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Abstract: The quaternary compounds AI
2BIICIVX4, where AI–Cu, Ag; BII–Zn, Cd, Hg; CIV–Si,

Ge, Sn; and X–S, Se, Te, crystallize in non-centrosymmetric structures and may be of interest for
nonlinear optics. Here, we present in detail isothermal sections and physico-chemical equilibria in the
Ag2Se–Zn(Cd, Hg, Pb)Se–SnSe2 systems where some of these compounds were found. The crystal
structure of Ag2ZnSnSe4 was determined for the first time as the tetragonal symmetry, S.G. I42m,
lattice parameters a = 0.60434(2), c = 1.13252(5) nm. No quaternary compounds were found in the
Ag2Se–PbSe–SnSe2 system. Ag8SnSe6–PbSe is the triangulating section in this system.

Keywords: quaternary chalcogenides; crystal structure; phase equilibria

1. Introduction

The formation of quaternary compounds in the AI
2X–BIIX–CIVX2 systems where AI–

Cu, Ag; BII–Zn, Cd, Hg; CIV–Si, Ge, Sn; and X–S, Se, Te is known for seven component
combinations [1]. The most common are the phases with the equimolar ratio of all three
binary compounds described by the AI

2BIICIVX4 formula. These quaternary compounds
crystallize in non-centrosymmetric structures and may be of interest for nonlinear optics.
Ag-containing compounds may be of interest due to the possible formation of compounds
with high ionic conductivity [2,3].

The boundary sides of the presented systems Ag2Se–Zn(Cd, Hg, Pb)Se–SnSe2 feature
only two compounds, Ag8SnSe6 (Ag2Se–SnSe2 system) and Hg2SnSe4 (HgSe–SnSe2 system).
High-temperature modification of Ag8SnSe6 crystallizes in fcc structure (S.G. P4232); the
crystal structure of the low-temperature Ag8SnSe6 was investigated using X-ray powder
diffraction. This modification crystallizes in the orthorhombic unit cell (S.G. Pmn21) and
is isostructural to β’-Ag8GeSe6. Hg2SnSe4 crystallizes in the thiogallate structure (defect
chalcopyrite, S.G I4).

The Ag2Se–ZnSe–SnSe2 and Ag2Se–CdSe–SnSe2 systems contain only one intermedi-
ate quaternary compound each, Ag2ZnSnSe4 and Ag2CdSnSe4 [4]. Each compound has at
670 K a minor homogeneity region stretched along the Ag33.3Sn16.7Se50–Zn(Cd)Se sections.
Due to the absence of a ternary compound, the sections are non-quasi-binary in the range of
0–50 mol.% Zn(Cd)Se. The crystal structure of the Ag2CdSnSe4 compound was determined
in the orthorhombic symmetry, S.G. Cmc21, a = 0.42640(2), b = 0.73170(3), c = 0.69842(4) nm,
RI = 0.0782) [4]. The Ag8SnSe6–Zn(Cd)Se sections of these systems are quasi-binary, of the
eutectic type, with large solid solution ranges of end compounds [5].
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The Ag2Se–HgSe–SnSe2 system [6–8] features at 670 K three intermediate phases,
Ag2HgSnSe4, Ag4Hg3Sn2Se9 (Ag2.66Hg2Sn1.34Se6) and Ag6HgSnSe6. Ag2HgSnSe4 crystal-
lizes in the orthorhombic S.G. Pmn21, with lattice periods a = 0.8461(1), b = 0.7340(1) and
c = 0.69901(6) nm [6,8]. The Ag4Hg3Sn2Se9 compound crystallizes in an orthorhombic unit
cell (S.G. Imm2, a = 1.2795(2), b = 0.42631(6) and c = 0.58207(4) nm) [7]. This compound
has a homogeneity region that is stretched to the ternary compound Hg2SnSe4 (the Ag2Se
content is 15–28 mol.%) and is negligible along the Ag33.3Sn16.7Se50–HgSe section. The unit
cell periods decrease within the homogeneity region to a = 1.2665(3), b = 0.4222(1) and
c = 0.5739(1) nm. The structure of Ag6HgSnSe6 has not been investigated.

