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Abstract: The aim of the study was to fabricate and characterize composite macroporous hydrogels
based on a hyaluronic acid/chitosan (Hyal/Ch) polyelectrolyte complex (PEC) loaded with homo-
geneously distributed hydroxyapatite nanoparticles (nHAp), and to evaluate them in vitro using
mouse fibroblasts (L929), osteoblast-like cells (HOS) and human mesenchymal stromal cells (hMSC).
Hydrogel morphology as a function of the hydroxyapatite nanoparticle content was studied using
scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The mean pore
size in the Hyal/Ch hydrogel was 204 ± 25 µm. The entrapment of nHAp (1 and 5 wt. %) into the
Hyal/Ch hydrogel led to a mean pore size decrease (94 ± 2 and 77 ± 9 µm, relatively). Swelling
ratio and weight loss of the hydrogels in various aqueous media were found to increase with an
enhancement of a medium ionic strength. Cell morphology and localization within the hydrogels was
studied by CLSM. Cell viability depended upon the nHAp content and was evaluated by MTT-assay
after 7 days of cultivation in the hydrogels. An increase of the hydroxyapatite nanoparticles loading
in a range of 1–10 wt. % resulted in an enhancement of cell growth and proliferation for all hydrogels.
Maximum cell viability was obtained in case of the Hyal/Ch/nHAp-10 sample (10 wt. % nHAp),
while a minimal cell number was found for the Hyal/Ch/nHAp-1 hydrogel (1 wt. % nHAp). Thus,
the proposed simple original technique and the design of PEC hydrogels could be promising for
tissue engineering, in particular for bone tissue repair.

Keywords: hyaluronic acid; chitosan; composite hydrogel; hydroxyapatite nanoparticles; human
mesenchymal stromal cells; mouse fibroblasts L929; osteoblast-like cells; tissue engineering

1. Introduction

Natural polysaccharides are of great interest for various biomedical applications
due to their biodegradation, biocompatibility and bioactivity. For instance, chitosan and
hyaluronic acid are widely employed in drug delivery systems [1] and for tissue engi-
neering [2–4]. Hyaluronic acid is a highly abundant component of an extracellular matrix
(ECM) consisting of D-glucuronic acid and N-acetyl-glucosamine linked by alternating
β(1→4) and β(1→3) glycosidic bonds and carrying a high-density negative charge due
to the carboxyl groups in its chain [5]. Chitosan is a cationic linear polysaccharide, con-
taining glucosamine and residual N-acetyl-glucosamine units linked by β(1→4) glycosidic
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bonds [6]. However, use of these polymers in their native forms separately is limited
because of possible undesirable degradation rates (rather long in case of Ch and rapid in
case of Hyal), a lack of mechanical integrity as well as high water solubility (in case of Hyal).
These drawbacks can be overcome by cross-linking. However, cross-linking could lead to a
reduction of chitosan or Hyal swelling, as well as a decrease of the degradation ratio [7,8].
Moreover, a commonly used residual cross-linking agent, for instance, glutaraldehyde, can
cause cytotoxicity [9].

A combination of these two natural polymers allows for composite hydrogels with
enhanced characteristics, which are considered to be promising for tissue engineering [10].
Since Hyal and Ch are oppositely charged polyelectrolytes, they can form a water-insoluble
polyelectrolyte complex. As is well known, PEC-based composite materials from various
polymers have been widely used for fabrication of membranes and microcapsules for cell
cultivation [11], various drug and gene delivery systems [12] as well as scaffolds for tissue
engineering, for instance for dental pulp regeneration [13].

Nano-hydroxyapatite is a main mineral component of hard tissues, in particular
bones. Due to its biocompatibility and osteoconductivity the nHAp-based composites
proved to be promising biomaterials for bone tissue engineering [14]. Composite scaffolds
containing either chitosan [15,16] or hyaluronic acid [17], which were loaded with hydrox-
yapatite have been reported previously. However, it should be noted that fabrication of
PEC-based scaffolds loaded with hydroxyapatite is rather difficult challenge. Regarding
chitosan/hyaluronic acid scaffolds, Chen at al. proposed an original approach to fabri-
cate hydroxyapatite-loaded macroporous chitosan/hyaluronic acid scaffolds via in situ
crystallization of hydroxyapatite precursors, in particular Ca(NO3)2 and K2HPO4 [18].
However, morphology and size of the obtained hydroxyapatite crystals formed via in situ
crystallization were found to be strongly dependent on polymer type, concentration and
pH values of polymer solutions [19–21].

Since morphology and size of hydroxyapatite particles are of great importance for
successful bone tissue repair [22,23], hydrogels should be loaded with nanoparticles with
desirable characteristics. For this purpose, commercially available nHAp could be intro-
duced simultaneously with PEC formation as described earlier for chitosan-polyacrylic
acid polyelectrolyte complexes [24]. In this case, PEC formation could impede the uniform
nHAp distribution within the polymer network. An alternative approach has been also
reported, where pre-formed hydroxyapatite nanoparticles were introduced into composite
Hyal/silk fibroin hydrogels during the course of their fabrication [25].

