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Abstract: Climate models are fundamental tools for assessing historical climate conditions and
projecting future ones. However, the results often differ systematically from observational data. The
minimization of these differences is known as bias correction. The present study aims to correct
the biases between observed daily precipitation values and the respective simulated ones from a
EURO-CORDEX climate model. For this purpose, powerful statistical tools—generalized additive
models (GAMs)—are used. GAMs are modified to adjust the simulated rainfall with the highest
accuracy, and subsequently, they are evaluated by comparison with observational data. The method
was applied to two eastern Mediterranean stations (Larissa in Greece and Larnaca in Cyprus) for the
period 1981 to 2005. The results from both stations reveal that GAMs offer a valuable and accurate
technique for the bias adjustment of daily precipitation.

Keywords: bias correction; daily precipitation; generalized additive models (GAMs); eastern
Mediterranean

1. Introduction

Climate modelling is the primary method to simulate historical climate conditions and
projecting future ones. However, due to the chaotic nature of atmospheric processes and
our limited understanding of some of them, climate models tend to differ systematically
from observed data [1]. These differences are more pronounced for extreme values or
climate parameters characterized by stochasticity (e.g., precipitation). Hence, a general
interest exists in the minimization of these discrepancies. This procedure is known as bias
adjustment or bias correction (BC) and should precede the use of climate model outputs in
impact studies [2].

The BC challenge is more demanding but also more essential for parameters with
strong variability, stochasticity and high temporal resolution (e.g., daily values) [3]. This
is particularly relevant for precipitation and significant biases can occur both in modelled
amounts and distributions [4]. Several methods have been developed for the BC of model
output. Change factor methods (e.g., delta and scaling) are the simplest but are mainly
appropriate for correcting the mean of the studied variable’s distribution [5]. On the other
hand, distribution-based approaches (e.g., quantile mapping) are preferred for correcting
higher-order moments of the climate parameters of interest [6]. Recently, more sophisticated
statistical methods have been developed to increase the accuracy of climate model output
in the most optimal way (e.g., [7,8]). However, with regard to precipitation, there is still a
great need for developing a BC method to represent the main variability on a high temporal
resolution [3].
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The present research aims to introduce and evaluate an innovative statistical method, the
Q-GAM, for the bias correction of daily precipitation. The method combines the distribution-
based quantile mapping method of BC, with flexible statistical tools—generalized additive
models (GAMs).

2. Materials and Methods
2.1. Data

This study used both observed daily precipitation data from ground stations and
simulated daily precipitation data from the regional climate model (RCM) during the
25-year period of 1981–2005. The ground station data were obtained from the Global
Summary of the Day (GSOD), which provides global coverage of daily meteorological
measurements from ground stations and underwent quality control to eliminate errors.
Two stations in the eastern Mediterranean, Larissa and Larnaca (Figure 1), were chosen
for this study. The observed daily precipitation data had less than 5% missing values,
while the RCM-simulated precipitation data were obtained from the regional climate
model GERICS-REMO2015 at a spatial resolution of 12.5 km, which was randomly selected
from the EURO-CORDEX ensemble. The analysis used the closest continental model
grid cell to each station and utilized the Earth System Model version 2G developed by
the National Oceanic and Atmospheric Administration’s Geophysical Fluid Dynamics
Laboratory (NOAA-GFDL-ESM2G) as the driving global climate model.
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2.2. Methodology

The BC approach used follows the steps below:

(1) The closest continental model grid point was selected for the two studied stations.
(2) The observed and simulated daily precipitation values were separated into two equal-

length sub-periods, the “calibration” and the “evaluation”. Hence, each one of the
two sub-periods consisted of 4566, with no temporally coherent precipitation values.
For assessing the sensitivity of the proposed method on the selection of the calibration
and the evaluation period and equivalently on different climatic conditions, this step
was repeated 100 times (bootstrapping).

