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Abstract: Many hydrological responses rely on the water content of the soil (WCS). Therefore, in
this study, the surface WCS products of the Google Earth Engine Soil Moisture Active Passive (GEE
SMAP) were modeled by a support vector machine (SVM), and extreme learning machine (ELM)
models optimized by the teacher learning (TLBO) algorithm for Quebec, Canada. The results showed
that the ELM model is only able to forecast 23 steps with Correlation Coefficient (R) = 0.8313, Root
Mean Square Error (RMSE) = 6.1285, and Mean Absolute Error (MAE) = 5.0021. The SVM model could
only estimate the future steps, one step ahead, with R = 0.8406, RMSE = 18.022, and MAE = 17.9941.
Both models’ accuracy dropped significantly while forecasting longer periods.

Keywords: teacher learner; optimization; ELM; SVM; LSTM; forecast

1. Introduction

Numerous hydrological reactions depend on the amount of water in the soil. As
soil moisture rises, more runoff is created, resulting in increased sediment movement.
This environmental element affects the soil’s erosion resistance. Runoff, sediment, and
erosion are crucial in hydraulic structure design and watershed studies. The variations
in the WCS affect the agriculture section. The sustainable management of agricultural
water and land resources depends on this factor. Many environmental parameters, such
as soil and surface temperature, the amount of precipitation, and groundwater level,
influence this parameter. Hydrological extremes and climate variations intensely impact
these parameters, which increases the importance of studying WCS under changing climate
conditions. The constraints of measuring and expenditure limitation cause this parameter
not to be accessible at high spatio-temporal resolutions everywhere, particularly in vast
areas like Quebec. Therefore, a strategy should be considered for collecting and modeling
this useful parameter in data-scarce locations. This research will use SMAP products to
model and forecast the WCS.

Accordingly, Google Earth Engine (GEE) cloud datasets will be used. Using this
platform provides the possibility of obtaining curated datasets worldwide. This platform
uses high-efficiency computing resources and cloud-based calculations to process planetary-
scale data more efficiently. It also allows users to share their products and analysis in the
form of an application (app) [1]. One of these valuable apps is SOILPARAM, developed
by [2]. This app provides historical records of some soil parameters in the form of a
time series.

Using machine learning (ML) methods in modeling and forecasting hydrological
data analysis is common. The regression support vector machine (SVM) and extreme
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learning machine (ELM) models are two of many artificial intelligence (AI) methods that
have proven their potential power in modeling natural phenomena. The inherent intense
seasonality and stochastic patterns in the WCS make these modeling techniques suitable
for forecasting and extracting patterns from the datasets. Both models are considerably
fast and structurally simple when compared to other AI methods. They can be used for
generating real-time results. ELM is a single-layer feed-forward network model known
for its simple structure, fast computational process, and accuracy in forecasting non-linear,
highly seasonal datasets [3]. The ELM’s accuracy in forecasting rainfall [3], flows in
rivers [4], sediment transport [5], etc. has been proven. The authors of [6] used the ELM
model and its integration with ensemble empirical mode decomposition to forecast the
WCS in the upper layer of soil and compared it with a random forest. The model outcomes
showed that ELM outperformed the random forest, and its hybridization increased the
accuracy. Likewise, the SVM model has been used widely in modeling datasets because
of its simplicity, and derivable equations. For instance, ref. [7] used SVM to forecast the
WCS, five steps ahead by feeding the climatic factors as inputs to the model. They reported
a good performance for the SVM model as a result of using six meteorological inputs and
the first lag of WCS at 0.05 and 0.1 m.

The advantages of these two methods were addressed briefly. However, similar to
other AI methods, they suffer from input selection, model parameters tuning, and kernel
selection. Since the SVM model is a linear method, it may produce naïve results in intense
non-linear data. Optimizing them, using the teacher-learning-based optimization (TLBO)
algorithm [8] will reduce the tuning and input selection problems and helps find a better
solution. The major advantage of the TLBO is that it has significantly fewer controlling
parameters than its equivalents and is readily applied to different models. This study
consists of sequence research on the GEE SMAP WCS product completed by [8]. In that
study, they used a deep learning long short-term memory (LSTM) model and used the WCS
as the sole input of the model with optimization and structural investigation approaches.
The outputs of that study showed the potential power of LSTM in forecasting WCS in a
dynamic and long-term manner. Therefore, this study investigates whether the introduced
models can produce similar results. The TLBO optimization similarly will be used and
different lags of WCS as inputs will be checked to obtain the models’ capacity. Lastly, the
length of their accurate forecast horizon will be determined.