We proposed a novel simple technique for preparation of Hyal/Ch hydrogels and an
optimized design of these macroporous PEC-based hydrogels, providing homogeneous
nHAp distribution within the polymer network. In the current study, we suggested first to
disperse nHAp in a sodium hyaluronate solution just before preparation of Hyal/Ch hy-
drogels, in order to fix nHAp in a Hyal network. Then, to form the Hyal/Ch polyelectrolyte
complex by adding another oppositely charged polyelectrolyte, namely Ch. Thus, the pro-
posed approach allowed us to develop an original and very simple technique for fabrication
of macroporous Hyal/Ch-based scaffolds loaded with hydroxyapatite nanoparticles.

This study was aimed at the preparation of macroporous hydrogels based on the
polyelectrolyte Hyal/Ch complex loaded with homogeneously distributed hydroxyapatite
nanoparticles and in vitro evaluation of the hydrogels using mouse fibroblasts, osteoblast-
like cells and human mesenchymal stromal cells.

2. Materials and Methods
2.1. Materials

Sodium hyaluronate of bacterial origin (Mw 1 × 106 Da, pharmacy grade) was from
Shiseido (Tokyo, Japan). Chitosan (Mw 5 × 104 Da; deacetylation degree (DD) 0.96) was
prepared using solvent-free mechanochemical synthesis as reported by us previously [26].
Nanoparticles of hydroxyapatite (with a mean size of≤200 nm) and Type I collagenase solu-
tion were from Sigma-Aldrich. Acetic acid (Chemmed, Moscow, Russia) of analytical grade
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was used without any further purification. Dulbecco’s modified Eagle’s medium (DMEM),
Eagle’s minimal essential medium (α-MEM), phosphate buffered saline (PBS, pH 7.4), strep-
tomycin, penicillin, a Trypsin/EDTA solution, Hoechst and 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenil-2H-tetrazolium bromide (MTT) were purchased from PanEco (Moscow, Russia).
Propidium iodide (PI) was from Immunotech/Beckman Coulter (Marseille, France), fetal
bovine serum (FBS) was purchased from PAA Laboratories GmbH (Pasching, Austria) and
Calcein AM was from eBioscience (San Diego, CA, USA).

2.2. Preparation of the Macroporous Hydrogels

Hydroxyapatite nanoparticles (0, 1, 5, and 10 wt. %) were dispersed in a 1 wt. % water
solution of sodium hyaluronate using an ultrasound bath (PBS-GALS, Russia) for a 15 min
treatment at a frequency of 35 kHz. Macroporous hydrogels were prepared as follows:
10 mL of nHAp/Hyal dispersions were frozen at −5 ◦C and freeze-dried. To provide
polyelectrolyte complex formation, the obtained macroporous hydrogels were immersed
in 30 mL of a 1 wt. % chitosan solution in 2% acetic acid for 2 h. Then, the samples
were thoroughly washed from a chitosan excess with milli-Q until a neutral pH value was
reached, and finally lyophilized. The obtained samples containing various nHAp amounts
in the Hyal solution (0, 1, 5, 10 wt. %) were marked as Hyal/Ch, Hyal/Ch/nHAp-1,
Hyal/Ch/nHAp-5 and Hyal/Ch/nHAp-10 samples, respectively.

2.3. CHN Elemental Analysis

The CHN elemental composition of the hydrogel samples was studied using a FLASH-
2000 Organic Elemental Analyzer (Thermo Fisher Scientific, Waltham, MA, USA). The
mean and standard deviation values of atomic concentrations were calculated based on
results of three experiments. The polymeric composition was calculated from changes in
the C-to-N ratio in the samples.

2.4. Scanning Electron Microscopy

The morphology of the vertically and horizontally cross-sectioned hydrogel samples
was examined using Zeiss EVO 40 scanning electron microscopy (Oberkochen, Germany)
equipped with an X-Flash 1106 silicon drift detector. To ensure a charge drain, a sample
surface was coated with a thin conducting Al film by sputtering. The microscope chamber
was evacuated to a working vacuum of 6 × 10−4 Pa, and examinations were performed
with a maximum accelerating voltage of 10–15 kV, a minimum probe current of 15–50 pA,
and a minimal working distance of 5–15 mm.

