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Abstract: Effects of addition of guanidinium [C(NH2)3; GA] on MAPbI3 perovskite solar cells
fabricated at a high temperature of 190 ◦C in atmospheric air were investigated on the photovoltaic
properties and first principles calculations. The addition of guanidinium iodide and the insertion
of decaphenylpentasilane between the perovskite and hole transport layer improved the external
quantum efficiency and short-circuit current density, and the conversion efficiencies were stable after
1 month. First principles calculations on the density of states and band structures showed reduction
of the total energy by the GA addition and the effectiveness of the nitrogen atoms in GA.

Keywords: perovskite; solar cell; methylammonium; guanidinium; polysilane; first principles calculation

1. Introduction

The most common solar cells are currently silicon solar cells. However, the silicon
solar cells have a complicated fabrication process and are expensive. Recently developed
CH3NH3PbI3 (MAPbI3)-based perovskite compounds have demonstrated numerous ad-
vantages, such as tunable band gaps, easy fabrication process, and high conversion efficien-
cies [1–5]. Higher efficiencies have been accomplished for various perovskite compounds
and device structures, and conversion efficiencies above 20% have been achieved [6–14].
However, MAPbI3 perovskite compounds are typically unstable in air because of the migra-
tion of CH3NH3 (MA). Therefore, the stability of the corresponding perovskite solar cells
should be improved for inclusion in the actual cell module [15]. One method to improve
the stability of perovskite solar cells is elemental or molecular adding to the perovskite
crystals [16–23].

As guanidinium (C(NH2)3, GA) have larger ionic radii (2.78 Å) than MA (2.17 Å),
which can be expected to improve the structural stability. Several studies on GA addition
have been carried out, and the photovoltaic properties and stability of the MAPbI3 were
improved [24–27]. GA addition is expected to extend the carrier lifetime and to reduce
the carrier recombination in the perovskite layers [28,29]. In addition to the GA addi-
tion, various organic and alkali cations such as formamidinium (CH(NH2)2, FA) [30,31],
ethyl ammonium (CH3CH2NH2, EA) [32,33], cesium (Cs) [31,34], rubidium (Rb) [35,36],
potassium (K) [21,37], or sodium (Na) [20] were added to stabilize the MAPbI3 perovskite
crystals, and the photovoltaic properties were improved by these additions.

Incorporating polymeric materials into the perovskite devices is another approach
to improve the stability of perovskite solar cells [38]. For example, coating a thin layer of
poly(methyl methacrylate) on top of the perovskite layer forms a cross-linked network
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structure, which protects the cell from moisture and oxygen [39]. Polysilanes have two
important features. First, polysilanes are p-type semiconductors, which promote hole
transfer [40]. Second, polysilanes are more stable at elevated temperatures above 300 ◦C
than ordinary organic materials, which is expected as a protective layer when deposited
on perovskite compounds. Therefore, polysilanes, such as decaphenylcyclopentasilane
(DPPS), have been applied as HTLs of MAPbI3 perovskite devices [41,42].

The purpose of the present work is to fabricate and characterize perovskite solar cells
in which a small amount of GA was added to MAPbI3, and annealed at high temperature of
190 ◦C in ambient air applying the DPPS layer on the perovskite layer. These experimental
results were also compared with calculated electronic states and band structures. PbCl2 and
CH3NH3PbI3 were selected to form the perovskite crystals based on the following chemical
equation: CH3NH3I + PbCl2 = 2CH3NH3Cl + MAPbI3. The annealing temperature is
higher than 140 ◦C, which may lead the stabilization of the perovskite grains [43]. A small
amount of chlorine could improve the diffusion length of excitons and the carrier lifetime,
which improved the conversion efficiency [44,45].

Effects of GA adding to MAPbI3 crystals on the electronic structures were also inves-
tigated by first-principles calculation. The effects of GA addition on the microstructures
and photovoltaic properties of the MAPbI3 perovskite solar cells were investigated using
current density-voltage (J-V) characteristics, X-ray diffraction (XRD).

2. Experimental Procedures

A method for fabricating a perovskite solar cell is shown in Figure 1. Details were
described in the previous works [46–50]. F-doped tin-oxide (FTO) substrates were cleaned
by using an ultrasonic bath with acetone and methanol, and dried under nitrogen. TiO2
precursor solutions (0.15 and 0.30 M compact TiO2) were prepared from titanium diiso-
propoxide bis(acetylacetonate) (Sigma-Aldrich, Tokyo, Japan, 0.055 and 0.11 mL) with
1-butanol (Nacalai Tesque, 1 mL), and the 0.15 M TiO2 precursor solution was spin-coated
on the FTO substrate at 3000 rpm for 30 s and annealed at 125 ◦C for 5 min in air to form the
compact TiO2 layer. Mesoporous TiO2 precursor solution was spin-coated on the compact
TiO2 at 5000 rpm for 30 s and annealed at 550 ◦C for 30 min in air to form the mesoporous
TiO2 layer.
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Figure 1. Schematic illustration of the perovskite solar cells.

