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Abstract: Many critical applications highly depend on Global Navigation Satellite Systems (GNSS)
for precise and continuously available positioning and timing information. To warn a GNSS user
that the signals are compromised, real-time interference detection is required. Additionally, real-time
classification of the interference signal allows the user to select the most effective mitigation methods
for the encountered disturbance. A compact proof of concept has been built using commercial
off-the-shelf (COTS) components to analyse the jamming detection and classification techniques. It
continuously monitors GNSS frequency bands and generates warnings to the user when interference
is detected and classified. Various signal spectrum analyses, consisting of kurtosis and power spectral
density (PSD) calculations, as well as a machine learning model, are used to detect and classify
anomalies in the incoming signals. The system has been tested by making use of a COTS GNSS signal
simulator. The simulator is used to generate the upper L-band GNSS signals and different types of
interferences. Successful detection and classification is demonstrated, even for interference power
levels that do not degrade the performance of a commercial reference receiver.

Keywords: GNSS; jamming detection; machine learning; jamming classification; product implementation

1. Introduction

Many critical applications exhibit a high dependency on Global Navigation Satellite
Systems (GNSS) for precise and continuously available positioning and timing information.
Interference of the low-power GNSS signals has become an increasing threat for society [1,2].
In terms of intentional Radio Frequency Interference (RFI), jamming aims to disrupt GNSS
signals by overpowering them, leading to the receiver losing the position, velocity and
timing (PVT) solution. To warn a GNSS user that the GNSS signals are compromised,
real-time interference detection is required. Additionally, real-time classification of the
interference signal allows the user to select the most effective mitigation methods for the
encountered disturbance. Classification can also be used to estimate disturbance signal
properties and help point the user towards likely sources of the interference signal.

Previous publications [3–5] have shown the potential of using artificial intelligence
for pre-correlation interference classification. The aim in this paper is to use various signal
spectrum analysis methods as well as a machine learning model to develop a compact
GNSS interference detection and classification module. The module is constructed using
widely available commercial off-the-shelf (COTS) components. The goal is to continuously
monitor GNSS frequency bands, generate warnings to the user when interference is detected
and inform the user on how the interference signal is classified.
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This paper is structured to first provide an overview of the implemented interference
detection and classification techniques. Then, hardware and software designs of the module
are briefly discussed. The strategy and results of an initial over-the-cable test campaign are
presented, and finally, a short outlook on future product development is provided.

2. Detection

This section elaborates on the techniques that are used for jamming detection. As the
monitoring system is designed to be independent of a GNSS receiver, the selected detection
techniques are based on the signal spectrum that is obtained directly from the antenna.

2.1. Statistical Analysis

The first method is a statistical analysis based on the spectrum of the incoming GNSS
signal. The method consists of a calculation of the Kurtosis value K of the spectrum, and is
defined as:

K =
µ4

σ4 , (1)

where µ is the fourth central moment and σ is the standard deviation of the spectrum.
For natural thermal emissions, the distribution is Gaussian and has a nominal Kurtosis
of 3.0. Since GNSS signals are buried under the noise level, a sample data set containing
GNSS signals should resemble white noise. If the signal is corrupted by RFI of sufficient
power, the distribution will deviate from normality, leading to a deviation from the nominal
Kurtosis value. The Kurtosis calculation can be used to detect jammer types that add
non-noise-like energy to the signal.

2.2. Power Spectral Density Ratio (PSD)

For partial band and narrowband interference signals, analysis of the frequency do-
main provides valuable information in terms of detection. By calculating the power spectral
density (PSD) ratio, the presence of additive energy in the signal spectrum can be detected.
The frequency spectrum X can be computed using the discrete Fourier transform:

Xk =
N−1

∑
n

x[n]e−j 2πn
N , (2)

where x is the GNSS signal, k is the frequency bin, N is the number of samples in the
frequency bin and n is an iterator. From the frequency domain, the PSD can be calcu-
lated. The algorithm that is implemented in the monitoring system uses the PSD from
both the received signal, as well as the PSD of a pre-defined reference signal, which is
recorded in a non-RFI scenario and provides a baseline of the received power by the system.
The maximum PSD ratio rmax is then defined as

rmax = max

‖Xtest‖2∥∥∥Xre f

∥∥∥2

, (3)

and if increased above a certain threshold, it indicates an RFI signal in the spectrum. This
detection technique is used for finding added energy to the signal spectrum and is not
bound to specific jamming types.

