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Abstract: This paper investigates the acidification of eggshells of different origins with acetic acid.
The acidification process was investigated for conventional and organic eggshells generated from
the production of liquid eggs in the food industry and hatched eggshells from egg incubators. The
acidified eggshell materials were characterized using Fourier-transform infrared spectroscopy (FTIR),
transmission electron microscopy (TEM) analysis, and thermogravimetric analysis (TGA). The results
demonstrate that each type of investigated eggshell generates different nanostructures due to slight
variations in their composition and this indicates potential applications: as a source of calcium
supplements or to produce a snow-melting agent or CO2 adsorbent.

Keywords: liquid eggs; hatched eggs; side-streams; nanostructures; organic content

1. Introduction

Eggshells are a major side stream of the agro-food industries, generated during liquid
egg production [1] and from the hatchery process [2]. Eggshells have been considered
for applications in various fields, such as calcium supplements for food and feeds [3],
snow-melting agents [4], soil conditioners/biofertilizers [5], as a potential toxic element
sequestrant [6,7], for the generation of porous CaO used as a catalyst in trans-esterification
reactions [8], or for CO2 absorption [9]. These practical utilizations of eggshells correspond
to the circular bioeconomy approach, aiming to extract the maximum value from agro-
industrial side streams, promoting their reuse, recycling, and repurposing [10–12].

Despite being a natural byproduct of avian egg production and reutilization, the
improper disposal and accumulation of eggshells can have detrimental effects on the en-
vironment [1]. There are various aspects to this issue, including the impact on landfills
(occupying valuable landfill space and having a long lifespan), water bodies (affecting
aquatic ecosystems and compromising water quality), and global warming (the release
of methane, a potent greenhouse gas). Additionally, the release of harmful substances
during decomposition and the potential for leaching hazardous compounds into the soil are
concerning due to the possibility of disrupting soil ecosystems and altering soil chemistry.
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Understanding the environmental risks associated with eggshell waste is crucial for devel-
oping effective waste management strategies and promoting sustainable alternatives [13].
This includes methods such as their utilization for CO2 capture within the circular econ-
omy framework. In line with this concept, eggshells are a sustainable resource for CO2
capture [9].

The excessive emission of CO2, a major greenhouse gas, is a significant contributor to
global climate change [14]. Developing efficient and cost-effective CO2 capture methods is
crucial for mitigating these adverse effects.

Chemical looping is a promising technology for efficient and cost-effective CO2 cap-
ture [15–19]. This approach utilizes solid carriers, such as calcium oxide (CaO), to cyclically
capture and release CO2 through redox reactions [20]. The reversible reaction between
CaO and CO2 enables the separation of CO2 from flue gases without the need for energy-
intensive separation processes. In recent years, significant research [21,22] efforts have been
dedicated to understanding the fundamental mechanisms and optimizing the performance
of CaO-based chemical looping systems [23] for CO2 capture.

Acetic acid applied as pre-treatment to eggshells generates a mesoporous structure
and improves their CO2 capture efficiency [24]. Formic and citric acid applied to eggshells
were also proven to promote the formation of a more porous CaO structure with increased
CO2 uptake capacity [25]. The acidulation process with acetic acid also improves the
fluidization behavior of the porous CaO resulting from eggshells [26].

The calcium acetate resulting from the acidification of the eggshells with acetic acid
has other applications, such as calcium supplements [27,28] or snow-melting agents [4].

This work explores the potential applications of materials from the acidification of
different eggshells: conventional and organic eggshells from the food industry/liquid eggs,
and hatched eggs from eggs incubators. The results suggest that ecological eggshells are
more suitable for producing food supplements, and hatched eggshells are more suitable for
use as a CO2 adsorbent.