2. Materials and Methods

The alloys for investigation were prepared from high purity elements and the pre-
viously synthesized mercury selenide. The alloys were synthesized in evacuated quartz
containers placed in a shaft-type furnace. The ampoules were heated to 1100 K at the rate
of 50 K/h, kept for 6 h, then cooled at the rate of 10 K/h to 670 K. The alloys were annealed
at this temperature for 500 h followed by quenching in air. Obtained ingots were compact
and black.

The alloys were studied by differential thermal analysis (computer-controlled set-up of
Thermodent T-04 furnace, Pt/Pt-Rh thermocouple) and powder X-ray diffraction (DRON
4-13 diffractometer, CuKα radiation).

3. Results and Discussion
3.1. Phase Equilibria in the Ag2Se–PbSe–SnSe2 System

Isothermal sections at room temperature of the title systems Ag2Se–Zn(Cd, Hg, Pb)–
SnSe2 are presented in Figure 1. The systems with BII–Zn, Cd and Hg were discussed in in
the introduction and are shown here for visual comparison.
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Figure 1. Isothermal sections of the Ag2Se–Zn(Cd, Hg, Pb)Se–SnSe2 systems at room temperature 
((a)—ZnSe, (b)—CdSe, (c)—HgSe, (d)—PbSe). 

No quaternary compounds were found in the Ag2Sе–PbSе–SnSe2 system. The alloys 
in the Ag8SnSe6–PbSe–SnSе2 sub-system are four-phase since the PbSe–SnSе2 section is 
non-quasi-binary [9]. Thus, the isothermal section consists of two three-phase fields, 
Ag2Sе + Ag8SnSe6 + PbSe and PbSe + SnSe2 + Se (along the PbSe–SnSe2 line), one four-phase 
field Ag8SnSe6 + PbSe + SnSe2 + Se and contains four two-phase equilibria. 

Ag8SnSe6–PbSe is the only triangulating section in this system (Figure 2). The section 
is quasi-binary, features a eutectic at 885 K and 67 mol.% PbSe and is quite similar to the 
previously referenced Ag8SnSe6–Zn(Cd)Se sections [5]. 

 
Figure 2. Phase diagram of the Ag8SnSe6–PbSe section (top scale is PbSe content within the Ag2Sе–
PbSе–SnSe2 system). 
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The crystal structure of the Ag2ZnSnSe4 compound was determined by X-ray 
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Figure 1. Isothermal sections of the Ag2Se–Zn(Cd, Hg, Pb)Se–SnSe2 systems at room temperature
((a)—ZnSe, (b)—CdSe, (c)—HgSe, (d)—PbSe).

No quaternary compounds were found in the Ag2Se–PbSe–SnSe2 system. The alloys
in the Ag8SnSe6–PbSe–SnSe2 sub-system are four-phase since the PbSe–SnSe2 section is
non-quasi-binary [9]. Thus, the isothermal section consists of two three-phase fields, Ag2Se
+ Ag8SnSe6 + PbSe and PbSe + SnSe2 + Se (along the PbSe–SnSe2 line), one four-phase field
Ag8SnSe6 + PbSe + SnSe2 + Se and contains four two-phase equilibria.

Ag8SnSe6–PbSe is the only triangulating section in this system (Figure 2). The section
is quasi-binary, features a eutectic at 885 K and 67 mol.% PbSe and is quite similar to the
previously referenced Ag8SnSe6–Zn(Cd)Se sections [5].
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3.2. Crystal Structure of the Quaternary Compound Ag2ZnSnSe4

The crystal structure of the Ag2ZnSnSe4 compound was determined by X-ray powder
method. The set of the experimental intensities of diffraction reflections was recorded in
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the 2Θ range 10–100◦ with scan step 0.05◦ and 20 s exposure in each point at a DRON 4-13
diffractometer (CuKα radiation). The diffraction pattern of the obtained compound was
indexed well in the tetragonal structure of the Cu2FeSnS4 stannite type with the parameters
listed in Table 1. The refinement of profile and structure parameters of Ag2ZnSnSe4
in isotropic approximation yielded in the selected model the fit factors RI = 0.0570 and
RP = 0.1277.