3. Classification

As an extension to the aforementioned jamming detection methods, a classification
model can be used to provide classification of the type of jamming signal, which is useful
information when considering mitigation techniques. Additionally, it can be used as a
detection technique.
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3.1. Model Setup

The classification model is constructed using a Convolutional Neural Network (CNN)
in combination with transfer learning and is trained on recognizing spectral features in
images created by taking a spectrogram of the incoming GNSS signal. As the different
jammer types induce different spectral features, this method can be very effective for the
classification of jamming. The set of included jammer types consist of Continuous Wave
(CW), chirp or Swept Continuous Wave (SCW), Additive White Gaussian Noise (AWGN),
Pseudo-Random Noise (PRN), Amplitude Modulation (AM) and Frequency Modulation
(FM). Figure 1 shows the spectral features on which the classification model is trained.

(a) Clean spectrum. (b) CW jammer. (c) Chirp jammer. (d) AWGN jammer.

(e) PRN jammer. (f) AM jammer. (g) FM jammer.

Figure 1. Spectrograms of the clean signal without RFI and with different types of jamming signals.
The horizontal axis shows the time domain and the vertical axis shows the frequency domain.

The jamming types of which the spectra are shown in Figure 1 are described in Table 1.
In these models, yJ denotes the jamming signal, aJ is the (initial) amplitude, fc is the centre
frequency, t is the time and φJ is the phase.

3.2. Model Training

As a baseline for the CNN, the family of EfficientNet [6] models that were specifi-
cally developed for increased accuracy and efficiency with respect to MobileNet [7] and
ResNet [8] models are used. The actual model that is selected for implementation is the
EfficientNet-B5 model, which has 83.6% top 1 accuracy and 96.7% top 5 accuracy, while
containing more than five times fewer parameters than comparable models [6]. Training
is conducted on a set of input images that contain spectrograms of the GNSS signal with
and without different types of jamming signals. The Adam algorithm for gradient descent
optimisation is used, which is commonly used to ensure fast training that is robust to
potential noise in the input features [9]. To assess the performance of the classification
model, a confusion matrix can be used which visualises the expected probability of correct
classification and the expected probability for misclassification for all combinations of true
and predicted classes. The confusion matrix corresponding to the model described in this
section is shown in Figure 2.
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Table 1. Jammer models (derived from [3,4]) that are included in the classification model.

Type Model Description

CW yJ = aJ · exp
(
2jπ fct + φJ

) Generates a single-tone jamming signal, which shows a distinct
peak at a constant frequency in the signal spectrum. This
translates to a horizontal line in the spectrogram (Figure 1b).

Chirp yJ = aJ · exp
(

2jπ
(

fct± 1
2T ( fmax − fmin)t2

)
+ φJ

)
Generates a frequency-sweeping signal that shows a moving
peak over a certain range in the signal spectrum. In the
spectrogram, it is characterised by a sawtooth pattern (Figure 1c)
with a bandwidth enclosed by minimum and maximum
frequencies fmin and fmax and width of a single tooth defined by
the sweep time T.

AWGN yJ = aJ ·
∫ t

0 n(τ)dτ · exp
(
2jπ fct + φJ

) Generates a signal consisting of white Gaussian noise filtered to
a specific bandwidth, which translates in a horizontal band in
the spectrogram (Figure 1d). The noise n is modelled by a finite
impulse response filter applied on a Gaussian distribution with
zero mean and variance σ2 ∼ N

(
0, σ2).

PRN yJ = aJ ·
∫ t

0 p(τ)dτ · exp
(
2jπ fct + φJ

) Generates one PRN-code and shows multiple peaks in the
spectrogram (Figure 1e). The PRN-code p is modelled by a finite
random sequence of values −1 and 1 and is repeated
every millisecond.