2.5. Confocal Laser Scanning Microscopy

The morphology of the hydrogels in a swollen state was examined using confocal laser
scanning microscopy (Nikon TE-2000 inverted microscope, Tokyo, Japan) equipped with
an EZ-C1 confocal laser. The hydrogel samples (5 × 5 × 1 mm) were incubated in milli-Q
for at least for 24 h to reach a swelling equilibrium. The swollen hydrogel samples were
stained with fluorescent Propidium iodide dye, which is known to provide rather good
non-specific staining. The hydrogel samples were incubated in PI solution (1.25 µg/mL in
milli-Q) for 10 min at room temperature, then washed with milli-Q and placed on a glass
coverslip for microscopic observations. The Propidium iodide fluorescence was excited
by an Argon-ion (488 nm) and Helium/Neon (543 nm) lasers and detected through a long
pass emission filter (650 nm). The images were acquired with Nikon EZ-C1 software with
identical settings for each sample. Image analysis software (ImageJ, National Institutes
of Health, Bethesda, MD, USA) was used to determine a mean pore size of the hydrogel
samples and for 3D reconstruction of the hydrogel structure.
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To study the complicated morphology of the obtained macroporous hydrogels, a
quantitative evaluation of micrographs was carried out by calculation of an effective pore
diameter (d) using an Equation (1):

d = (L × S)1/2 (1)

where L is a pore long axis length and S is a pore short axis length. The mean pore size was
determined by randomly measuring at least 100 pores from each hydrogel sample.

2.6. Study of Swelling Ratio and Weight Loss in Aqueous Medium

The swelling behavior and a weight loss of the prepared hydrogel samples were
studied in various aqueous media, namely in milli-Q, physiological solution (0.9% NaCl),
PBS (pH 7.4) and DMEM. For this purpose, the samples (5 × 5 × 2 mm) were sterilized
using 70% ethanol, washed with milli-Q and immersed in 5 mL of the solutions mentioned
above at 37 ◦C for 24 h. Before weighing, the surface water of the hydrogel samples
was removed with a filter paper. The swelling ratio (Sw) of the hydrogels was calculated
according to Equation (2):

Sw(%) =
Mw −Md

Md
× 100 (2)

where Md is the weight of the dried sample and Mw is the weight of the sample after
immersion in various solutions.

The weight loss was measured by the immersion of hydrogel samples in 5 mL of the
solutions mentioned above for 1 and 4 weeks at 37 ◦C. The solutions were refreshed once a
week. After incubation, the samples were washed 3 times with milli-Q and freeze-dried.
The weight loss (Wl) of the hydrogels was calculated according to Equation (3):

Wl(%) =
Mi −Mt

Mi
× 100 (3)

where Mi is the initial weight and Mt is the weight of the samples after incubation in the
various solutions. The results of swelling and mass loss experiments were presented as the
average ± SD.

2.7. In Vitro Study
2.7.1. Cell Cultivation

In the current study, the mouse fibroblast cell line L929, osteoblast-like cells, namely
HOS cells and human mesenchymal stromal cells were used. The mouse fibroblast L929 and
human osteosarcoma HOS cell lines were obtained from the Russian cell culture collection
of vertebrates at the Institute of Cytology RAS, St. Petersburg. Human mesenchymal
stromal cells were isolated from an adipose tissue as previously described [27], and the first
10 passages were used. Adipose tissue samples were obtained after an elective liposuction
under a local anesthesia from four healthy patients. Briefly, 2–3 adipose tissue samples
were chopped and washed twice by centrifugation with sterile PBS (pH 7.4) to remove
any contaminating debris and red blood cells. Then the tissue material was incubated at
gentle agitation (30 min, 37 ◦C) with a 0.075% Type I collagenase solution. Then collagenase
was inactivated with an equal volume of α-MEM supplemented with 10% FBS, and the
obtained mixture was precipitated using centrifugation (400× g, 10 min). Finally, the
obtained cellular pellet was re-suspended in α-MEM with 10% FBS, 50 U/mL penicillin and
50 µg/mL streptomycin, and cultured in a CO2 incubator. After 24 h, non-adherent cells
were discarded, and a fresh medium was added. The medium was replaced twice a week.

Fibroblast L929 and HOS cells were cultured in DMEM, while hMSC were cul-
tured in α-MEM. Both media were supplemented with 10% FBS and contained 2 mM
L-glutamine, 1 mM sodium pyruvate, 50 µM 2-mercaptoethanol, 100 µg/mL streptomycin
and 100 U/mL penicillin in 25 and 75 cm2 flasks in a 5% CO2 humidified atmosphere at
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37 ◦C (CO2 incubator Heraeus B5060 EK/CO2, Hanau, Germany). The cells were reseeded
every 2–4 days.

2.7.2. The Hydrogel Sterilization

The hydrogel samples were sterilized by incubation in 70% ethanol for 1 h. After
sterilization, the samples were washed 3 times with milli-Q.

