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Abstract: Fabrication and characterization of CH3NH3PbI; perovskite solar cell with the addition
of copper (Cu?*), and potassium (K) or guanidinium (GA) was performed. The additive effects on
the photovoltaic properties, morphologies, and crystalline structures were investigated by the exper-
imental results, electronic structures, and thermodynamic stabilities. The stability and conversion
efficiency of the perovskite solar cells was improved by incorporating Cu?* at the lead site, and K or
GA at the organic cation, CH3NH3, at A-site in cubic crystal. The simultaneous addition of Cu?* and
K to the perovskite crystal suppressed the crystal decomposition while inhibiting desorption of MA,
improving the stability of the performance.

Keywords: perovskite; solar cell; polysilane; decaphenylcyclopentasilane; photovoltaic device;
copper; guanidinium; potassium

1. Introduction

The semiconductor lead halide perovskite (LHP) attracted attention as the active layer
of LEDs in the 1990s, and in the 2000s it was rapidly developed as the thin-film absorber
layer of solar cells, and has been actively researched worldwide [1]. There is also a growing
number of computational simulation works [2-6]. Although perovskite solar cells (PSC)
have the advantage of being inexpensive to produce, they have serious problems of low
durability and environmental pollution by Pb [7]. The durability of PSC is caused mainly
by the decomposition of the perovskite crystals due to methylammonium (MA) desorption.
To solve these problems, attempts to improve the interface of perovskites and to intro-
duce additives into the perovskite layer to improve the electronic properties have been
studied [8-11]. Previous studies have reported that substitution of guanidinium (GA),
which is larger than MA, can inhibit MA desorption, resulting in improved performance
and long-term stability [12-15]. In addition, it has been reported that the introduction
of potassium (K) improves the electron transport layer (ETL) and perovskite interface
state [16-19]. It has also been reported that the addition of environmentally benign transi-
tion metals other than Pb reduces toxicity and changes the electronic state to improve the
performance of PSC [20-23]. Among them, the environmentally friendly transition metal
Cu?* has been considered as a candidate for Pb replacement, but there are few reported
cases [24-28].

The aim of this work is to fabricate and characterize devices doped with Cu?*, GA,
and K. The photovoltaic properties, morphologies, and crystal structure were investigated
by substitution of Cu?*, GA, and K. The stability of the performance was measured. In
addition, first-principles calculations were compared with experimental results.
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2. Experimental Procedures

The preparation of perovskite solar cells is shown in Figure 1 [29-32]. The FTO
(F-doped Tin Oxide) substrates were ultrasonically cleaned with acetone and methanol
and dried under nitrogen gas. TiO, precursor solution (0.15, 0.30 M) was prepared by
adding 1-butanol (1 mL) to titanium diisopropoxide bis(acetylacetonate) (Sigma—Aldrich,
St. Louis, MO, USA, 0.055, 0.11 mL). The 0.15 M TiO, precursor solution was spin-coated
onto the FTO substrate at 3000 rpm for 30 s, and then the coated substrate was annealed at
125 °C for 5 min. 0.30 M TiO, precursor solution was spin-coated onto the TiO, layer at
3000 rpm for 30 s, and then the resulting substrate was annealed at 125 °C for 5 min. This
process of forming the 0.30 M precursor layer was carried out twice. The FTO substrate
was then baked at 550 °C for 30 min to form a compact TiO; layer. To form the mesoporous
TiO, layer, TiO, paste was prepared by mixing TiO, powder (Aerosil, Tokyo, Japan, P-25,
200 mg) and poly(ethylene glycol) (Wako Pure Chemical Corporation, Osaka, Japan, PEG
#20000 20 mg) with ultrapure water (1 mL). To this solution, acetylacetone (Wako Pure
Chemical Corporation, Osaka, Japan, 20 uL) and surfactant (Sigma—Aldrich, St. Louis, MO,
USA, Triton X-100, 10 uL) were added, mixed for 30 min, and then allowed to stand for 24 h
to remove bubbles in the solution. The TiO; paste was then spin-coated on the compact
TiO, layer at 5000 rpm for 30 s. The resulting cell was heated at 125 °C for 5 min and then
annealed at 550 °C for 30 min to form a mesoporous TiO; layer. To prepare the perovskite
compound, a mixture of CH3NH;I (2.4 M, Tokyo Chemical Industry, Tokyo, Japan), PbCl,
(0.8 M, Sigma-Aldrich, St. Louis, MO, USA) in DMF (Nacalai Tesque, Kyoto, Japan, 0.5 mL)
solution was prepared for the standard cell. Then, these perovskite solutions were spin-
coated on TiO, at 2000 rpm for 60 s with air blow. This process was performed three times:
a solution of DPPS (Osaka Gas Chemical, OGSOL SI-30-15, Osaka, Japan, 10 mg) was
prepared in chlorobenzene (0.5 mL) and dropped onto the perovskite layer during the last
15 s of the third spin coating of the perovskite precursor solution [33-37]. Subsequently,
annealing was performed at 200 °C in air. Spiro-OMeTAD (Sigma-Aldrich, St. Louis,
MO, USA, 36.1 mg) was dissolved in chlorobenzene (Wako Pure Chemical corporation,
0.5 mL). Lithium bis(trifluoromethylsulfonyl)imide (Li-TFSI, Tokyo Chemical Industry,
Tokyo, Japan, 260 mg) and FK209 (Sigma-Aldrich, St. Louis, MO, USA, 188 mg) were each
added to acetonitrile (Sigma—Aldrich, St. Louis, MO, USA, 0.5 mL). Immediately before
membrane formation, 4-tertbutylpyridine (Sigma-Aldrich, St. Louis, MO, USA, 18 uL), the
prepared solution of Li-TFSI (10 uL), and the solution of FK209 (4 uL) were mixed at 70 °C
for 30 min. The spiro-OMeTAD solution was then spin-coated on the perovskite layer at
4000 rpm for 30 s. All procedures were performed in air. Finally, a gold (Au) electrode
was deposited to serve as the top electrode. The layer structure of the prepared solar cell
is FTO/TiO, /perovskite/spiro-OMeTAD/Au. The prepared perovskite solar cells were
stored at a temperature of 22 °C and humidity below 30%.
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Figure 1. Schematics the processes for the PSC architectures.
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3. Results and Discussion
3.1. First-Principles Calculation

