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Abstract: To meet the demand for increasing global food production while using limited water
resources, crop water stress must be improved in agriculture. Remote-sensing-based plant stress
indicators have the benefits of high spatial resolutions, a cheap cost, and short turnaround times.
This study discusses the current advancements in agricultural water stress monitoring and irrigation
scheduling, some of the challenges that have been met, and the upcoming research needs. Remote
sensing systems are prepared to handle the intricate and technical evaluations of agricultural produc-
tivity, security, and crop water stress quickly and effectively. We explore the use of remote-sensing
systems in the evaluation of crop water stress by looking at the existing research, technologies, and
data. This study examines the connection between relative water content (RWC), equivalent water
thickness (EWT), and agricultural water stress. Using remote sensing, evapotranspiration, and sun-
induced chlorophyll content are examined in connection to crop drought. Spectral indices, remote
sensing satellites, and multi-spectral sensing systems, as well as systems that measure land surface
temperature, are examined. This critical study focuses on cutting-edge techniques for assessing crop
water stress.

Keywords: crop water stress; spectral indices; multi-spectral; remote sensing satellites; thermometric sensing

1. Introduction

Arid regions have discovered creative solutions to meet their crop needs, based on
their growth phases, kinds, and environmental circumstances, which has led to appreciable
yield improvements. A deficiency of irrigation water will cause agricultural water stress
at various times throughout the crop cycle, under various environmental conditions. Its
primary impact is felt in the rate of photosynthesis, which further causes a disturbance in
the rates of transpiration [1,2].

Remote sensing collects information from crops, soil, and ambient elements without
direct physical contact [3]. Through the quick identification of crop growth changes that are
frequently missed by conventional approaches, it has improved and optimized agricultural
production [4]. A highly accurate determination of the crop temperature is made possible by
remote sensing systems, which also provide particular information that is important in the
study of irrigation scheduling, quantity, and duration [5]. Remote sensing systems can be
divided into sensor-based and platform-based systems. In total, two types of sensors may
record the reflectivity inside the electromagnetic (EM) spectrum: active sensors and passive
sensors. The sensor is mounted onto a variety of remote sensing platforms, including
ground vehicles, aircraft, satellites, and handheld devices [6].

Precision irrigation scheduling requires an assessment of crop water stress, which is
one of the elements that characterize how a crop interacts with its environment [7]. The
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CWS came to be recognized as a common indicator for evaluating this stress on the leaf
and canopy scales. This was a more accurate technique to examine the water stress at the
plot, regional, and global stages, as well as evapotranspiration. Implementing effective irri-
gation scheduling techniques is crucial to increase water savings and improve agricultural
sustainability [8]. Remote sensing data can reveal information on the geographical and
temporal variations of crops [9,10]. Precision agriculture uses spectral reflectance indices
from high-resolution hyperspectral sensors on small, unmanned aircraft systems to monitor
the crop water status and plan irrigation [11].

An assessment of the crop water deficit using remote sensing devices is the subject
of this review. The paper supplies an overview of the many remote sensing systems that
can be used to find crop water stress. Optical, thermometric, land-surface temperature,
multispectral (spaceborne and airborne), hyperspectral, and LiDAR sensing systems are
examined. A consensus about the use of vegetation indices (VIs) as pre-visual indicators of
water stress has not yet been reached, due to several confounding factors that affect these
VIs on the canopy and landscape scales. This research discusses the current developments
in crop water stress monitoring that may be applied to enhance vegetable crop irrigation
scheduling and seeks to figure out the most promising method for widespread implemen-
tation. To forecast the production conditions and schedule irrigation, the crop water stress
needs to be detected during the various growing seasons. Distinguishing this agricultural
water stress has been researched using several methodologies. These techniques rely on
remote sensing, measurements of the soil water content, and plant responses. The study
also considers the fact that different approaches are effectively used for different crops.

2. Comparison of Crop Water Stress Detection Methods

Table 1 provides an overview of various methods used for soil moisture measurement,
including the gravimetric method, time domain reflectometer (TDR), neutron probe method,
tensiometer method, vegetation indices method by remote sensing (VIs), water indices
by remote sensing, water balance indices, remote sensing-based ET estimation by energy
balance, CWSI by the infrared thermometer, and LST based CWSI. The table includes
a brief description of each method, its advantages, disadvantages, and references. The
methods vary in their precision, ease of use, cost, and sensitivity to different soil types and
environmental conditions. Some methods require direct contact with soil, while others
utilize remote sensing techniques. The choice of method depends on the specific research
or application requirements.

Table 1. Comparison of crop water stress detection methods.

