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Abstract: Conversion efficiencies and stability of the perovskite solar cells were improved by adding a
small amount of ethylammonium (EA) and rubidium (Rb) to the CH3NH3Pbl;z compounds. Addition
of ethylamine hydrobromide and rubidium iodide provided an increase in carrier concentration and
promotion of crystal growth, resulting in an improvement in conversion efficiencies and stability.
First-principles calculations showed that the addition of Rb lowered the total energy and made the
crystal stable. The band calculation also shows that the EA addition reduce the effective mass and
improves the carrier mobility.

Keywords: perovskite; solar cell; photovoltaic device; rubidium; ethylammonium,; first-principles
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1. Introduction

In order to solve the problems of global warming and energy resources, the use of
renewable energy sources is being promoted. One of them is a solar cell that uses light
energy from the sun. One of the solar cells is called perovskite solar cells [1,2], which use
materials with a crystalline structure called perovskite for the photoactive layer and have
high conversion efficiencies comparable to silicon solar cells currently in circulation [3].
The perovskite solar cells have the advantage of lower cost than silicon solar cells because
they can be produced using coating technology [4,5]. In addition, flexible and light-weight
solar cells can be realized, making it possible to install them in places where silicon solar
cells are difficult to install [6-9].

Perovskite solar cells are widely studied, and the partial substitution method with
different elements and molecules is often used to improve the properties of perovskite
solar cells [10-12]. Organic—inorganic metal halide perovskites have a cubic structure with
a general formula ABX3, where A is an organic cation, B is a divalent metal ion, and X
is a halide ion [13-17]. Doping with elements such as cesium, rubidium (Rb) [15,18,19],
potassium [20,21], sodium [22], formamidinium (CH(NH;),, FA) [23], ethylammonium
(CH3CH;NH3, EA) [24-26], or guanidinium (C(NHy)3, GA) [27-29] at the methylammo-
nium (CH3NHj3, MA) sites improved the conversion efficiencies. Studies on doping with
halogen atoms, such as chlorine (Cl) or bromine (Br), at the iodine (I) sites of the perovskite
crystals have also been reported [17,30]. Pb-free and large grain perovskite solar cells have
also been investigated [31-35].

The purpose of this study is to investigate the photovoltaic properties of perovskite
layers by adding EA and Rb. It is reported that the addition of EA improves the surface
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morphology of the perovskite layer, and the addition of Rb generates more carriers but
also causes defects in the perovskite layer [2,3]. The effect of these additives on the
formation of perovskite compounds in solar cells was investigated using current density-
voltage curves, external quantum efficiencies (EQE), X-ray diffraction (XRD) patterns,
and scanning electron microscope (SEM) images and elemental mapping images. First-
principles calculations were also used for band calculations and comparison according to
the density of states.

2. Experimental

A schematic illustration of the present perovskite photovoltaic cells is shown in
Figure 1. F-doped tin oxide (FTO) substrates were cleaned in an ultrasonic bath with
acetone and methanol and dried under nitrogen gas. The 0.15 and 0.30M TiO, precur-
sor soltions were prepared from titanium diisopropoxide bis (acetylacetonate) (0.055 and
0.11 mL) with 1-butanol (1 mL), and the 0.15 M TiO; precursor solution was spin-coated
on the FTO substrate at 3000 rpm for 30 s and heated at 125 °C for 5 min in air to form a
TiOy layer [36]. The 0.30 M TiO, precursor solution was spin-coated onto the TiOy layer at
3000 rpm for 30 s, and heated at 125 °C for 5 min. This process of coating with a 0.30 M
solution was then performed two times, and the FTO substrate was annealed at 550 °C
for 30 min to form a compact TiO; layer. For the mesoporous TiO; layer, TiO; paste was
prepared with TiO, powder with poly in ultrapure water. The solution was mixed with
acetylacetone (10 uL) and triton X-100 (5 puL) for 30 min, and then left for 12 h to suppress
the bubbles in the solution. After that, the TiO, paste was coated onto the substrate by
spin-coating at 5000 rpm for 30 s. The cells were then annealed at 120 °C for 5 min and at
550 °C for 30 min to form a mesoporous TiO; layer.