(3) The Q-GAM method was applied to the daily rainfall data, and comprised nine steps.
Firstly, the proportion of dry days for the observed and modeled data is computed:
πm(c) and πo(c), as well as the difference πd = πo(c) − πm(c) (with π indicating the
proportion). Additionally, the observed rainfall time series were represented by ot
and the RCM model rainfall by mt, where t is the daily time step and the superscript
relates to either the calibration period τ = c or the evaluation period τ = e. A day is
defined as “dry” when its total precipitation amount is zero, noting that this can be
trivially extended to any value below a certain threshold (e.g., 0.1 mm).

Secondly, all dry days were excluded from observed and modelled data to create a
new set of time series. The rainfall values exceeding the 0.99 sample quantile of each time
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series have been excluded from the analysis. The corrections of such extreme values need a
separate analysis. In the next step, we calculated an equidistant sample of quantiles for the
observed and modelled time series. This is based on empirical quantile mapping, which
avoids the choice of a parametric model to describe the marginal distribution of observed
and modelled precipitation.

Following that, it is of high importance to ensure that the GAM captures the relation-
ship between the quantiles of the model data and the non-zero quantiles of the observations.
Climate models tend to simulate a smaller number of rainy days, something that holds for
the chosen area of study.

In what follows, a brief definition of GAMs is presented. For a deeper understanding
of this tool, we propose [9]. A GAM based on the Normal distribution is given with

op ~N(f (mp), σ2) (1)

f (mp) = exp{s(mp)} (2)

where s(mp) is a smooth function of the model precipitation quantiles, defined by penalized
regression splines [9].

This modelling approach estimates the “quantile mapping function” f (mp) between
observed and modelled precipitation quantiles. The choice of distribution (e.g., Normal) is
of secondary concern, since the aim here is to estimate f(·). In addition, parameterizing f(·)
explicitly allows for extrapolation to unobserved quantile values (the robustness of this
assessed in the bootstrapping experiment).

After computing the f(·), the non-zero values were computed for the studied period.
Then we calculated the extra number of dry days needed in the corrected values, so that
the difference in the proportion of dry days πd is preserved.

(4) Finally, the bias corrected values were compared with the corresponding observed ones.

3. Results

To evaluate the efficacy of the Q-GAM method in improving the distribution of the
simulated rainfall values, we present a comparison of three data sets for the evaluation
period (2000–2005). In particular, a statistical analysis compares the initial simulated daily
rainfall amounts with the bias-corrected ones with the Q-GAM method and the observed
values. The analysis is presented for the two studied stations (Larissa and Larnaca).

Figure 2 shows three comparison plots for the Larissa station. The first presents the
observed (grey), simulated (green), and bias-corrected (pink) daily precipitation values in
the form of boxplots. Accordingly, the model underestimates the observed values in all
quantiles (e.g., 0.25, 0.50, 0.75, and 1). In contrast, a significant improvement is obtained
at all levels after using the Q-GAM method. This outcome is confirmed by the second
plot, the Quantile–Quantile plot (QQ). The simulated precipitation amounts diverge from
the diagonal respect line, denoting biases between the observed and simulated values.
Conversely, the line of the corrected values accurately fits the diagonal one, meaning there
is a good match between the two studied time series. The density plot (Figure 2—right
panel) shows that the model erroneously simulates a greater frequency of low-precipitation-
amount days and underestimates the extreme values, and that both elements are corrected
with the Q-GAM method. It should also be mentioned that a significant improvement is
recorded in the proportion of dry days. The model simulates that 57% of the studied days
have precipitation amounts equal to zero. According to the observations, this percentile is
78%, which is very close to the bias-corrected values (80%).