2. Materials and Methods
2.1. Materials

Three types of eggshells, conventional and organic eggshells from the food indus-
try/liquid eggs and hatched eggs from an egg incubator, were used. The conventional
(commercial) eggshells were obtained from Avicola (Lumina, Romania). The organic
eggshells were supplied by Cortina Bioprod (Curtisoara, Romania). The hatched eggs were
obtained from Hipocrate (Bucharest, Romania). Acetic acid (Merck Group, Darmstadt,
Germany) was utilized as an organic acid. Calcium oxide and calcium carbonate, p.a.
(Sigma-Aldrich, Merck Group) were used as reference material for FTIR analysis.

2.2. Eggshells Treatment with Acetic Acid

The reactions of eggshells with acetic acid can be described as follows:

CaCO3 + 2CH3COOH = Ca(CH3COO)2 + H2O + CO2 (1)

The eggshells’ treatment with acetic acid was performed according to Nawar et al. [25,29].
The eggshells were thoroughly washed with water to eliminate impurities such as egg white
remnants, straw, flakes, and blood traces. Following the washing process, the cleaned eggshells
were allowed to dry overnight. This step facilitated the complete evaporation of residual
moisture. The dried eggshells were subjected to grinding using a centrifugal mill (S 100,
Retsch, Verder Group, Haan, Germany) equipped with stainless steel balls within the grinding
chamber. For acidification, acetic acid was utilized as a 1M solution. Six grams of eggshells
were carefully added to 60 mL of the respective acid solution, taking precautions to manage the
formation of foam. Gentle agitation was applied until the foam dispersed. Subsequently, the
sample was heated at 90 ◦C in a laboratory oven (UE200 Memmert, Buechenbach, Germany)
and stirred at 500 rpm on a magnetic plate (Arex 6, Usmate Velate, Italy), for 2 h. Following
the acidification process, the treated sample was left to dry overnight at 105 ◦C, ensuring
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complete evaporation and the drying of any remaining moisture. The acidified and dried
eggshells underwent another grinding step to obtain homogenous samples.

2.3. Characterization Techniques

The acidified eggshells were characterized using Fourier-transform infrared spec-
troscopy (FTIR) and transmission electron microscopy (Tecnai G2 F20 TWIN Cryo-TEM,
FEI Company, Hillsboro, OR, USA). TEM analysis allows for examining the microstruc-
ture and morphology of the acidified eggshells, providing valuable information on their
physical characteristics.

The TEM system utilized a 200 kV scanning/transmission electron microscope (S/TEM)
equipped with a TWIN lens and a high-brightness field emission electron gun (FEG). The
sample for TEM examination was prepared by pouring a droplet of the aqueous dispersion
on a formvar copper grid without staining.

FTIR analysis was used to identify chemical functional groups and their modification
after acidification. The Attenuated Total Reflectance (ATR) mode was used, with a wave-
length range of 7800–400 cm−1, a peak resolution of 4 cm−1, and 45 scans per sample. The
analysis was performed using an IR-TRACER-100 FTIR (Shimadzu, Kyoto, Japan). The
spectra were recorded in transmittance mode (%T).

The thermogravimetric analysis was performed using a thermobalance (Q5000IR, TA
Instruments, New Castle, DE, USA) under the following conditions: high-temperature
platinum (HT Pt) crucible of 100 µL, heating rate of 10 ◦C/min up to 1000 ◦C, initial sample
mass 10 mg, purge gas 1: Nitrogen (99.999%) at 50 mL/min.

3. Results and Discussions
3.1. TEM

The three types of eggshells (conventional, organic, and hatched) were studied in both
their untreated and acidulated forms using organic acid—acetic acid (AA)—Figure 1.
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Figure 1. Transmission electron microscopy images of the acetic acid acidified eggshells. (a) Un-
treated conventional eggshells; (b) untreated organic eggshells; (c) untreated hatched eggshells; (d) 
conventional eggshells treated with acetic acid; (e) organic eggshells treated with acetic acid; (f) 
hatched eggshells treated with acetic acid. 