@
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Figure 1. Layered structure of the present solar cells.

For the preparation of perovskite compounds, a solution of CH3NH3I (190.7 mg) and
PbCl, (111.2 mg) was prepared with a mole ratio of 3:1 and in N,N-dimethylformamide
(500 pL) with additives of EABr and Rbl. These perovskite solutions were spin-coated three
times at 2000 rpm for 60 s [37]. During the third spin-coating, several drops of DPPS were
added [38-41], which is effective for the formation of stable devices [42].

A hole-transport layer was prepared by spin-coating. A solution of spiro-OMeTAD (50 mg) in
chlorobenzene (0.5 mL) was mixed with a solution of lithium bis (tri-fluoromethylsulfonyl) imide
(260 mg) in acetonitrile (0.5 mL) for 24 h. The former solution with 4-tertbutylpyridine
(14.4 mL) was mixed with the Li-TFSI solution (8.8 mL) for 30 min at 70 °C. Then, the
spiro-OMeTAD solution was spin-coated on the perovskite layer at 4000 rpm for 30 s. All
procedures were performed in ambient air. Finally, gold (Au) electrodes were evaporated
as top electrodes using a metal mask for the patterning.



Chem. Proc. 2022, 9, 14

30f9

3. Results and Discussion

Figure 2 shows the electron density distribution of MA g25EA 25Rbg 125Pbl; 25Br 75,
showing that the electron density is higher around Br compared with L. It can also be
seen that the electrons are delocalized in MA and EA, and there are almost no electrons
around Rb.

Figure 2. Electron density distribution of MAO'625EAO.25Rb0.125Pb12.25Br0‘75.

Figure 3 shows the results of band structure and DOS of four types of perovskites.
Table 1 also summarizes the results of the effective masses and band gaps of electrons and
holes calculated from the band calculations, and the total energies calculated from the
first-principles calculations [43-48]. All crystals showed a direct transition type. I p orbitals
dominate in the valence band and Pb p orbitals in the conduction band, while Rb s orbitals
are found at higher energies than Pb b orbitals. The Rb s orbitals were localized at higher
energies than the Pb b orbitals, which may contribute to the photovoltaic properties in the
short wavelength regions due to optical absorption. The C p orbitals were found to be
located far from the band edge. Compared to the MAPbI3, the effective masses of electrons
and holes in EAPbI3, RbPblz, and MAPbBr; were smaller. The effective masses of electrons
and holes became smaller in EAPbl3, RbPblz and MAPbBr; compared to the MAPbI;. The
effective masses of electrons and holes are smaller in EAPbI;, RbPbl;, and MAPbBrj3 than in
MAPbI;, suggesting an increase in carrier mobility. In addition, the band gap of MAPbBr3
was greatly improved. This suggests an increase in the open-circuit voltage. The total
energies were found to be stable with the substitution of EA and Br.

Table 1. Comparison of effective mass rations, energy gaps and total energies. * means effective mass.

Effective Mass Ratio

Device Energy Gap Eg Total Energy
me *lmy my, *Imy (eV) (eV cell-1)
MAPbDI; 0.055 0.031 1.391 —3483
EAPDI3 0.049 0.024 1.241 —3682
RbPbI; 0.050 0.028 1.268 —2999
MAPDbBr3 0.039 0.028 2.032 —3657

Figure 4 and Table 2 shows the current density-voltage (J-V) curves and the external
quantum efficiencies. The conversion efficiency was the highest for a standard device. The
EQE is almost constant between 300 and 800 nm and shifts to shorter wavelengths with
increasing EABr content around 800 nm. This is thought to have led to an increase in the
open-circuit voltage by increasing the band gap.