2. Model Descriptions
2.1. Support Vector Machine

This approach is praised for being generalizable, powerful, and precise. Support
Vector Machine (SVM) uses statistical theories and risk minimization structural concepts.
In this method, a decision function is created to boost model generalization and reduce
modeling errors by employing a deep dimensional space called feature space (FS) and
therefore optimizing margin border separation [9,10]. This strategy works with datasets
containing few samples. The SVM framework is based on the non-linear mapping of
input space into a high-dimensional domain for identifying a hyperplane. It minimizes
generalization errors [11].

If the target values would be WCSi (i = 1:l) as {(L1,WCS1), . . . ,( Li,WCSi)} and Li as the
lag inputs, in a training set with i samples, the Fl(x) as a linear function for training the
network can be defined as follows:

Fl(x) =
S

∑
i=1

(θi − θ∗i )(Li. L) + B (1)

where θi, θ∗i the slack variables, βi ∈ RN is the weights matrix and B equals to bias. The
maximum margin size is obtained by calculation of the Euclidean norm of weights. To
estimate weights (β), compute the objective function as:
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Min. : MP =
1
2
‖β‖2 + C

N

∑
i=1

(θi + θ∗i )Subjected to :

{
∀i : WCSi − (βi Li + B) ≤ ε + θ&∀i : (βi Li + B)−WCSi ≤ ε + θ∗

∀i : θi ≥ 0&∀i : θ∗i ≥ 0
(2)

C denotes the penalty constant. The Fl function approximates the training points with an ε
error and then generalizes it. L1.L is the input variables’ dot products. To avoid performing
dot multiplication on transformed data samples, a kernel function is written to replace each
occurrence of it.

2.2. Extreme Learning Machine

The extreme learning machine (ELM) is a development of feed-forward neural net-
works that tries to solve the problem of time-consuming training and local minima trap-
ping. Trapping results in reducing the generalizability and customizability of model
parameters [12]. Accordingly, input weights and neuron bias are set stochastically, and
output weights are computed by solving a linear equation as follows:

k

∑
j=1

Wj
O AFj (xi) =

k

∑
j=1

Wj
O AF(Wj

I · Li + Bj) = WCSi, j = 1, . . . , z (3)

where WI and WO are the input and output weights, and AF is the activation functions. Li
is the input variable, and z is the number of samples in each input variable. The iterative
technique outlined by [13] is used in the ELM model to regulate the random selection of
input weights and bias neurons, and increase generalizability. A total of 1000 iterations are
set to find the best weights. Extra iterations did not influence model errors.

3. Evaluation Criteria

This study uses the conventional Coefficient of Determination (R), Root Mean Square
Error (RMSE), and Mean Absolute Error (MAE) to evaluate and compare the models.

4. Study Region and Dataset Description

The study point is in the south of Quebec City, Canada, with a latitude of 46.73 N and
a longitude of 71.5 W. The region comprises the Jacques-Cartier South, Chaudière, and
Sainte-Anne rivers. The WCS data was downloaded from the National Aeronautics and
Space Administration (NASA) Enhanced SMAP Global Soil Moisture Dataset uploaded
in the GEE environment by NASA [14]. The dataset time range is from 2015 to July 2022,
with a 3-day measurement interval. This dataset was averaged weekly to obtain a total of
306 data points. To train and evaluate the model, considering the size of the dataset, it was
partitioned by a 70:30 ratio. The first partition, which contains 70% of the time series data
points, was used to train the networks and find the optimum weights, while the remaining
30% of the dataset was used to evaluate the model forecasts and estimated weights. The
statistical features are presented in Table 1. The dataset’s download link is presented in the
“Data Availability Statement” section.

Table 1. The dataset’s characteristics.

Data Nbr. Min. Max. 1st Q. Median 3rd Q. Mean

Train 306 4.725 25.400 20.114 24.122 25.062 21.711
Test 77 4.315 25.387 12.294 21.770 24.717 18.645
Total 383 4.315 25.400 19.285 23.901 25.023 21.095

Nbr., Number of data, Min. and Max., Minimum and Maximum of data, 1st Q. and 3rd Q., first and third Quarters.

5. Data Investigation and Model Tunning

The range for optimization and input definition is considered as [1 lag, 7 lags] based
on the ACF results (Figure 1). The range for the ELM hidden neuron size parameter is
[1, 34] with 1000 iterations. The ranges for the SVM model are also: C and σ ∈ [0.01, 2000],
ε ∈ [0.001, 1]. The TLBO parameters are population = 20 and maximum iteration = 100.
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future, with the correlation going up by 138%, the RMSE index going down by 65%, and 
the MAE index going down by 71% (Figure 3c,d). The SVM model's forecasting accuracy 
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taset, this linear model is not able to forecast more than one step in the future. Neverthe-
less, the ELM (23-step) model was more successful in short-term forecasting than the SVM. 