Table 1. Results of the crystal structure determination of the Ag2ZnSnSe4 compound.

Compound Ag2ZnSnSe4
Number of formula units per unit cell 2
Space group I42m
Pearson symbol tI16

a (nm) 0.60434(2)
c (nm) 1.13252(5)
c/a 1.874
Cell volume (nm3) 0.41363(5)
Number of atoms in the cell 16.0
Calculated density (g/cm3) 5.7454(6)
Absorption coefficient (1/cm) 884.93
Radiation and wavelength CuKα 0.154178 nm
Diffractometer Powder DRON 4–13
Mode of refinement Full profile
Number of atomic sites 4
Number of free parameters 7
2Θ and sinΘ/λ (max) 99.80 and 0.496
RI and RP 0.0570 and 0.1277

Experimental and theoretical X-ray diffraction patterns of the Ag2ZnSnSe4 compound
and their differences are plotted in Figure 3. Atomic coordinates, site occupation and
isotropic parameters of temperature displacement of the atoms in the structure of this qua-
ternary chalcogenide are listed in Table 2. According to the obtained results, the structure
formula of the quaternary compound is identical to the stoichiometric Ag2ZnSnSe4.
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Table 2. Atomic coordinates and isotropic temperature displacement factors for the Ag2ZnSnSe4 structure.

Atom Wyckoff Site x/a y/b z/c Biso × 102, nm2

Ag 4(d) 0 1/2 1/4 1.21(9)
Zn 2(a) 0 0 0 3.5(3)
Sn 2(b) 0 0 1/2 0.31(9)
Se 8(i) 0.2432(4) x 0.1129(3) 1.51(8)

The location of the atoms in the unit cell, coordination surrounding and the interatomic
distances in the structure of the investigated compound are shown in Figure 4. All atoms
are characterized by tetrahedral surrounding. Interatomic distances in the quaternary
compound are consistent with the sum of the effective ionic radii.
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The second coordination surrounding (SCS) [10] of selenium atoms shown in Figure 5
has the shape of a cuboctahedron within which the atoms of metallic components occupy
four tetrahedral cavities. Comparing the crystal structure of Ag2ZnSnSe4 and the compo-
nents and compounds of the Ag2Se–ZnSe–SnSe2 system, it should be noted that in terms
of SCS and its content, the Ag2ZnSnSe4 compound is related to the sphalerite structure of
room-temperature ZnSe [11]. Therefore, the crystal structure of Ag2ZnSnSe4 can be derived
from the cubic sphalerite structure by doubling the unit cell along the c axis and ordering
the sites of the atoms of the metallic components. SCS of selenium atoms in the structure of
Ag0.67Sn0.33Se [12] is also of the sphalerite type where the atoms of the statistical mixture of
cations occupy octahedral cavities within the SCS. Conversely, in the binary tin selenide
SnSe2 [13], the wurtzite-type SCS is in the form of the hexagonal analog of a cuboctahedron,
where tin atoms also occupy octahedral cavities. As for the binary silver selenide Ag2Se
at room temperature [14], Ag1 atoms occupy tetrahedral voids and Ag2 atoms occupy
octahedral voids within the wurtzite-type SCS.

Thus, in the quaternary compound, only zinc atoms occupy the same sites as in the
binary selenide, whereas silver and tin atoms occupy atypical octahedral voids within an
atypical SCS, which is abnormal for them and can produce interesting physical properties
in materials based on Ag2ZnSnSe4.
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