Figure 1. Transmission electron microscopy images of the acetic acid acidified eggshells. (a) Untreated
conventional eggshells; (b) untreated organic eggshells; (c) untreated hatched eggshells; (d) conven-
tional eggshells treated with acetic acid; (e) organic eggshells treated with acetic acid; (f) hatched
eggshells treated with acetic acid.

In the case of untreated eggshells (Figure 1a–c), irregular-shaped (micro)particles
ranging in size from 20 nm to 0.5–1 µm were observed, with no significant differences.
After acidification, each type of eggshell exhibited a different morphology. Conventional
eggshells treated with acetic acid appeared filamentous and homogeneous (Figure 1d).
Organic eggshells acidified with acetic acid retained a rectangular shape (Figure 1d),
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in contrast with the eggshells from the conventional-growth hens. Acidulated hatched
eggshells showed a distinct acicular shape (Figure 1e).

TEM analysis also revealed the porous nature of the treated and untreated crystal-
lites [30,31]. It was reported that the nucleation and growth of CaO crystals from CaCO3
resulted in the acidulated particles having a rougher surface than the untreated ones [25,26].

3.2. FT-IR

By comparing the spectra of the acidified and untreated samples with pure CaCO3
and CaO (Merck) (Figure 2), as well as with the FTIR database, it was found that the
untreated samples contained over 90% CaCO3, evident from the vibrational bands of C-O
in the carbonate molecule, ranging between 1394 and 1406 cm−1, with a lower intensity for
untreated eggshells.
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Figure 2. The FTIR spectra of the acidified and untreated samples compared with pure CaCO3 and
CaO. (a) Conventional eggshells; (b) organic eggshells; (c) hatched eggshells.

Using the FTIR technique, differences between the untreated and acidulated eggshells
are noticeable. No significant differences were observed among the three types of eggshells
(conventional, organic, and hatched), even when compared to the pure CaCO3 and CaO
substances. Asymmetric stretching and an in-plane deformation [30] of C-O bonds were
observed at wavelengths of 871 cm−1 for untreated eggshells and 873 cm−1 for eggshells
acidulated with acetic acid. The C-O bond is also present in the wavelength range of
1570–1604 cm−1 from carbonate. The band observed at 1777–1795 cm−1 is attributed to
the C=O bond in carbonate, which is only present in untreated eggshells regardless of
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their origin. The absence of this peak in acidulated eggshells suggests that the associated
reactions occurred.

The Ca-O bond is expected to be around 500 cm−1 and 710–712 cm−1 [13]. These
peaks are associated with the characteristic vibrations of calcium oxide (CaO) [32], but are
not prominently visible in the recorded spectra. A noticeable difference in all acidulated
eggshells is observed in the 440–670 cm−1 region, where several detectable peaks are
present, unlike in the untreated eggshells with no signals. This region can be associated
with inorganic Ca-O bonds. Additionally, the range of 781–1055 cm−1 suggests the absence
of CaCO3, the main component of the eggshell, as it has been converted to CaO after
acidification and drying. These peaks are unique to the acidulated sample, suggesting
the presence of organic acid residues (acetic acid) and possible changes in the crystalline
structure of the eggshell material due to the acid treatment. Acetic acid has characteristic
bands at 1176, 1780, 1795, and 3581 cm−1 [33], which were absent in the acidified and
calcined samples. This finding suggests that the eggshells’ reaction and the calcination
step entirely consumed the acetic acid. The peaks at 2359 cm−1 are attributed to traces
of amines and amides from the protein content of the shell and/or residual membrane
remnants. Residual water traces (O-H bonds) are weakly present in the 3200–3400 cm−1

range, indicating hygroscopic adsorption and the formation of Ca(OH)2.

3.3. Eggshells’ Thermal Decomposition

The results obtained from the thermal decomposition testing of acetic acid-treated
eggshells, containing calcium acetate, measured at a constant rate of 10 ◦C/min up to
1000 ◦C, are consistent with literature data. Figure 3 and Table 1 highlight the mass loss
percentage over three temperature intervals.
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Figure 3. The decomposition of calcium acetate derived from various assortments of eggshells,
conventional/commercial, organic, and hatched.