2.7.3. Cytotoxicity of the Hydrogel Samples

The cytotoxicity of the hydrogel samples was studied in an extract test using L929
and HOS cell lines. For this purpose, sterile hydrogel samples were incubated with the
culture medium (25 mg per 1 mL of the medium) at 37 ◦C for 24 h. Then supernatants
(extracts) were collected and diluted with the culture medium. In this study, three extract
samples were used, namely, dilution 1:10, dilution 1:2 and non-diluted extract. The cells
were seeded in a 96-well plate (2 × 104 cells/well) and transferred to the CO2 incubator.
Then, in 24 h the medium in each well was replaced with 100 µL of the extracts. Cell
viability was assessed using MTT-assay after 24 h of cell cultivation in the extracts. For this
purpose, the extracts were replaced with 100 µL of MTT solution (0.5 mg/mL in DMEM)
and incubated at 37 ◦C for 3 h. Then, formazan crystals formed in the living cells were
dissolved by adding 100 µL DMSO, and an optical density was measured at 540/690 nm
using a Titertek Multiskan MCC/340 plate reader (Flow Laboratories, McLean, VA, USA).
The relative cell viability (V) was calculated according to Equation (4):

V(%) =
ODt

ODc
× 100 (4)

where ODt is the optical density in test wells and ODc is the optical density in control wells.
The cells cultivated in a fresh medium (without the extracts) were used as a control.

2.7.4. Study of Cell Morphology

The hydrogel samples (5 × 5 × 2 mm) were placed in a 96-well plate, sterilized as
described in Section 2.7.2 and incubated with the culture medium for 24 h. The L929 cells
were seeded on the hydrogel samples by dropping 200 µL of cell suspension (105 cells/mL),
and cultured for 1 week. After 7 days of cultivation, the cells were stained with the
Calcein AM fluorescent vital cell marker and the fluorescent DNA dye (Hoechst). The
mixture of Calcein AM and the Hoechst dye in the medium (1 µg/mL) was added to the
hydrogel samples, and the samples were incubated at 37 ◦C for 30 min. Then, the solution
was replaced with a fresh medium, and the samples were observed using confocal laser
microscope Nikon TE-2000 (Tokyo, Japan).

2.7.5. Cell Growth on the Hydrogel Samples

The L929, HOS cells and hMSC were used in the study. The hydrogel samples
(5 × 5 × 2 mm) were placed in a 96-well plate, sterilized as described in Section 2.7.2
and incubated with the culture medium for 24 h. The cells were seeded on the hydrogel
samples by dropping 200 µL of cell suspension (105 cells/mL), and cultured for 1 week. The
medium was refreshed every 2–3 days. Cell viability was evaluated by MTT-test. For this
purpose, the culture medium was replaced with 100 µL of the MTT solution (0.5 mg/mL in
DMEM), and the plate was incubated at 37 ◦C for 3 h. Formazan crystals were dissolved in
200 µL of DMSO. Then, 100 µL aliquots were taken to measure an absorbance (540/690 nm)
using the Titertek Multiskan MCC/340 plate reader (Flow Laboratories, McLean, VA, USA).

To estimate an effect of the hydrogels on results on the MTT-test, which is usually
performed for the monolayer culture, a control experiment was carried out. For this
purpose, control hydrogel samples were pre-incubated with the culture medium for 1 week,
and then the cells at previously determined cell densities were seeded on them. Finally, the
MTT-assay in the presence of the hydrogel samples was carried out after cell attachment
(approx. in 3 h). For each sample, a calibration curve was plotted: optical density for the
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cells cultivated in the presence of the hydrogel sample (abscissa X) versus an optical density
for the cells without the hydrogel sample (ordinate Y). Based on the obtained curve, the
optical densities were determined for all hydrogel samples. The relative cell viability was
calculated according to the Equation (4) (see Section 2.7.3).

2.7.6. Statistics

The data were analyzed using GraphPad Prism 5.0 software (Graph-Pad Software,
San Diego, CA, USA). All values were expressed as mean ± standard error of at least three
parallel replicates and compared using two-way analysis of variance (ANOVA) with Dunnett’s
Multiple Comparison Test as a post hoc test. Values of p < 0.05 were considered significant.

3. Results and Discussion
3.1. The Hydrogel Characterization

To provide homogenous distribution and fixation of the hydroxyapatite nanoparticles
in the polymer network, the following scheme for the hydrogel fabrication was proposed
(see Figure 1). First, nHAp were dispersed in the Hyal solution by ultrasound treatment
using conditions that provided stable uniform nHAp dispersions in the Hyal solution [28].
Then this nHAp/Hyal dispersion was freeze-dried and incubated in chitosan solution to
form a polyelectrolyte Hyal/Ch complex. Thus, use of this technique allowed us to evenly
spread nHAp and fix them within the macroporous composite polymer matrix.
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Figure 1. A scheme for fabrication of composite hyaluronic acid/chitosan hydrogels loaded with
hydroxyapatite nanoparticles (Hyal/Ch/nHAp). Photographs of the macroporous hydrogel samples
prepared from the Hyal solution with hydroxyapatite nanoparticles (10 wt. %) before (a) and after
(b) immersion in the chitosan solution. Scale bar is 10 mm.

