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Abstract: Among emerging Transition Metal Dichalcogenides (TMDCs), molybdenum disulfide
(MoS2) has attracted a remarkable interest due to its many possible applications. In particular, MoS:z
has potentialities not yet fully realized in solution-based applications. The morphological and the
structural properties of MoS: films deposited by spin-coating onto Si/SiO: substrates were
investigated by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Micro-
Raman Spectroscopy. High resolution AFM imaging highlights the presence of a layered structure.
The thickness of each layer is estimated to be around 13 nm. Micro-Raman measurements reveal
that there is a coexistence between 2H-MoS: and 1T-MoS: phases, which could be useful for
electrical applications. Moreover, the band at 290 cm™ is assigned to the amorphous phase of MoS:.
The detectability of the mode Eig in back scattering geometry is ascribed to the disorder of the
amorphous phase.
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1. Introduction

Among Transition Metal Dichalcogenides (TMDCs), molybdenum disulfide (MoS:)
offers several advantages because of its unique and tunable electronic properties. A
simple model to describe the structure of MoS: states that one molybdenum (Mo) atom is
covalent bonded with three sulfur (S) atoms on the top and three S atoms on the bottom
in a prismatic way. A layer is obtained when the prismatic structure is repeated infinite
times on one plane. In this way, one layer is made by a plane of Mo atoms enclosed in two
planes of S atoms [1]. While, the bonds among the different atoms inside a layer are
covalent, the addition of others layers occurs by Van der Waals interactions, weaker than
the former, among the different atoms of each layer [1]. MoSz shows mainly two phases:
One with a trigonal prismatic structure (2H-MoS2) and one with an octahedral structure
(1T-MoSz). The two phases exhibit completely different electronic structures: 2H-MoS:
phase is semiconducting while 1T-MoS: is metallic [2]. In [3], Eda et al. showed that 2H/1T
hybrid structures coexist in chemically exfoliated MoSz nanosheets.

Scalable production of two-dimensional (2D) materials can be achieved by solution-
based exfoliation methods [4]. In particular, MoS: has potentialities not yet fully realized
in solution-based applications [5].

Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Micro-
Raman spectroscopy measurements were carried out on MoS: films spin-coated onto
5i/5iO2 substrates.
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Micro-Raman spectroscopy measurements reveal the coexistence of 2H-MoSz and 1T-
MoS: phases, which is useful for electrical applications [6].

2. Materials and Methods

Silicon (Si) wafers, which are used as substrates, were ultrasonically cleaned in
acetone, then in double-distilled water and isopropanol. At the end, they were dried with
warm air.

The commercial aqueous solution of MoS: dispersion 0.1-0.5 mg in H20, which was
obtained by solution-based exfoliation methods, was bought from Sigma Aldrich. The
solution was sonicated for 30 min using an ultrasonic bath.

MoS: films were reproducibly prepared by spin-coating the solution onto Si/SiO:
substrates (SiO2 thickness of ~2 nm). The results are reported on samples prepared at 6000
rpm spin coating speed and 60 s as deposition time.

The MoS: flakes were characterized by scanning transmission electron microscope
(STEM). A drop of the sample solution was placed on a Formvar/carbon on 300 gold mesh
type S162A3 (Agar Scientific, UK) and dried at room temperature. SEM analysis was
accomplished with a FEI Quanta FEG 400 F7 eSEM (Eindhoven, The Netherlands)
microscope.

Tapping mode AFM images were obtained in ambient conditions with a Multimode
8 equipped with a Nanoscope V controller (Bruker Instruments, Santa Barbara, USA).
Images were acquired using cantilevers with a force constant k=5 Nm™ (model TAP150A,
Bruker, Santa Barbara, USA). The scan line speed was optimized between 1 and 3 Hz over
512 x 512 pixels. Image processing and analysis were carried out using the free software
WSxM [7].

Micro-Raman spectra were collected by using a Horiba-Jobin Yvon (Darmstadt,
Germany) microprobe apparatus (spectral resolution ~2 cm™), equipped with a Charge-
Coupled Device (256 x 1024 pixels) detector cooled at —70 °C and with a 532 nm line of a
diode laser, with an emitted power of 50 mW. The laser spot was about 2-3 um of apparent
diameter. The heating filters, with different optical densities, were used to avoid structural
changes due to laser.

3. Results and Discussion
3.1. STEM, SEM and AFM Measurements

A STEM image of MoS: flakes, drop-casted onto a gold mesh, is reported in Figure 1a.
The size distribution of the MoS: flakes areas is shown in Figure 1b, by which it is
evident that most MoS:aggregates have dimensions less than 30 nm.
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Figure 1. STEM image of drop-casted MoS: flakes onto a gold mesh, and (a) size distribution of
MoS: flakes areas (b).

A SEM image of MoS: films spin-coated onto Si/SiO2 substrate is reported in Figure 2.
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Figure 2. SEM image of spin-coated MoS: films onto Si/SiO:z substrates.

The surface topographies of MoS: films spin-coated onto Si/SiO: substrates were
characterized by AFM analysis. The investigated areas show a homogeneous MoS: depo-
sition on the surface as reported in Figure 3 in a 2D (a) and a three-dimensional (3D) rep-
resentation (b). The root mean square roughness measured on 100 x 100 pm? areas is (7.0
+ 1.5) nm. High resolution AFM imaging highlights the presence of a layered structure,
visible in small areas in Figure 3c. The thickness of each layer is estimated to be (13+2) nm,
as it is reported in the line profile shown in Figure 3d.
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Figure 3. AFM surface images of MoS: films spin-coated onto Si/SiO2 substrates acquired on a 100
x 100 pm? area in a 2D, and (a) 3D (b) representation. Image acquired on an 8 x 8 um? area (c) and
profile along the cyan line (d).

3.2. Micro-Raman Spectroscopy Measurements

The main Raman modes of MoS: are E1g (286 cm™), EégE%g (383 cm™), Ai1g (408 cm™)
and E5, (32 cm™) [8].

The Eig, Eég, and Egg are in-plane Raman active modes while the Aig is out of
plane. The E%g E%g are vibrations of Mo and S planes in opposite direction in the MoS:
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structure, while the Eﬁg are assigned to the vibrations of Mo and S planes in the same
direction. The Aig mode is due to the vibrations of only S atoms along the c axis, while
the E1g mode is ascribed to the in-plane vibrations of S atoms [9].

In Figure 4, the representative Raman spectra collected on MoS: films spin-coated
onto Si/SiOzsubstrates are reported.
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Figure 4. Representative Micro-Raman spectra collected on MoS: films spin-coated onto Si/SiO2
substrates; 2H-MoS:2 phase, and (a) 1T-MoS: phase (b).

As it can be seen in Figure 4a, the only present modes are E%g and A1g, which fall at
about 380 cm™, and 405 cm™, respectively. The position of the high frequency mode indi-
cates that the MoS2 sample is monolayer, while the other mode seems to indicate a multi-
layer structure [1]. Such findings indicate that Figure 4a has been collected on 2H-MoS..

In Figure 4b, in addition to the bands seen in Figure 4a, the bands at about 290 cm™
and 299 cm ! are clearly detectable. Even though the E1g mode is Raman forbidden in back
scattering geometry [10], these two modes are assigned to Eig. In particular, the mode at
299 cm is associated to 1T-MoS:z [2], while the band at 290 cm™ is assigned to the amor-
phous phase of MoS:z [11]. The detectability of the E1g mode, even in back scattering ge-
ometry, is ascribed to the disorder of the amorphous phase.
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