Figure 5 shows the results of conversion efficiencies after 60 days. The conversion
efficiencies of the standard device decreased from the initial value, probably due to the de-
composition of perovskite by desorption of MA, an organic substance, with time. However,
in the doped systems, the conversion efficiencies were improved in all devices. Compar-
ing each parameter, the improvement in Jsc and Voc is remarkable. The reason for the
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improvement in conversion efficiency is thought to be the formation of crystals due to ion
diffusion inside the perovskite layer immediately after fabrication. The growth of these
crystals by room temperature aging is thought to have improved the surface coverage
and the interface between the TiO, layer and the perovskite layer, resulting in improved
conversion efficiency.

(a) ’ X (b) 4 A /

2

CE-E(eV)

. E=E; (eV)

.
"
X
AS

r x M X|M R X[M F
k - vector
5.0 T 5.0
.5 Total DOS Ip 45
4.0 4.0
35 Total DOS 3.5 Total DOS

(d) 4
3
A
AZ
2
~1
LﬁLO
| |
u, S ﬂ<§§
2 _ LA/ \ |/
r X ™ R XM R r x X|M R
k - vector k vector
5.0 5.0
45 | Total DOS U Ip 45
4.0 Total D
Total DOS
3.5
3.0
82.5
0o 20
Q'1.5
1.0
0.5
0.0
5 4 2 2
E EF (eV)

Figure 3. Band structures and DOS of (a) MAPbI; (b) EAPbI; (c) RbPbl; and (d) MAPbBrs.

Figure 6 shows the results of the X-ray diffraction patterns, showing that the intensity
of the perovskite peak is enhanced in the Rb and EA doped system. This suggests that the
orientation of the perovskite crystals has been improved.

Figure 7 shows the results of SEM images and elemental mapping images of the
perovskite layer; Surface of the standard device is smooth and. In the EA or Rb added
system, the surface morphology is denser, and the perovskite crystals are formed. The
elemental mapping also shows that Rb, I and Br are distributed in the perovskite crystals.
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Figure 4. (a) J-V curves and (b) external quantum efficiencies of the devices.

Table 2. Measured photovoltaic parameters of solar cells.

700

800

. Jsc Voc 1 Have Rs Rgp Eg

Device (mA cm—2) ) FE (%) (%) Qem?  (Qem?) (eV)
Standard 183 0.814 0.590 8.80 7.56 9.92 1427 1.55

RbI 5% + EABr 10% 13.7 0.866 0.602 7.16 5.92 13.1 1838 1.57
RbI 5% + EABr 20% 122 0.871 0.683 7.25 5.62 12.8 1698 1.60
RbI 5% + EABr 30% 15.0 0.869 0.576 7.51 6.44 10.8 1079 1.61

After 60 days - - - - - - - -

Standard 17.3 0.880 0.576 8.77 8.53 6.08 907 1.56

RbI 5% + EABr 10% 21.6 0.901 0.646 126 109 5.67 677 1.59
RbI 5% + EABr 20% 19.4 0.944 0.626 115 113 9.12 1030 1.61
RbI 5% + EABr 30% 17.7 0.933 0.622 10.3 9.89 7.99 1290 1.62

Conversion effciency (%)
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Figure 5. Changes in conversion efficiencies after 60 days in ambient air without encapsulation.
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Figure 6. X-ray diffraction patterns of the devices.

Standard

Figure 7. SEM images and elemental mapping images of the devices.

4. Conclusions

The effects of EA and Rb addition on the photovoltaic properties were investigated
using first-principles calculations and experimental devices. The first-principles calcula-
tions showed that the effective masses of electrons and holes are reduced by the addition of
EA and Rb. It was also found that the band gap increases with the addition of bromine.
When the amount of EABr was increased, the band gap was widened, which is consistent
with the results of first-principles calculations. The open-circuit voltage was also improved
accordingly. After two months, the conversion efficiency of the Rb and EA added devices
was improved. The stability of the perovskite crystal was improved by the migration of
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Rb and EA to the position of the desorbed MA over time. The photovoltaic properties of
the devices with simultaneous addition of EABr and Rbl showed superior performance in
terms of long-term stability compared to MAPbI3 device.
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