The electron distribution diagrams and density of states (DOS) of MAPbI3 and Cu?*-
doped MAPbCulz were calculated by first-principles calculations [38—44]. MAPbCuls
increase in DOS due to the overlap of Cu?* 3d and I 5p orbitals near the HOMO. This
indicates charge transfer from I 5p orbitals through Cu?* 3d orbitals. From the results,
it is predicted that the short-circuit current density (Jsc) increases due to the easier hole
migration. The calculation of the band gap (Eg) suggested that the simultaneous addition of
Cu?* and K would expand the Eg related to the open circuit voltage (Voc). Ej is the energy
gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO).

The cubic and crystal models doped with Cu?* and GA are shown in Figure 2. From
the energy calculation, the GA-doped system had increase of energy, yielding unstable
state, as compared to the standard system. These results suggest that the stability of the
performance of the perovskite crystal is improved by the simultaneous addition of Cu?*
and K. In the other case, the perovskite crystal with addition of GA might occur the crystal
decomposition with the distortion of MA.
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Figure 2. Crystal structures of cubic (a) MAPbI3, (b) MAPb( 963Cug 03713, and (c) MAg 875 GA 125Pbl3.

3.2. Device Characterization

Immediately after fabrication, the current—voltage characteristic (J-V) curve and the
external quantum efficiency (EQE) spectrum were measured. The performance of the
Cu?* 2% + K 2% doped device was inferior to that of the standard device. The surface
observation of SEM and EDX analysis showed uniform morphologies and monodispersed
crystal grain in the perovskite crystals containing a slight K. The GA-doped perovskite
crystal exhibited a tetragonal crystal system, consistent with calculated predictions and
X-ray diffraction pattern.

The stability of conversion efficiency of the devices was investigated. The performance
of the devices doped with Cu?* and K simultaneously maintained to be about 10.8% after
28 days, while the performance of the standard devices was reduced by about 8.5%. The
optical micrographs showed grain growth with increase of size. The XRD pattern indicate
the lattice constant of the crystals was decreased by doping Cu?* and K.

The schematic model of atomic diffusion in the Cu?*, K-added perovskite crystals was
discussed. The lattice constant of the perovskite crystal was considered to have decreased
by the substitution of K, which was not added immediately after the device fabrication,
to the desorption position of MA with the passage of time. The simultaneous addition of
Cu?* and K to the perovskite crystal decreased the lattice constant, yielding wide bandgap
related to V¢, as compared to those in the MAPbI; perovskite crystal.

4. Conclusions

The effects of the co-addition of CuCl,, KI, and GAI to MAPbI3; on the photovoltaic
properties, microstructures, and crystal structure were investigated. The calculation of
the E; suggested that the simultaneous addition of Cu?* and K would increase expansion
of the Eg related to the Voc and to improve performance. Furthermore, it was found
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that the devices with 2% Cu?* and 2% K-doping had the best stability and performance.
The addition of K in the perovskite layer promoted the uniform crystal growth with an
increase of grain size while inhibiting crystal decomposition, yielding greater stability
of performance.
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