Methods Description Advantages Disadvantages References

Gravimetric Method

A straightforward technique
that involves weighing a wet
sample, drying it in an oven,
reweighing it, and then
estimating the amount of
water loss as a percentage of
the dry soil quantity

Highly precise and reliable
technique with hardly any
room for instrumental error,
not affected by salinity or
soil type

Time-consuming, dependent
on mass measurements,
destructive, and labor-intensive

[12,13]

Time domain reflectometer
(TDR)

An electromagnetic method
based on the idea that water
and other materials, such as
soil, have different
dielectric constants

Less time-consuming and
damaging than gravimetric
techniques, reduced
labor expenses

Environmentally sensitive,
expensive equipment, and
calibration dependent on
soil texture

[12,13]

Neutron Probe method Evaluates the soil’s
volumetric water content

High accuracy, permits
observations at various
depths, rather simple

Time-consuming monitoring
and expensive equipment
licensing are required.

[14]

Tensiometer method Soil-water-potential-based
Cheap, affordable, easy to
install, accurate, and for
irrigation scheduling

Requires contact with soil
and destructive [14]

Vegetation indices method by
remote sensing (VIs)

Indicators of vegetation are
used to illustrate
its properties

The high temporal and
spectral resolution,
non-destructive

Precision decreases from leaf
scale to canopy scale and
image analysis is a
difficult task

[15,16]
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Table 1. Cont.

Methods Description Advantages Disadvantages References

Water Indices by
remote sensing

Determines the reflectance in
the SWIR and near-infrared
range, which is used to
indicate the water content of
the canopy. Typical indices
include WI, SRWI, NDWI,
and MSI

Leaf water content may be
measured without causing
damage. Excellent direct
signs of water stress

The difficulty of ascending to
the canopy level [17]

Water balance indices

Monitors change in the
chlorophyll fluorescence and
water content of the leaves
using the green and SWIR
spectral bands. The
calculated indices are WABI,
WABI-1, and WABI-2

Exhibited excellent
performance at the leaf and
canopy levels

It is necessary to use an
expensive single-spectrum
instrument. The penetrability
of the SWIR band through
heavy atmospheric layers is
a problem

[17]

RS-based ET estimation by
Energy balance

The surface energy balance
equation LE = Rn-G-H Latent
Energy includes ET as a
residual (LE), Rn = Net Sky
Radiation, G = Ground to Air,
H = Heat to Air

A single thermal band with
the excellent resolution is
sufficient and needed
METRIC and SEBAL have
good consistency and
accuracy

It’s challenging to determine
whether ET is possible. As ET
cannot be directly measured,
high-resolution thermal
imaging is crucial.

[18]

CWSI by infrared
thermometer

The canopy temperature and
its decrease with the ambient
air temperature are used to
calculate CWSI

Depends on the direct
technique and VPD

Different baselines must be
calculated for various crops;
this takes time. To evaluate
CWSI, many factors must
be considered

[19]

LST based CWSI
Utilizing LST and the
hot-and-cold pixels approach
to calculate CWSI

Using only remote sensing
methods Work and time are
non-intensive

Depending on this method to
calculate LST, LST
computation is laborious
and varies

[20]

3. Satellite-Based Crop Water Stress Detection

Table 2 provides information on various satellite applications and their advantages and
limitations. It includes information on the type of satellite, its applications, the advantages
of using it, and any limitations associated with it. Some examples of the satellites included in
the table are AMSR-E, AMSR-2, NISAR, Tandem-L, Sentinel-1, and SMAP. The applications
of these satellites range from analyzing soil moisture to vegetation status and dynamics
observation. The advantages of using these satellites include high precision, excellent
resolution, and data collection in all weather conditions, among others. However, some
of the limitations include limited frequency ranges, high cost, and limited precision in
field determination.

Table 2. Satellite-based crop water stress detection.

Satellite Applications Advantages Limitations References

AMSR-E
High-efficiency passive
microwave soil moisture
analysis with drought

Data collection for daily soil
moisture measurement with a
12.5 km precision

Just two files every day, one
for the day and one for
the night

[21]

AMSR-2

Analysis of soil-water-related
parameters and global
observation of soil moisture
(from the soil surface to a few
centimeters depth)

More than 99% correct in
capturing data both during
the day and at night/good
resolution and accuracy of
data collecting

Only functions in certain
frequency ranges, including
6.925, 7.3, 10.65, 18.7, 23.8,
36.5, and 89.0 GHz

[22]

NISAR
Global soil moisture maps
with a time horizon of 6 to
12 days

Acquires soil moisture data in
all weather conditions and
with a precise resolution of
3–10 m

Product assessment in
12–24 h [23]

Tandem-L Worldwide soil moisture

Provides extremely accurate
measured data with
millimeter-level accuracy and
excellent resolution between
20 m and 4 km

A significant premium over
conventional satellite systems [24]

Sentinel-1 Dynamics observation
With a precision resolution of
5 to 20 m, field determination
is less precise

Easy to create new systems,
incorporating sensor
structures and application
development models

[25]

SMAP Analyzes the vegetation
status and soil surface

High likelihood of mission
failure with a 9 km
precise resolution

SSM is captured by passive
sensors for roughly 36 km [26]
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4. Crop Water Stress Detection Using Spectral Indices

Table 3 below lists several reflectance indices used to indicate plant stress and their
respective formulas. Reflectance indices are measures of the amount of light reflected from
vegetation at specific wavelengths and can be used to estimate plant health and stress. The
plant stress indicators listed in the table are associated with different physiological processes
related to plant water statuses, such as stomatal conductance, chlorophyll fluorescence, leaf
water potential, and water content. The references listed provide additional information on
the use and interpretation of each index.