The perovskite compounds were prepared with N-dimethylformamide (Sigma-Aldrich) of
mixing CH3NH3I (Tokyo Chemical Industry, Tokyo, Japan, 190.8 mg) and PbCl2 (Sigma-
Aldrich, 111.2 mg) at 60 ◦C for 24 h. This solution was the basic precursor of MAPbI3,
prepared with a mole ratio of 3:1 [43]. MA0.9GA0.1PbI3 and MA0.8GA0.2PbI3 precursors
were prepared by adding guanidinium iodide (Sigma Aldrich) to control the desired mo-
lar ratio. Perovskite precursor solutions were spin-coated on the mesoporous TiO2 layer
three times applying a hot air blowing method during the spin-coatings. The perovskite
solutions were spin-coated at 2000 rpm for 60 s. On the third spin-coating, decaphenyl-
cyclopentasilane (DPPS, Osaka Gas Chemicals, Osaka, Japan, SI-30-15, 10 mg) solution
were dropped on the perovskite layer [42,51,52]. The polysilane solution was prepared by
mixing chlorobenzene (Fujifilm Wako Pure Chemical Corporation, Osaka, Japan, 0.5 mL)
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with DPPS. After the spin-coating, the prepared cells were annealed at 190 ◦C for 10 min in
air to form the perovskite layer.

A hole transport layer was prepared by spin-coating on the perovskite layer. A
precursor solution of the hole transport layer was prepared by mixing chlorobenzene and
2,2′,7,7′-tetrakis-(N,N-di(p-methoxyphenyl)amine)-9,9′-spirobifluorene (Sigma Aldrich,
spiro-OMeTAD) for 12 h. This solution was added that mixing an acetonitrile (Nacalai
Tesque, Kyoto, Japan, 0.5 mL) with 4-tert-butylpyridine (Sigma-Aldrich, 188 mg) and
lithium bis(trifluoromethylsulfonyl)imide (Tokyo Chemical Industry, 260 mg), stirred at
70 ◦C for 30 min. Finally, a gold (Au) thin films was evaporated onto the hole transport
layer, as top metal electrodes.

The current density voltage characteristics (Keysight, Santa Rosa, CA, USA, B2901A)
of the fabricated devices were measured under a solar simulating light source (San-ei
Electric, Osaka, Japan, XES-301S) operated at 100 mW cm−2. X-ray diffraction (XRD,
Bruker, Billerica, MA, USA, D2 PHASER) was used to investigate the microstructures of
the devices.

3. Result and Discussion

Measured photovoltaic parameters are shown in Table 1. The standard cell provided a
short-circuit current density (JSC) of 19.2 mA cm−2 and a conversion efficiency (η) of 11.95%.
The addition of 10% GA increased JSC to 21.5 mA cm−2 from 19.2 mA cm−2, η to 13.88%
from 11.95. The η was improved by the GA addition because of a proportional relationship
between JSC and η. The highest JSC and open-circuit voltage (VOC) were obtained for the
addition of 10% GA, which provided an ηave of 13.16%. The average efficiency (ηave) of
three electrodes was measured. After one month, the η values for the standard and +GAI
cells were stable.

Table 1. Measured photovoltaic parameters of solar cells.

Device
JSC VOC FF

RS Rsh η ηave Eg ηave (After 1 Month)
(mA cm−2) (V) (Ω cm−2) (Ω cm−2) (%) (%) (eV) (%)

Standard 19.2 0.819 0.760 4.78 635 11.95 11.74 1.546 11.01
GA 10% 21.5 0.835 0.773 4.66 633 13.88 13.16 1.533 12.36
GA 20% 21.2 0.793 0.634 7.64 238 10.68 9.84 1.547 9.77