AM yJ = aJ · [1 + m cos(2π fmt + φm)] · exp
(
2jπ fct + φJ

)
Generates a carrier wave signal of which the amplitude is
modulated by a message signal with frequency fm and phase φm.
This translates into a peak at the carrier frequency and two
sidebands at a frequency difference of ± fm (Figure 1f). Finally,
m defines the modulation index, which is a measure for the ratio
between the power of the carrier and the message signal.

FM yJ = aJ · exp
(
2jπ fct + m sin(2jπ fmt + φm) + φJ

)
Generates a carrier wave signal of which the frequency is
modulated by a message signal with frequency fm and phase φm.
This translates into a peak at the carrier frequency and multiple
sidebands, each with a frequency shift of n · fm, where n is an
integer (Figure 1g). Again, m denotes the modulation index,
which defines the relative height of the peaks according to a set
of Bessel functions.

Figure 2. Confusion matrix of the classification model.
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This matrix shows excellent results for the clean class and CW and good results for
the other classes. The non-zero off-diagonal entries show that the spectral features of some
class pairs may be similar, which is especially the case for low-power jamming scenarios.
For low-power narrowband waveforms, such as AM and FM, the spectrum may not contain
all sub-peaks, leading to misclassification of AM jammers as CW and FM jammers as either
CW or AM, depending on the number of visible sub-peaks. The misclassification of an
AWGN or PRN jammer as a non-RFI case can be explained by the fact that the energy
of these waveforms is spread over a relatively large band of frequencies and the signals
themselves resemble noise, which make them barely detectable for low-power scenarios.

4. Product Implementation

Moving from the theoretical methods and techniques that were described in Sections 2
and 3 towards product implementation requires a practical solution for a number of
problems. The GNSS monitoring device is required to operate in real time and is to be
used in a hand-held configuration. This poses limitations on the computational power,
dimensions, weight and power consumption of the hardware to be used. Eventually,
the hardware selection influences the software design, which should be able to fulfil
the capability of (real-time) jamming detection and classification with limited available
computational resources. The designed hardware and software setup are described in
this section.

4.1. Hardware Setup

The aim is to keep the hardware design of the monitoring system as simple as possible
by limiting the amount of hardware components. It is designed to be managed by a
microprocessor that runs the software and controls the other components. To retrieve the
signal, the microprocessor will be connected to a Software-Defined Radio (SDR) that is
tuned to the GPS L1 frequency with an instantaneous bandwidth of 25 MHz. This SDR
contains an input port for a GNSS antenna, which poses the flexibility for the user to use
their own GNSS antenna. The data stream from the SDR to the microprocessor contains I/Q
data, which are further handled by the software package that is described in Section 4.2.

Results from the jamming detection and classification processes will be communicated
to the user via an LCD monitor that can be connected externally. When the device is used
in a more mobile setting and the LCD monitor is not used, simple results and other relevant
information are communicated via a status LED. To accommodate for mobile usage, a
battery pack is included, which is able to power the unit for several hours; additionally,
the device can be connected to an external power supply for direct power and to recharge
the battery pack.

The flow diagram of the hardware design can be seen in Figure 3. All components
except for the external antenna and LCD monitor will be integrated in a protective casing.
As mentioned earlier in this section, the monitoring device should be usable in a hand-held
configuration, which limits the size of the hardware components. Additionally, using
components specifically designed for this particular system is avoided, and therefore it is
chosen to use only COTS hardware.

4.2. Software Setup

The microprocessor that was mentioned in the previous paragraph contains the moni-
toring software, which is enabled when the device is powered on. This software package
controls the SDR by starting all relevant processes that lead to the SDR providing I/Q
data that describe the GNSS signal. The computational power of the microprocessor is
insufficient for processing the complete 25 M samples/s I/Q data stream, and thus the
data are reduced before the jamming detection and classification methods are enabled.
For detection, data blocks of 100 ms are found to be sufficient, whereas for classification,
blocks of only 10 ms are used.
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After slicing the data into these blocks, process pools are generated, which will contain
the individual processes that execute the detection and classification algorithms. This will
ensure concurrency and optimization of the limited computational resources of the micro-
processor. When a process is finished, it will pull new I/Q data in and again perform the
detection or classification method. The results from all the algorithms are then synchronised
and, with a fixed interval, a decision algorithm is executed. This algorithm compares the
individual detection and classification results with specified thresholds, which will provide
a single alert containing a jamming flag and corresponding jamming class, if applicable.
These are then displayed by the status LED and, if connected, the LCD monitor. Addition-
ally, more extensive results from the individual algorithms, as well as general system status,
is logged to the SD card of the microprocessor.

