical values in 0 (Figure 7).
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Attica Deviation (P) Deviation (R) Prediction Real Coefficient

June 1–5 ‒0.1 3.4 0 1 0

June 6–10 ‒0.3 1.3 0 1 0

June 11–15 4.6 ‒1.3 1 0 0

June 16–20 0.1 ‒0.9 1 0 0

June 21–25 ‒0.2 2.1 0 1 0

June 26–30 ‒5.5 ‒0.3 0 0 1

July 1–5 ‒0.2 1.2 0 1 0

July 6–10 0.3 ‒0.9 1 0 0

July 11–15 ‒1.6 ‒1.8 0 0 1

July 16–20 0.2 0.2 1 1 1

July 21–25 4.1 1.9 1 1 1

July 26–31 ‒6.2 3.2 0 1 0

August 1–5 ‒6.5 0.8 0 1 0

August 6–10 ‒0.2 0.1 0 1 0

August 11–15 ‒6.1 ‒0.9 0 0 1

August 16–20 ‒5.8 2.3 0 1 0

August 21–25 ‒5.9 ‒1.2 0 0 1

August 26–31 ‒5.9 ‒0.5 0 0 1

Attica Deviation (P) Deviation (R) Prediction Real Coefficient

September 1–5 ‒5.6 ‒0.5 0 0 1

September 6–10 ‒5.1 ‒1.7 0 0 1

September 11–15 ‒0.2 ‒0.9 0 0 1

September 16–20 ‒5.1 4.1 0 1 0

September 21–25 ‒4.6 0.3 0 1 0

September 26–30 0.8 2.1 1 1 1

October 1–5 ‒4.4 ‒1.5 0 0 1

October 6–10 ‒3.0 ‒0.2 0 0 1

October 11–15 ‒4.0 ‒1.3 0 0 1

October 16–20 ‒4.0 ‒3.2 0 0 1

October 21–25 ‒3.5 ‒0.9 0 0 1

October 26–31 ‒3.3 ‒1.4 0 0 1

November 1–5 ‒2.1 3.1 0 1 0

November 6–10 ‒3.0 6.6 0 1 0

November 11–15 2.5 1.1 1 1 1

November 16–20 0.0 ‒1.6 1 0 0

November 21–25 ‒2.0 0.4 0 1 0

November 26–30 ‒1.9 2.1 0 1 0

Figure 7. Predicted deviation vs. real deviation and coefficient values (per season). Gradient color
scale from -30 degrees Celsius (negative deviation: deep blue to light blue) to +30 degrees Celcius
(positive deviation: light red to deep red).

According to the resulting coefficient, the accuracy of each season is the following:

• Winter: 72.2%;
• Spring: 72.2%;
• Summer: 38.9%;
• Autumn: 61.1%.

We observe that winter, spring, and summer meet medium to high scores, while
summer meets low scores. Analyzing the accuracy of each month, we have the follow-
ing results:

• December: 66.7%;
• January: 66.7%;
• February: 83.3%;
• March: 83.3%;
• April: 66.7%;
• May: 66.7%;
• June: 16.7%;
• July: 50%;
• August: 50%;
• September: 66.7%;
• October: 100%;
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• November: 16.7%.

Among twelve months, three months meet high scores (February, March, October),
five months meet higher-than-average scores (December, January, April, May, September),
two months meet average scores (July and August), and two months meet low scores (June
and November).

The above results show a weakness in algorithmic function during the summer period,
as well as for November. In contrast, from December to May (as well as September), the
results show a strong algorithmic functionality, while October meets an exceptional score.

The dysfunctionality of the summer period is under investigation. A mismatch in the
order of D and A values in the formula has been detected, it is corrected, and it will be
reevaluated in the next seasonal prediction (published on 19 May 2023) [11].

Further research is required, involving more seasons/years of predictions to detect
specific dysfunctionalities of the algorithm and to confirm the good results as well. Addi-
tionally, the method should be applied in more grids, and globally if possible, to ensure total
application (ongoing). A final and more complicated step is the application of the method
with temperature data in 500 hPa and the combination of resulting values in 850 hPa and
500 hPa for a more accurate prediction.
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