Figure 1. The autocorrelation function of datapoints for 1/4 of train data.

6. Model Results

A core i7 processor, with 16 Gigabytes of Random Access Memory (RAM), performed
the modeling and the runtime for the ELM optimization was approximately 8 h. This time
for the SVM model was 0.5 h, and, in both models, the optimum values were obtained in
early iterations, specifically the SVM model (Figure 2a,b). After modeling, the optimum
results were obtained by all seven inputs for both models and the maximum hidden neuron
size for ELM. The optimum results of TLBO-ML integrations are presented in Table 2. The
overall performance of both SVM and ELM models in the long-term forecast was very
poor, and both methods generated very naïve results so that the most accurate outcome
was obtained by ELM with R = 0.3654, RMSE = 17.9146, and MAE = 17.8131. The forecast
process was performed based on the addition of each estimated step to the historical data,
creating input lags and approximating the future step by the previous one. Therefore,
both ELM and SVM forecasted the 77-point test period, and the long-term forecast was
defined accordingly. This approach to forecasting failed, and it was found that both models’
forecasting accuracy is limited to less than 77 steps (Figure 3a,b).
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Table 2. The models’ evaluation results for the test period.

Model R RMSE (mm) MAE (mm)

Opt 1-ELM (Static) 0.3654 17.9146 17.8131
Opt-SVM (Static) 0.2954 60.8881 0.5993

Opt-ELM (23-Steps) 0.8313 6.1285 5.0021
Opt-SVM (Dynamic) 0.8406 18.022 17.9941

1 Opt: Optimized by TLBO.
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By doing more research and defining the different forecasting steps in the modeling
process, it was found that the ELM model can predict WCS values up to 23 steps into the
future, with the correlation going up by 138%, the RMSE index going down by 65%, and
the MAE index going down by 71% (Figure 3c,d). The SVM model’s forecasting accuracy is
also limited to one step in the future, and considering the severe fluctuation in the dataset,
this linear model is not able to forecast more than one step in the future. Nevertheless,
the ELM (23-step) model was more successful in short-term forecasting than the SVM. In
Figure 3c,d, it can be seen that the majority of the points are located in the 95% confidence
intervals and estimations are closer to the linear form than the long-term forecasts.

Ref. [8] undertook a study on the same products of the GEE SMAP by an LSTM
model. In that study, they used two approaches for the long-term forecasts of the WCS
dataset. The results of both approaches are presented in Figure 3e,f. The LSTM model
was more successful in estimating values and patterns than the long-term forecasts of
the SVM and ELM. The best results of the LSTM in a 50-step, long-term forecast, were:
R = 0.9220, RMSE = 1.9614, MAE = 1.2837 by the Holt–Winters (HW) preprocessing method,
and by TLBO optimization it estimated the WCS values by R = 0.9337, RMSE = 1.7809,
MAE = 1.1892, which is considerably more accurate than this study’s ML methods, even in
the 23-step ELM and dynamic SVM forecasts. In conclusion, the ELM model is more capable
of estimating the WCS values and fluctuation than the SVM, but it is limited to 23 steps,
which is almost half of the dataset’s period. In other words, it can forecast up to half of
the periodic patterns. However, using sole models without the methodology suggested
in [8] cannot produce very accurate results. It is suggested that ELM or SVM integrate
preprocessing techniques, such as advanced smoothing methods, or other seasonal methods
in seasonal data, such as WCS, to reduce the fluctuations in the dataset’s structure, even if
the periodic ACF pattern is not significant.

7. Conclusions

In this study, the surface soil moisture products of the GEE SMAP were modeled
by SVM and ELM. The TLBO algorithm optimized these models to estimate future steps
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based on the forecast of each step. The results showed that the ELM model is only able
to forecast 23 steps each time with R = 0.8313, RMSE = 6.1285, and MAE = 5.0021. The
SVM model was only able to estimate the future steps one step ahead with R = 0.8406,
RMSE = 18.022, and MAE = 17.9941. Both models’ accuracy dropped significantly while
forecasting longer periods than the ones mentioned. Since this study is a sequence to a
former study on the same product of SMAP by TLBO-LSTM, a comparison between the
results was made. Accordingly, the proposed deep learning LSTM method in the former
study is more successful in forecasting longer periods than ELM and SVM, with R = 0.9337,
RMSE = 1.7809, and MAE = 1.1892. We suggest that advanced smoothing methods should
be integrated, or other seasonal preprocessing techniques, to decrease both fluctuations
and correlations in the time series structure.
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