Figure 3. Schematics of the hardware setup of the GNSS monitoring device.

5. Product Tests

An initial test campaign is performed to test the performance of the proposed de-
tection and classification module. The goal of this test campaign is threefold: validate
the implemented detection strategy, validate the implemented classification strategy and
obtain an initial benchmark of the jammer-to-signal ratios (J/S) for which the module can
reliably detect and classify interference signals.

5.1. Experimental Setup

To ensure a clean, controlled, and repeatable test scenario and to exclude any acci-
dental over-the-air interferences the tests are performed over-the-cable in a controlled lab
environment. The device under test (DUT) is provided with a series of different input
signals in which the true GNSS component is the same for every run and the characteristics
of the interference are varied.

A COTS GNSS signal simulator (Orolia GSG-8) is used to simulate the clean GNSS
signals, a realistic Gaussian noise floor and the interference signals. Since the DUT only
operates in the L1 frequency band, only GPS L1 C/A, Galileo E1 B/C and SBAS L1 signals
are included in the input signal. An overview of the settings used to generate the clean
input GNSS signals for all test scenarios can be found in Table A1 in Appendix A.

The clean GNSS signals and the interference signals are simulated on two different
channels and combined by an RF combiner. To be able to provide the test signal not only
to the DUT, but also to a COTS reference receiver (Septentrio AsteRx3 HDC), an active
four-way RF signal splitter is used to split the combined input stream to two identical
output streams. In Figure 4, the schematics of the test setup are displayed.
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Figure 4. Schematic overview of the test setup. The GNSS simulator is used to generate the test
signals. The generated signals are streamed to the DUT and reference receiver.

5.2. Experimental Results

The DUT and a reference receiver are subjected to two test scenarios in which the
jamming power is increased over time. First, a wide range of J/S is used, where the ratio is
increased in steps of 3 dB. For every step in this scenario, the J/S is kept constant for 60 s to
allow the reference receiver to acclimatise. The second scenario, which entails a smaller
range of J/S with a step size of 0.5 dB and a step duration of only 10 s, is used to improve
the accuracy of the detection and classification results. The waveform characteristics of the
interference signals used in this test campaign are summarised in Table A2 in Appendix A.
Detection and classification are triggered when the thresholds are exceeded for three out
of five subsequent measurements to reduce the number of false alarms. The reference
receiver is used to monitor the effect of the interference signal on the resolving capability of
a targeted GNSS receiver. The J/S for which the reference receiver experiences first loss of
its PVT solution is used to put the performance of the DUT in perspective.

Both detection and correct classification take place even before the first loss of a tracked
satellite is registered. The classification model proves to be the most sensitive detection
method, as it is able to recognise the spectral features of an interference signal before the
thresholds on the detection parameters are exceeded (highlighted values in Table 2). It will
cause the system to trigger a jamming warning, albeit that no reliable classification can be
made yet. The PSD method proves to be effective for narrowband waveforms, whereas the
kurtosis can be used for all waveforms except for the AWGN. All detection methods are
triggered at significantly lower J/S than the ratio where the reference receiver experiences
loss of its PVT solution. The relatively ’late’ correct classification of the FM jammer can
be explained by the fact that for lower J/S, only the first sub-peaks on either side of the
carrier frequency are visible, and thus this jammer is classified as an AM jammer. With the
current parameters, it is expected that the module can issue a warning before a GNSS user
is seriously affected by the presence of interference.

Table 2. Test results (J/S) for the different detection and classification parameters of the DUT. First
loss of tracked satellite and loss of PVT are obtained from the reference receiver. The values for which
the system first triggers a jamming warning are highlighted. All values are given in dB.