The Larnaca results in Figure 3 show a similar performance. The percentage of dry
days is appropriately corrected from 70% to 88%, while the modeled under-prediction is
also corrected (as demonstrated by the boxplot). The QQ plot (Figure 3—middle panel)
reveals that the bias-corrected values fit very well with the observed ones until about the
0.7 quantile, while for the greatest values, an overestimation is observed. The density plot
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shows a significant improvement in the frequency of the lowest precipitation amounts
(Figure 3—right panel).
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Table 1 presents a frequency analysis of the results obtained from the bootstrapping
loop for each station, which quantifies the degree of improvement achieved. Examining the
aggregate performance of the Q-GAM method across multiple runs provides insight into its
robustness to various factors, including (a) climate conditions at each station, (b) temporal
variability in climatological conditions, and (c) variability in the accuracy of the RCM. The
table indicates the proportion of times that the Q-GAM correction method outperformed
the original model output for each of the six summary statistics, thereby highlighting the
success of the method. To determine success, the difference between the observations
and (a) the RCM data and (b) the corrected RCM data was calculated for all metrics. If
the difference for the corrected data was smaller than the RCM data, it was considered
a success. Table 1 displays the percentage of such successes. The results show that the
proportion of dry days is improved across all stations, regardless of the evaluation and
calibration period. The total annual precipitation is also improved across almost all runs,
indicating that the method is robust to the choice of the calibration and evaluation period,
as well as the station’s climatology.

Table 1. Proportion of times in the bootstrapping experiment when the bias-corrected data outper-
formed the initial climate model output, for each station. Statistics other than the proportion of zeros
are computed for non-zero days.

Station Proportion
of Zeros

Annual
Sum 90% 95% Mean Standard

Deviation

Larissa 100 87 96 95 98 82

Larnaca 100 71 99 91 99 92
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To evaluate the Q-GAM method’s ability to correct precipitation extremes, we analyzed
its performance using the 90% and 95% percentiles. Our results, as shown in Table 1,
demonstrate that the method significantly reduces the biases between the observed and
corrected data in at least 90% of the runs for both percentiles. We also assessed the
mean and standard deviation of the precipitation distribution (Table 1), which indicates a
significant improvement in these statistics. Specifically, the standard deviation improves
in a minimum of 75% of the runs, highlighting the effectiveness of the Q-GAM method in
correcting precipitation extremes.

4. Discussion and Conclusions

We present a new method, called the Q-GAM method, which combines quantile map-
ping and generalized additive models (GAMs) for bias correction. The method is adaptable
and flexible, as the quantiles of both model output and observations are calculated empiri-
cally, and mapping is performed using penalized non-linear regression. We applied the
method to the data from two eastern Mediterranean stations (Larissa and Larnaca) and
evaluated its performance. We also demonstrate the method’s robustness using a boot-
strapping experiment, which considers the station’s location (climate characteristics) and
temporal variability, both of which are known to affect bias correction performance [10,11].
The data were split into calibration and evaluation periods, and we varied these periods in
the bootstrapping experiment. Our results indicate that the Q-GAM method performs well
across various calibration/evaluation periods, with over 70% of the runs for most metrics
in both stations showing bias-corrected time series statistics that are closer to the observed
data. This gives us confidence in applying the Q-GAM method to future climate projection
data, even when the climate conditions may be different.

Our investigation shows that the Q-GAM approach is a robust and accurate method for
the bias correction of daily precipitation, with the added advantage of low computational
cost. The Q-GAM method was also found to significantly improve the number of dry days
and high rainfall extremes while replicating the precipitation regime of the two regions
well. Traditional bias correction methods often fail to detect dry days, but this is not an
issue with the Q-GAM method.

Although this work is exploratory, it provides valuable insights into using GAMs
with quantile mapping for bias correction. The use of GAMs allows for the inclusion of
more than one model variable in the correction, such as temperature or pressure, through
a multi-variable transfer function defined by tensor product interaction. Additionally,
station-specific variables like spatial coordinates or elevation can be added to the transfer
function as an interaction term and applied simultaneously to multiple locations, which
is a critical element in bias-correcting model output in the absence of observations. These
further developments will be explored in future work.