Images of the samples are shown in Figure 1. Cross-linking the Hyal macromolecules
by electrostatic interactions with polyvalent ions and via hydrogen bond formation, could
be a reason for the rather specific matrix architectonics. The strongest structure of the
hydroxyapatite/hyaluronic acid network has been obtained using 10 wt. % of hydroxyap-
atite, as has been reported earlier by Ishikawa et al. [29]. The macroporous structures of
the freeze-dried Hyal/nHAp matrices allowed uniform swelling in the chitosan solution
and homogeneous chitosan coating of the Hyal macroporous hydrogels via polyelectrolyte
complex formation, which was revealed in a color change from white to slightly yellow
(Figure 1a,b).

The polyelectrolyte hyaluronic acid/chitosan complex could be formed through elec-
trostatic interactions of chitosan amino groups with carboxylic groups of the hyaluronic
acid, i.e., NH3

+-OOC. To confirm uniformity and to calculate the polymer complex compo-
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sition, an elemental analysis of the hydrogel samples was carried out. As seen in Table 1,
the polymeric composition was similar for all samples with minor variations.

Table 1. Elemental analysis data and the calculated composition of polymer matrix.

Sample Concentration, %

N C H

Hyal/Ch 4.38 ± 0.07 37.95 ± 0.07 6.63 ± 0.10
Hyal/Ch/nHAp-1 4.37 ± 0.02 38.15 ± 0.21 6.68 ± 0.01
Hyal/Ch/nHAp-5 4.37 ± 0.05 38.05 ± 0.21 6.76 ± 0.04
Hyal/Ch/nHAp-10 4.36 ± 0.03 37.45 ± 0.07 6.55 ± 0.03

3.1.1. Structure

An open interconnected macroporous structure is needed to provide large specific
surface for cell attachment and growth, as well as for nutrients, oxygen supply and effective
mass and gas exchange [30,31]. The morphology of the dried hydrogel samples was
evaluated using SEM (Figure 2a,b). The secondary and partially undeveloped pores within
the primary wall structure can be seen. This was caused by an additional freeze-dry cycle
after the complexation with chitosan. The hydroxyapatite nanoparticles obviously located
within pore walls could not be clearly seen in the SEM images. Nevertheless, the Ca and P
atoms related to hydroxyapatite were revealed by energy-dispersive X-ray spectroscopy
(EDX) of a wall spot in the Hyal/Ch/nHAp-10 sample in contrast to the Hyal/Ch sample
(Figure 2c,d).
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Figure 2. SEM images of the dried Hyal/Ch (a) and Hyal/Ch/nHAp-10 (b) samples; and EDX
spectra of Hyal/Ch (c) and Hyal/Ch/nHAp-10 (d) samples. Scale bar is 100 µm.
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The structure of the swollen hydrogel samples was evaluated by CLSM. As can be
seen in Figure 3, the prepared hydrogels in a swollen state possessed a clear interconnected
porous network with the mean pore size in a range of 77–204 µm. Moreover, an intro-
duction of nHAp did affect the hydrogel structure, and the mean pore size was found to
be dependent on the nHAp content. Thus, the mean pore size of the Hyal/Ch hydrogel
was 204 ± 25 µm. An introduction of 1 and 5 wt. % of nHAp led to the mean pore size
decrease from 204 ± 25 µm, to 94 ± 2 and 77 ± 9 µm in case of the Hyal/Ch/nHAp-1 and
Hyal/Ch/nHAp-5 samples, respectively. This could be explained by electrostatic interac-
tions of hyaluronic acid macromolecules with polyvalent hydroxyapatite ions (e.g., Ca2+)
which resulted in a two-fold reduction of the mean pore size providing more unimodal
pore size distribution. However, loading the hydrogel with 10 wt. % of hydroxyapatite
nanoparticles led to an increase of the pore mean size up to 99 ± 10 µm. This phenomenon
could be attributed to the nanoparticles aggregation and, as a result, the nanoparticles’
effect on the hydrogel structure was diminished.
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hyaluronic acid/chitosan hydrogel samples. Hyal/Ch sample was without hydroxyapatite nanopar-
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The mean pore sizes of the obtained hydrogels were large enough to provide animal
cell adhesion, migration and proliferation [32]. However, for osteoblasts preferable pore
sizes is within the range of 100–350 µm [31]. Nonetheless, Teixeira et al. reported that in case
of porous titanium surfaces, a decrease of pore sizes from 312 µm to near 62 µm resulted in
the increase of osteoblast phenotype and bone markers expression, and led to the decreased
proliferation rate of osteogenic cells derived from human alveolar bone [33]. In our study, an
entrapment of hydroxyapatite nanoparticles maintained a macroporous hydrogel structure
suitable to support 3D cell growth and proliferation within the macropores. However, in
case our hydrogels are used for mesenchymal stem cells differentiation, these issues should
be taken into consideration.
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3.1.2. Study of Swelling Ratio and Weight Loss