Table 1. TGA results regarding the decomposition of calcium acetate derived from eggshells.

Eggshell
Sample

40–205 ◦C 205–550 ◦C 550–850 ◦C 850–1000 ◦C Residue

Wt. loss Wt. loss Tmax Wt. loss Tmax Wt. loss 850 ◦C 1000 ◦C

% % ◦C % ◦C % % %

Hatched 4.23 22.83 426.2 32.48 735.0 0.21 40.44 40.23

Conventional 4.16 22.68 427.3 32.78 737.8 0.46 40.38 39.91

Organic 5.89 24.59 421.2 30.95 735.3 0.49 38.55 38.07
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An initial mass loss between 40 and 205 ◦C is attributed to the removal of water
molecules and traces of acetic acid. In the range of 340–550 ◦C, the dehydrated calcium
acetate decomposes to form acetone and CaCO3:

Ca(CH3COO)2 → CaCO3 + C3H6O (2)

Reaction (2) is observed as a combined percentage mass loss of 23–25%, with the
reaction reaching maximum velocity at 421–427 ◦C. Calcium carbonate then decomposes
to form calcium oxide between 600 and 765 ◦C, with the reaction reaching its peak rate at
735–738 ◦C.

In the evaluation of the thermal decomposition characteristics, a detailed comparison
of the weight loss profiles of the different eggshell types emerges, shedding light on their
distinct behaviors across various temperature ranges:

• Weight loss, 40–205 ◦C: Organic eggshells exhibited the highest residue weight (5.89%),
while commercial eggshells had the lowest (4.16%). Hatched eggshells had a residue
weight of 4.23%.

• Weight loss, 205–550 ◦C: ecological eggshells also had the highest weight loss (24.59%)
at a maximum temperature of 421 ◦C, with commercial (22.68%) and hatched (22.83%)
eggshells following closely, but at higher temperatures, 426–427 ◦C.

• Weight loss, 550–850 ◦C: commercial eggshells had the highest weight loss (32.78%) in
this range, at 738 ◦C, whereas hatched (32.48%) and ecological (30.95%) eggshells had
slightly lower values, but also at a lower temperature, namely 735 ◦C.

• Weight loss, 850–1000 ◦C: ecological eggshells exhibited the highest residue weight
loss (0.49%), followed by commercial (0.46%) and hatched (0.21%) eggshells.

• Commercial eggshells had the highest weight loss (40.38%) at 1000 ◦C, followed by
hatched (40.44%) and ecological (38.55%) eggshells.

• Residue weight loss: ecological eggshells had the lowest residue weight loss (38.07%)
over 1000 ◦C, while hatched (40.23%) and commercial (39.91%) eggshells had slightly
higher values.

Upon analyzing the weight loss profiles, it becomes evident that of the different
eggshell types, ecological eggshells generally exhibit a slightly faster rate of decomposition
due to their higher organic matter content, while commercial and hatched eggshells tend to
decompose at slightly slower rates.

The thermal analysis results, as presented in Table 1, underscore the consistent be-
havior of calcium acetate decomposition across diverse eggshell assortments. The ob-
served mass loss percentages and temperature intervals align with the established litera-
ture [25,26,29], affirming the reliability of the conducted experiments and shedding light
on the successive stages of decomposition.

4. Conclusions

Our investigations demonstrate that each type of the considered eggshells generates
different nanostructures due to slight variations in composition. Organic eggshell, with a
higher organic content, maintained its rectangular shape, and was less efficient in forming
nanoporous CaO. The acidification, with acetic acid, of conventional eggshells generates
structures that are suitable for use as a snow-melting agent or as a CO2 adsorbent. The
hatched eggshell, most probably due to its lower protein content, generates an acicular
shape, more efficient in producing nanoporous CaO, and more efficient as a CO2 adsorbent.
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