Calculated electronic structures of the MAPbI3, MA0.875GA0.125PbI3, and
MA0.75GA0.25PbI3 at the highest occupied molecular orbital (HOMO), the lowest unoccu-
pied molecular orbital (LUMO) energy levels and the electrostatic potential map are shown
in Figure 2, which were calculated by ab-initio methods based on the Hartree–Fock [53–59].
The phases of electron densities in the Pb-6p and I-5p orbitals were inverted, as indicated
by the green and red coloration. Since the constructed supercell models are MA7GAPb8I24
and MA6GA2Pb8I24, the chemical compositions are denoted as MA0.875GA0.125PbI3 and
MA0.75GA0.25PbI3, respectively. Although the compositions are not precisely same as those
of GA10% and GA 20% crystals, some tendencies on the properties of the crystals could be
estimated. The electronic charge of the LUMO showed that the electron would flow straight.
The electronic charge of the HOMO was distributed over the nitrogen of in the GA, which
contributed to the carrier transport and electronic properties. The electrostatic potential
was positive (blue) around the methylammonium and guanidinium. Partial density of
states (DOS) of the MAPbI3, MA0.875GA0.125PbI3, and MA0.75GA0.25PbI3 perovskite crystals
are shown in Figure 3. The electrons were increased at −2 eV with the GA addition.
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Table 2 shows energy levels of MAPbI3, MA0.875GA0.125PbI3 and MA0.75GA0.25PbI3
from the calculation. MAPbI3 provided a HOMO of −17.78 eV, a LUMO−15.00 eV, Fermi
level (EF) of −16.39 eV, band gap (Eg) of 1.02 eV. The Eg increased from 1.02 to 0.93 eV by
the GA, which may increase the JSC and η. Gibbs energy (G) decreased for structure models
by adding GA, which indicates the perovskite crystals are stabilized by the addition of GA.



Chem. Proc. 2022, 9, 13 5 of 9

Table 2. Energy levels of MAPbI3, MA0.875GA0.125PbI3 and MA0.75GA0.25PbI3 calculated by molecu-
lar orbital calculation.

Structure HOMO (eV) LUMO (eV) EF (eV) Eg (eV) G (kJ mol−1)

MAPbI3 −17.78 −15.00 −16.39 1.02 −1470
MA0.875GA0.175PbI3 −17.81 −15.02 −16.42 1.02 −1578
MA0.75GA0.25PbI3 −17.63 −14.94 −16.28 0.93 −1686

Lattice constants of standard, GA10% and GA20% perovskites were measured to be
6.268 Å, 6.276 Å and 6.278 Å, respectively, which indicates an increase by the GA addition.
Since the ionic radius of GA+ is larger than MA+, the increase in the lattice constant would
be due to the substitution of GA at the MA-site [60].

The band structures and partial DOS of the MAPbI3, MA0.875GA0.125PbI3 and
MA0.75GA0.25PbI3 perovskite crystals were calculated by first-principles calculation [59],
as shown in Figure 4. Figure 4 shows the 6p orbital of Pb is widely distributed near the
conduction band minimum for both crystals. Near the valence band maximum, the 5p
orbital of I and the 6s orbital of Pb are distributed. For the MA0.875GA0.125PbI3, the 2p
orbital of nitrogen in the GA is distributed at−2 eV, which could promote the improvement
of the current density.
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Figure 4. Structure models, density of states, and band structures for (a) MAPbI3 and
(b) MA0.875GA0.125PbI3 and (c) MA0.75GA0.25PbI3.

Electron density distributions of MA0.875GA0.125PbI3 are shown in Figure 5. The
electron density distributions around MA and GA are positively charged. The electron
density distribution around GA was slightly lower than that around MA on the Pb-I
interfaces, which indicates that carriers around GA would flow and stabilize the perovskite
crystals. Table 3 shows the bandgap and total energy of the perovskite crystal lattice
obtained from the calculation. The bandgap energies of MAPbI3 and MA0.875GA0.125PbI3
are calculated to be 1.33 eV and 1.31 eV, respectively. Calculated results on the total energies
indicate the GA addition promotes stabilization of the perovskite crystal, which is expected
to suppress the desorption of MA or GA. The GA addition also causes a reduction in the
bandgap and increases the number of excited electrons.
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Table 3. Band gap and total energies of MAPbI3, MA0.875GA0.125PbI3 and MA0.75GA0.25PbI3 by
band calculation.

Structure Model Band Gap (eV) Total Energy (eV cell−1)

MAPbI3 1.326 −3496
MA0.875GA0.175PbI3 1.305 −3629
MA0.75GA0.25PbI3 1.313 −3629

4. Conclusions

EQE and JSC were improved by the GA addition to the MAPbI3. The η of 12% was
maintained for the GA10% added device even after 1 month. The synergistic effect of the
addition of GA and insertion of polysilane for the high temperature fabrication of solar
cells is effective for stabilization of perovskite solar cells. From the results of first-principles
calculations, the carrier transport was changed by the GA addition.
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