To estimate the stability of the hydrogel samples at physiological conditions, swelling
ratio and weight loss in various aqueous media were studied. As seen from Figure 4, both
parameters were highly affected by medium properties. Thus, the ionic strength of the
solution where the samples were incubated played a key role in the sample behavior. The
presence of ions in the 0.9% NaCl solution, PBS (pH 7.4) and the culture medium led to
a weakening of ion bonds within the polyelectrolyte Hyal/chitosan complexes. Similar
trends were observed for all hydrogel samples. An increase of the nHAp content in the
hydrogels resulted in swelling enhancement, which was markedly expressed the in case of
the culture medium use (Figure 4a). All the hydrogel samples were stable in milli-Q and
did not resorb after 4 weeks of incubation (Figure 4c). In the physiological solution (pH 7.2),
all the hydrogel samples were relatively stable for at least 4 weeks of incubation (weight
loss was less than 45 wt. %). Incubation in DMEM and PBS (pH 7.4) resulted in a significant
degradation of the samples (Figure 4b). After 7 days of incubation in PBS (pH 7.4) and
DMEM the weight loss values were 40% and 70%, respectively. After 4 weeks incubation in
PBS (pH 7.4) and DMEM, the weight loss reached a plateau of about 80%. An increase in
the nHAp amount within the hydrogels led to degradation decrease. Nevertheless, further
increase in the nHAp content (up to 10 wt. %) resulted in the swelling decrease again, while
the weight loss again increased. However, it should be noted that differences in swelling
and weight loss for the samples with different nHAp contents were not significant. The
results on weight loss analysis in PBS (pH 7.4) was in a good agreement with those reported
earlier [13]. Coimbra et al. reported that weight loss of Hyal/Ch PEC hydrogel reached a
plateau at about 35% after 3 days of incubation. However, differences in the behavior of the
hydrogel at further incubation was observed, which could be explained by the difference
in the experiment design, since in the work of Coimbra et al. the medium was not replaced,
while in our study the medium was refreshed once a week.

It should be noted that swelling behavior could drastically affect mechanical properties
of hydrogels. Earlier, it was shown that an incubation of polymers under physiological
conditions (an aqueous environment and a body temperature), led to a mechanical strength
decrease due to an increase in a free volume and chain mobility of the polymer [34]. A
decreased ability to resist deformation was shown after incubation in PBS of Ch-L-glutamic
acid/Hyal hydrogels, containing silver nanoparticles [35]. Tensile strength markedly
decreased, while an elongation at a break point increased compared to appropriated
values of dry samples. At the same time, an introduction of silver nanoparticles led to an
enhancement of mechanical properties of the hydrogels in a dry state, while in a wet state
all samples had similar mechanical properties.

In the current study, we did not evaluate mechanical properties of the obtained hydro-
gels. Nevertheless, we have found literature data, in order to analyze mechanical properties
of the similar hydrogels. Some results on mechanical properties, namely compressive
modulus values of various hydrogels based on either pure chitosan or its combination with
Hyal, are summarized in Table 2. It should be noted that characteristics of Ch and Hyal
used for the preparation of the hydrogels in the Table 2 differed from those of our samples.

As seen in Table 2, in case of Ch/Hyal PEC hydrogels a compressive modulus of the
hydrogels in a wet state was much lower compared to that in a dry state. Moreover, due
to an ability of hyaluronic acid to absorb a lot of water, Hyal introduction into Hyal/Ch
PEC matrices reduced the compressive modulus of a porous matrix [10]. Erickson et al.
reported that increasing chitosan content in the Ch/Hyal PEC hydrogels resulted in an
enhancement of mechanical properties. A compressive modulus value was varied from
1.41 kPa for the sample prepared from a 2 % wt. Ch solution, to 27.7 kPa for the hydrogel
sample from a 8 % wt. Ch solution.
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Figure 4. Swelling ratio after 24 h (a) and weight loss after 1 week (b) and 4 weeks (c) incubation
of the hydrogel samples in various aqueous media. Hyal/Ch sample was without hydroxyapatite
nanoparticles; Hyal/Ch/nHAp-1, Hyal/Ch/nHAp-5 and Hyal/Ch/nHAp-10 samples were loaded
with 1, 5 and 10 wt. % of hydroxyapatite nanoparticles, respectively.
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Most of natural polymers are known to possess rather poor mechanical properties.
Therefore, a quite low mechanical strength of Ch/Hyal composite matrices could be ex-
pected. However, a main goal of researches focusing on preparation and characterization
of Ch/Hyal PEC hydrogels is to combine the bioactive properties of Hyal and Ch. Hyal is
known to play an important role in a regulation of cell behavior, including cell prolifera-
tion, survival, motility, migration and differentiation [36], while Ch provides bioadhesive,
antimicrobial and hemostatic properties. Moreover, both Hyal and Ch were proposed
for dentistry application, where a mechanical characteristics of matrices were not crucial
parameters [37,38].