Interference Waveform CW Chirp AWGN PRN AM FM

First loss tracked satellite −6 3 15 6 15 15
Loss of PVT 21 24 33 27 21 21

Kurtosis (2.99 < K < 3.01) 7 6.5 no
detection 6.5 8 7.5

PSD (1 dB increase) −7 6 11 6 −1 0
Detection with classification model −7 −1 1.5 1.5 −4 −4

Correct classification −6 −0.5 3.5 1.5 −4 11
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6. Conclusions

The initial test results are promising, as the system is able to both detect and classify
interferences before first loss of a tracked satellite by the reference receiver. It can be
concluded that in terms of detection, the classification model proves to be successful as
it can notice changes in the signal spectrum in low-power jamming scenarios. The PSD
ratio and kurtosis are computationally inexpensive methods that can contribute to the
confidence of the interference detection when the jamming power has increased a bit further.
Concerning classification, the model seems to be capable of correctly classifying the jammer
type before the COTS reference receiver first loses track of a satellite, although it is seen
that there is significant difference in performance for different jamming waveforms.

In this paper, the implementation of real-time jamming detection strategies in an
operational product are discussed. As stated, these methods will provide the user with
knowledge concerning possible jamming attacks, but not with information regarding spoof-
ing. To extend the capabilities of the product, real-time spoofing detection is considered
to be implemented. In a spoofing attack, a set of counterfeit GNSS signals is created and
transmitted, with the aim to misdirect a receiver into computing a false position and timing
solution. Effort is already being put in the development of a spoofing detection functional-
ity: Structural Power Content Analysis (SPCA) can be used on the pre-despreaded signal
to find additional PRNs in the signal [10], thereby indicating a spoofing attack. For future
development of the GNSS monitoring system, the use of SPCA as an additional detection
parameter is investigated.

For the development of the operational device, it is advised to perform additional
tests, which should not only account for the different waveforms, but also for variations in
waveform characteristics like bandwidth, central frequency and sweeping time. The results
of the additional tests can not only verify the robustness of the module against waveform
variations but will also allow for fine-tuning of the implemented detection and classification
thresholds. Validation should be carried out by exposing the system to real jamming and
spoofing scenarios, where more fine-tuning can be performed to rule out, for example,
unintentional interference sources, such as multipath.
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Abbreviations
The following abbreviations are used in this manuscript:

AM Amplitude Modulation
AWGN Additive White Gaussian Noise
BPSK Binary Phase Shift Keying
CNN Convolutional Neural Network
COTS Commercial Off-The Shelf
CW Continuous Wave
DUT Device Under Test
FM Frequency Modulation
GNSS Global Navigation Satellite System
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J/S Jammer-to-Signal Ratio
MDPI Multidisciplinary Digital Publishing Institute
PRN Pseudo-Random Noise
PSD Power Spectral Density
PVT Position, Velocity and Time
RFI Radio Frequency Interference
SCW Swept Continuous Wave
SDR Software-Defined Radio
SPCA Structural Power Content Analysis

Appendix A. Simulator Settings and Test Signal Waveform Characteristics

Table A1. Simulator settings used to simulate the GNSS signals.

Setting Value

Centre frequency 1575.42 MHz

Sample rate 50 Msamples/s

Simulation start time 1 April 2023, 12:00:00 (date, time)

Ionospheric model Klobuchar

Tropospheric model Stanag

Signal power GPS L1 C/A −3.00 dB (with respect to −131.5 dBm at 5◦ elevation)

Signal power Galileo E1 −2.00 dB (with respect to −131.5 dBm at 5◦ elevation)

Signal power SBAS L1 0.50 dB (with respect to −131.5 dBm at 5◦ elevation)

Receiver position Lat: 52.6757761◦, Lon: 5.9247521◦, Alt: 2.00 m

Transmitter position Lat: 52.6803418◦, Lon: 5.9119103◦, Alt: 2.00 m

Table A2. Characteristics of the waveforms for which the DUT is tested.

Interference Waveform Central Frequency Characteristics

CW 1575.00 MHz

Chirp 1575.42 MHz Bandwidth: 1 MHz, sweeping time: 100 µs

AWGN 1575.42 MHz Bandwidth: 2 MHz

PRN 1575.42 MHz Modulation scheme: Binary Phase Shift Keying (BPSK), code rate: 1.023
MHz, code length: 1 ms

AM 1575.42 MHz modulation index: 1, modulation frequency: 1 MHz

FM 1575.42 MHz modulation index: 1, modulation frequency: 1 MHz
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