Author Contributions: G.L., T.E. and C.A. conceived and designed the project. G.L. and T.E. con-
ceptualized and developed the statistical framework and conducted the implementation and model
refinement. C.A. provided her climate expertise for the whole climate analysis. A.T. provided the
observational data and their quality control. G.L. and A.T. analyzed the data. G.L. and T.E. led
manuscript writing. C.A., G.Z. and J.L. provided general scientific input, critical review, and overall
support. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the EMME-CARE project that has received funding from the
European Union’s Horizon 2020 Research and Innovation Program, under Grant Agreement No.
856612, as well as matching co-funding by the Government of Cyprus.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Environ. Sci. Proc. 2023, 26, 17 6 of 6

Data Availability Statement: All datasets used are publicly available through the Global Summary
of the Day (GSOD), a dataset provided by the National Climatic Data Center (NCDC): https://
www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516. (accessed on
21 April 2022). The climate modeled data that were used are available through the EURO-CORDEX
ESGF page (https://cordex.org/data-access/esgf/ (accessed on 21 April 2022)).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Maraun, D.; Widmann, M. Statistical Downscaling and Bias Correction for Climate Research; Cambridge University Press: Cambridge,

UK, 2018. [CrossRef]
2. Christensen, J.H.; Boberg, F.; Christensen, O.B.; Lucas-Picher, P. On the need for bias correction of regional climate change

projections of temperature and precipitation. Geophys. Res. Lett. 2008, 35, L20709. [CrossRef]
3. Maraun, D. Bias correcting climate change simulations-a critical review. Curr. Clim. Chang. Rep. 2016, 2, 211–220. [CrossRef]
4. Goodison, B.E.; Louie, P.Y.; Yang, D. Wmo Solid Precipitation Measurement Intercomparison; World Meteorological Organization:

Geneva, Switzerland, 1998.
5. Vrac, M.; Noel, T.; Vautard, R. Bias correction of precipitation through singularity stochastic removal: Because occurrences matter.

J. Geophys. Res. Atmos. 2016, 121, 5237–5258. [CrossRef]
6. Hagemann, S.; Chen, C.; Haerter, J.O.; Heinke, J.; Gerten, D.; Piani, C. Impact of a statistical bias correction on the projected

hydrological changes obtained from three gcms and two hydrology models. J. Hydrometeorol. 2011, 12, 556–578. [CrossRef]
7. Piani, C.; Haerter, J.O. Two dimensional bias correction of temperature and precipitation copulas in climate models. Geophys. Res.

Lett. 2012, 39, L20401. [CrossRef]
8. Lazoglou, G.; Angnostopoulou, C.; Tolika, K.; Benedikt, G. Evaluation of a New Statistical Method—TIN-Copula–for the Bias

Correction of Climate Models’ Extreme Parameters. Atmosphere 2020, 11, 243. [CrossRef]
9. Wood, S. Generalized Additive Models: An Introduction with r, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2017.
10. Chen, J.; Brissette, F.P.; Chaumont, D.; Braun, M. Finding appropriate bias correction methods in downscaling precipitation for

hydrologic impact studies over north America. Water Resour. Res. 2013, 49, 4187–4205. [CrossRef]
11. Beyer, R.; Krapp, M.; Manica, A. An empirical evaluation of bias correction methods for palaeoclimate simulations. Clim. Past

2020, 16, 1493–1508. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516
https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516
https://cordex.org/data-access/esgf/
https://doi.org/10.1017/9781107588783
https://doi.org/10.1029/2008GL035694
https://doi.org/10.1007/s40641-016-0050-x
https://doi.org/10.1002/2015JD024511
https://doi.org/10.1175/2011JHM1336.1
https://doi.org/10.1029/2012GL053839
https://doi.org/10.3390/atmos11030243
https://doi.org/10.1002/wrcr.20331
https://doi.org/10.5194/cp-16-1493-2020

	Introduction 
	Materials and Methods 
	Data 
	Methodology 

	Results 
	Discussion and Conclusions 
	References