To improve mechanical properties of hydrogels, several methods can be used, includ-
ing cross-linking (see Table 2). Thus, mechanical properties of Ch/Hyal PEC hydrogels
cross-linked with genipin (Gen) were a function of the genipin amount in the polymer
mixture. The maximum value of the compressive modulus was 4.16 kPa and 2.19 kPa for
the hydrogels cross-linked with 3 mg and 1 mg of Gen, relatively. Gen was added to a poly-
mer mixture (25 mL of Ch and 25 mL of Hyal) [39]. Moreover, to obtain cross-linked PEC
hydrogels, amino and aldehyde groups of polysaccharide derivatives could be used [40].

However, it is still difficult to increase the hydrogel compressive modulus up to a MPa
scale, which is needed for hard tissue repair. For example, mean compressive modulus
values of the tibial and talar surfaces of the ankle were 12.2 and 13.1 MPa, respectively [41].
Nevertheless, earlier it was shown that various injectable hydrogels being implanted in a
bone or a cartilage can improve tissue regeneration, whereas they cannot support damaged
tissues [42,43].

Table 2. Mechanical properties of hydrogel matrices based on chitosan and chitosan/hyaluronic acid.

Matrix Composition Porosity, %
Compressive Modulus, kPa

Reference
Dry Wet

PEC

Ch (4% wt.)/Hyal (1% wt.) * 87 209.00 1.29 [44]

Ch
porous

291.03 2.84
[10]Ch/Hyal-1% ** 144.33 2.43

Ch/Hyal-10% ** 40.73 1.21

Ch (2% wt.)/Hyal (1% wt.) * 99 1.41
[45]Ch (8% wt.)/Hyal (1% wt.) * 94 27.70

Cross-linked

Ch (1% wt.)/Hyal (0.2% wt.)/Gen 1 mg *** 85 32.70 2.19
[39]Ch (1% wt.)/Hyal (0.2% wt.)/Gen 3 mg *** 72 58.26 4.16

Ch/Hyal(30/70 v/v) non-porous 12.00
[40]Ch/Hyal(70/30 v/v) 28.00

* Concentration of the polymer solution used for the hydrogel preparation. ** Polymer quantity (% wt.) in the
hydrogel. *** Genipin quantity in the polymer mixture used for the hydrogel preparation.

3.2. In Vitro Study
3.2.1. Cytotoxicity

Since the hydrogels tended to degrade in the culture medium with rather high ionic
strength, it was of great importance to evaluate an effect of hydrogel extracts on cell viability.
A relationship between cell viability and the nHAp content was demonstrated in extract
tests using L929 and HOS cell lines. As seen from Figure 5, the entrapment of nHAp into the
hydrogels resulted in a slight decrease in the cell viability compared to that observed from
the Hyal/Ch sample. However, the increase of the hydroxyapatite nanoparticles content
entrapped in the hydrogels up to 10 wt. % resulted in a slight increase in the cell viability,
which could be explained by the difference in sample stabilities in the culture medium. The
difference in the cell viability values was more evident in case of the non-diluted extracts
than diluted ones (1:2 and 1:10 diluted extracts). A similar tendency was observed for both
cell lines. However, in the case of the L929 fibroblasts, the effect was found to be more
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pronounced. The obtained cytotoxic effect could be attributed to an acidic environment
resulted from a partial polyelectrolyte complex destruction.
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Figure 5. Viability of the L929 (a) and HOS (b) cells after incubation with the non-diluted extract and
diluted extracts (1:2 and 1:10) for 24 h. Hyal/Ch sample was without hydroxyapatite nanoparticles;
Hyal/Ch/nHAp-1, Hyal/Ch/nHAp-5 and Hyal/Ch/nHAp-10 samples were loaded with 1, 5 and
10 wt. % of hydroxyapatite nanoparticles, respectively. Results are presented as a percentage of viable
cells compared to that of the cell monolayer culture (100%). Three parallel replicates were carried out
for each sample. (*) Indicates statistical significance compared to the Hyal/Ch sample (p < 0.05).

3.2.2. Cell Growth on the Hydrogel Samples

To qualitatively evaluate cell viability and morphology within the hydrogels, L929
fibroblasts were seeded in the hydrogels, and after cultivation for 1 week, they were
stained with the Calcein AM vital dye and observed by CLSM. The hydrogel structure was
visualized by non-specific adsorption of fluorescent DNA dye Hoechst (in blue). As seen
in Figure 6, alive cells (in green) were found in all hydrogel samples. The cells formed
aggregates, which were mainly attached to hydrogel walls.
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Figure 6. CLSM images of the hyaluronic acid/chitosan hydrogel samples with the L929 cells after
cultivation for 1 week. The Hyal/Ch sample was without hydroxyapatite nanoparticles (a); the
Hyal/Ch/nHAp-1 (b), Hyal/Ch/nHAp-5 (c) and Hyal/Ch/nHAp-10 (d) samples were loaded with
1, 5 and 10 wt. % of hydroxyapatite nanoparticles, respectively. Scale bar is 200 µm.
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It is well known, that mechanical properties of the matrices for tissue engineering
are of great importance, in particular, matrix stiffness is involved in the regulation of cell
behavior. Recently an influence of matrix stiffness on the cell morphology and behavior
was shown [45]. Thus, Ch/Hyal PEC hydrogels with a compressive modulus of 1.41 kPa
provided formation of the multicellular spheroids from human glioblastoma U-87 MG
cells. A similar behavior of human glioblastoma U-118 MG cells was also reported by
Florczyk et al. [44]. The U-118MG cells formed multicellular spheroids in the Ch/Hyal
hydrogels with a compressive modulus of 1.29 kPa in a wet state.