Table 3. Crop water stress detection using spectral indices.

Reflectance Indices Formula Plant Stress Indicators References

Photochemical Reflectance Index (PRI) R570−R531
R570+R531

Stomatal conductance and chlorophyll fluorescence [27]

Normalized Photochemical
Reflectance Index (NPRI)

PRI

RDI∗ R700
R670

Stomatal conductance and chlorophyll fluorescence [28]

Normalized Difference Vegetation
Index (NDVI)

R800−R670
R800+R670

Leaf water potential and stomatal conductance [29]

Renormalized Difference
Vegetation Index (RDVI)

R800−R670√
R800+R670

Leaf water potential and stomatal conductance [30]

Transformed Chlorophyll
Absorption in Reflectance Index (TCARI)

3[(R700 − R670)− 0.2(R700 − R550) ∗(
R700
R670

)
]

Leaf water potential and stomatal conductance [31]

Optimized Soil Adjusted
Vegetation Index (OSAVI)

(1+0.16)(R700−R550)
(R800+R670)+0.16

Leaf water potential and stomatal conductance [31]

Normalized Difference Water Index (NDWI) R860−R1240
R860+R1240

Leaf water potential [32]

Simple Ratio Water Index (SRWI) R860
R1240

Leaf water potential [33]

Water Index (WI) R860
R1240

Leaf water potential [33]

5. Crop Water Stress Detection Using Multispectral Sensing Systems

Table 4 provides information on different multispectral sensing systems, their descrip-
tions, advantages, and references. The first system listed is a UAV remote multispectral
sensing system called AIRPHEN Multispectral Camera, which has a high-resolution camera
and precise CWS (crop water stress) detection. It is also low-cost, cheap, effective, and
available with RGB color bands. The second system listed is a spaceborne multispectral
sensing system that includes Landsat, Orb view, World view, IKONOS, and Quick bird.
These systems are used to figure out agricultural water stress by collecting multispectral
high-resolution data, which provides entire crop water stress temporal features.

Table 4. Crop water stress detection using multispectral sensing systems.

Multispectral Sensing Systems Description Advantages References

UAV remote MS sensing system
AIRPHEN Multispectral Camera with a
lens of 8 mm focal length, 1280 × 960
pixels, and spectral resolution 10 nm

High-resolution camera, precise
CWS detection, low cost, cheap,
effective, and available with RGB
color bands

[34,35]

Spaceborne MS sensing system
Landsat, Orb view, World view,
IKONOS, Quick bird
SPOT-5

To figure out agricultural water
stress, multispectral
high-resolution data should be
collected. This will give us entire
crop water stress
temporal features

[36,37]

6. Future Directions

The target water stress can be located using remote sensing technology. For applica-
tions including agricultural growth assessment and irrigation, as well as leaf and canopy
phenotypic categorizations that detect crop losses, digital imaging technologies are used.
Using information from digital photography, the water stress can be measured. The most
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recent methods for crop water stress assessment that used digital pictures from remote
sensing have shown notable results. Most of the studies showed three degrees of agricul-
tural water stress: minimal stress (optimum moisture), medium stress (mild drought stress),
and severe stress (drought stress). With an accuracy that ranged from 83 to 99%, these
methods produced encouraging findings for the estimation of agricultural water stress.
Machine learning is crucial to raising the calibers and effectiveness of these systems. For
an accurate evaluation of the crop water stress, a microcontroller-based signal processor
(MSP430) integrated soil and ambient sensors. A dependable resource for examining these
crop water levels, and soil water stress factors is an independent wireless sensor system
that is made up of a gateway plus a wireless sensory node.

7. Conclusions

Traditional methods, such as measuring the soil moisture, have drawbacks in terms
of their sensor costs and installations, and difficulty in obtaining estimates. Plant-based
estimates are more dependable and accurate. There are significant relationships between
the PRI and NDVI, and attributes such as the LWP, stomatal conductance, crop efficiency,
and stem water potential. A crop water stress evaluation is a technical and intricate
process in and of itself. Our study suggests new techniques that bring together farmers,
researchers, and tech developers. Narrow-band optical indices could be used to plan
the irrigation for high-value vegetable crops in water-stressed countries. Conventional
irrigation scheduling methods use measurements of the soil moisture and weather, and
physiological assessments of the plant response. These methods are ineffective because
it is difficult to obtain these measurements, especially for varied soil and crop canopies.
This assessment makes recommendations for remote sensing systems and sets the path
for creating new facilities that assess a system’s effectiveness in diverse environmental
scenarios, such as multispectral/hyperspectral and thermal sensing systems that are based
on remote sensing features.
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