Cell growth in the PEC hydrogel samples as a function of the nHAp content was
quantitatively evaluated after cultivation of cells for 1 week. Here, HOS osteoblast-like cells
were used, because they are widely employed as an experimental model of osteoblasts for
orthopedic applications. The cells are immortal and proliferate more rapidly than primary
cells, which make them easy to work with. Moreover, their adhesion ability is similar to
that of human osteoblasts [46]. Human mesenchymal stromal cells have been selected
due to their ability to response to various molecular keys/signals, and, as a result, a great
potential for tissue engineering [47].

The results of the MTT-assay were presented as a percentage of viable cells compared
to that of the control (Figure 7). It is worth noting that cell behavior was similar for all cell
types. Initial cell density was 2.0 × 104 cells per well, while after cultivation for 7 days, we
obtained in control wells 2.1 × 105, 2.5 × 105 and 9.6 × 104 per well for L929, HOS cell lines
and hMSC, respectively. Obviously, the cells grew and proliferated in all hydrogel samples.
Cell proliferation was found to be dependent upon the nHAp content in the hydrogels.
Maximum cell viability in case of hMSC was obtained in case of the Hyal/Ch/nHAp-10
sample (155 ± 18%), while a minimal cell number was found for the Hyal/Ch/nHAp-1
hydrogel (118 ± 26%). Previously, it was shown that nHAp-loaded chitosan hydrogels
provided enhanced cell adhesion, well spreading morphology and higher proliferation
of pre-osteoblast (MC 3T3-E1) compared to the results for pure chitosan scaffold [48].
An enhanced cell growth of HOS on PEC chitosan-poly(acrylic acid) hydrogels loaded
with nHAp has been also reported previously [49]. In our study, a positive effect of the
nHAp entrapment in Hyal/Ch hydrogels on the cell growth for mouse fibroblasts L929,
human osteosarcoma cells HOS and hMSC was observed. However, this effect was not
markedly pronounced.
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Figure 7. Viability of mouse fibroblasts L929, human osteosarcoma cells (HOS) and human mes-
enchymal stromal cells (hMSC) after cultivation within the hyaluronic acid/chitosan hydrogels for
1 week. The Hyal/Ch sample was without hydroxyapatite nanoparticles; the Hyal/Ch/nHAp-1,
Hyal/Ch/nHAp-5 and Hyal/Ch/nHAp-10 samples were loaded with 1, 5 and 10 wt. % of hydroxya-
patite nanoparticles, respectively. Results of MTT-test. The monolayer culture (without the hydrogel
sample) was taken as a control (100%). Three parallel replicates were carried out for each sample.
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4. Conclusions

Macroporous hyaluronic acid/chitosan hydrogels loaded with hydroxyapatite nanopar-
ticles have been fabricated. To provide the unimodal nHAp distribution within the hydrogels,
the hydroxyapatite nanoparticles were dispersed in the Hyal solutions by ultrasonication, and
after lyophilization, the obtained polymer samples were treated with Ch solution to form
polyelectrolyte Hyal/Ch complex. The hydrogels, which differed in nHAp content, were
characterized in terms of their swelling behavior, weight loss as well as their structure and pore
size distribution. The interconnected porous network was revealed by confocal microscopy.
The introduction of nHAp resulted in a decrease in the mean pore size. Thus, a mean pore size
in the Hyal/Ch hydrogel was 204 ± 25 µm. The introduction of nHAp (1 and 5 wt. %) into
the Hyal/Ch hydrogel led to a mean pore size decrease (94 ± 2 and 77 ± 9 µm, relatively).
The mean pore size in the Hyal/Ch/nHAp-10 sample was 99 ± 10 µm. Thus, although the
entrapment of the hydroxyapatite nanoparticles led to a decrease of the mean pore sizes,
the macroporous structure of all hydrogels was still suitable to support 3D cell growth and
proliferation. Swelling ratio and weight loss of the hydrogels in various aqueous media were
shown to increase with the increase of ionic strength. The potential of the nHAp-loaded
hydrogels to support the growth and proliferation of osteoblast-like and human mesenchymal
stromal cells was studied as a function of the nHAp content. The increase of the nHAp content
in the hydrogels from 1 to 10 wt. % was found to result in an enhancement of cell growth and
proliferation for all cell lines. The hybrid macroporous hyaluronic acid/chitosan hydrogels
loaded with hydroxyapatite nanoparticles fabricated using an original simple technique are
promising for tissue engineering, in particular bone regeneration.
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