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Abstract: Background: Donor lungs are often discarded, with gastric aspiration accounting for ~9% of
lungs unsuitable for transplantation. To increase the donor pool, it is important to understand the
pathophysiology of aspiration-induced lung damage (AILD) and to assess its treatment. Methods:
Precision-cut lung slices (PCLS) were prepared from murine lungs and exposed to acid—pH 1.5 to
5.5—for 15 min. We also investigated whether acid-exposed slices (pH 3.5) could affect unexposed
slices. In addition, we investigated whether dexamethasone (0.5 or 1 µM) could mitigate and treat the
damage in each group. In each experiment (n = 3), we analyzed cell viability (ATP/protein content)
and markers of inflammation (IL-1β, IL-6, TNF-α, TRAIL). Results: PCLS subjected to pH 1.5–3.5
had a significantly reduced amount of ATP, albeit no increase in inflammation markers. There was
no interaction of secretions from acid-exposed slices on unexposed slices. Dexamethasone had no
beneficial effects in either group. Conclusion: Direct exposure to acid in the PCLS leads to a decrease
in cell viability. Acid-exposed slices had no effect on the cell viability of unexposed slices. Treatment
with dexamethasone offered no mitigation. More studies have to be performed to elucidate the
pathophysiology of AILD and the possible treatment of aspiration-induced injury.
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1. Introduction

Lung transplantation is a life-saving surgical procedure for patients with end-stage
lung disease [1]. Currently, there is a shortage of donor lungs, leading to increased waiting
times, resulting in approximately 20% of patients on the waiting list dying [2–4]. The utiliza-
tion rate of donor lungs (10–15%) is lower than that of the kidneys and the liver (combined
80–85%) [2,5–8]. Multiple studies have shown that the primary reason for discarding donor
lungs was due to quality issues (45–50%) [9], with gastric aspiration contributing to 8–10%
of discarded cases [10,11]. Gastric aspiration is defined as the inhalation of oropharyngeal
or gastric content into the larynx and lower respiratory tract [12].

The aspiration of gastric contents commonly occurs in organ donors who have suffered
from a neurological insult, and can also occur secondary to resuscitation. As gastric contents
enter the tracheobronchial tree, the epithelium and alveoli become exposed to strongly
acidic material [13–15], as stomach acid ranges from pH 1.5 to 3.5 [16]. In turn, this might
result in lung injuries like chemical pneumonitis or acute respiratory distress syndrome
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(ARDS) [17,18]. An important complication of gastric aspiration is the development of
secondary bacterial pneumonia [12,19,20]. Severe primary graft dysfunction (PGD) is more
likely to occur if these lungs are transplanted. This is due to the added damage to the
lungs caused by ischemia-reperfusion injury [15]. Therefore, aspiration-damaged lungs are
usually regarded as unsuitable for transplantation.

Despite the significance of aspiration-induced lung damage (AILD), the pathophysio-
logical mechanisms are unclear and not fully understood. Currently, the literature on the
topic is limited [14,21–23]. Previous studies have suggested that corticosteroids could be
beneficial in the treatment of AILD [24,25]. New insights might lead to the development of
new therapeutic interventions in the future. The ability to repair such lungs, in the context
of transplantation medicine, could eventually lead to an increase in the donor pool, thereby
reducing premature death among patients on waiting lists.

To get insights into the pathophysiology, precision-cut lung slices (PCLS) could be
used. PCLS are viable explants of animal or human tissue which can be cultured ex vivo.
Anatomical structures and cell interactions of the lung are maintained. This technique has
already proven its success in the fields of physiology, pharmacology, and toxicology [26–28].
In addition, mice have been accepted as a relatively accurate representation in the context
of acute lung injury [26,29].

The aim of this study was to model aspiration-induced lung damage by exploring
the effect of acid on PCLS. We hypothesized that the lower the pH, the more damage is
done in terms of cell viability (denoted by the ATP/protein content) and the secretion
of inflammatory cytokines (IL-1β, IL-6, TRAIL and TNF-α). Furthermore, we also aimed
to explore whether such damage would transfer to slices that were not exposed to acid,
and what role corticosteroids might play in the prevention and treatment of acid-induced
lung damage.

2. Materials and Methods
2.1. Animals

This is an ex vivo animal study. Lung tissue was obtained from male C57BL/6 mice
(8–11 weeks old; 22–30 g). The animals were housed under controlled conditions, including
a 12 h day/night cycle and unlimited access to water and food (Central Animal Facility, Uni-
versity Medical Centre Groningen, Groningen, The Netherlands). Mice were anaesthetized
with isoflurane/O2 (Nicolas Piramal, London, UK) and sacrificed by exsanguination via
the inferior vena cava followed by perforation of the diaphragm. Lungs were then inflated
in situ with 1 mL of liquefied and pre-warmed (37 ◦C) inflation medium containing 0.9%
NaCl (Merck Millipore, Darmstadt, Germany), Ultrapure Milli-Q water and 1.5% low-
gelling-temperature agarose (Sigma-Aldrich, Zwijndrecht, The Netherlands). Subsequently,
the lungs were excised and immediately transferred to ice-cold University of Wisconsin
preservation solution (UW) (DuPont Critical Care, Waukegab, IL, USA) where they were
stored on ice until further use [30]. The animal experiments were approved by the Central
Authority for Scientific Procedures on Animals (permit number: 20171290) and conducted
conforming to criteria set out in national and international legislation.

2.2. Precision-Cut Lung Slices

After the lungs were obtained, tissue cores were prepared with a 5 mm biopsy punch
and stored in ice-cold UW solution. Slices (wet weight of 4–5 mg; thickness of 250–350 µm;
diameter of 5 mm) were prepared using a Krumdieck tissue slicer (Alabama Research and
Development, Munford, AL, USA). Before slicing, the slicer was filled with ice-cold Krebs–
Henseleit buffer which was supplemented with 10 mM HEPES (MP Biomedicals, Irvine,
CA, USA), 25 mM D-Glucose (Merck Millipore) and 25 mM NaHCO3 (Merck Millipore),
and saturated with carbogen gas (95% O2 and 5% CO2), which was then adjusted to a pH
of 7.4 [30]. After slicing, slices were stored in ice-cold UW.
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2.3. Experimental Set-Up

We performed four consecutive experiments. In each experiment, three mice were
used. Per mouse, on average, 30–40 lung slices were cut, so on average there were 4 slices
for each experimental condition per mouse. Slices were selected based on macroscopic
morphology as well as weight (4–5 mg). A schematic diagram of the experimental set-up is
visualized in Figure 1.
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Figure 1. A schematic diagram of the experimental set-up.

In the first experiment, acid injury was induced by incubating the slices in saline solu-
tions adjusted with HCl to a range of different pHs, from 1.5 to 5.5. Slices were transferred
to a 12-well plate with pre-warmed (37 ◦C) adjusted saline solution containing 0.9% NaCl
(Merk Millipore) and Ultrapure Mili-Q water, which was titrated with 5 M HCl to the
different experimental pHs (4 slices/2 mL saline/well). The slices were then incubated
for 15 min at 37 ◦C, 20% O2 and 5% CO2 whilst being gently shaken at 90 cycles/min.
Then, the slices were briefly washed with University of Wisconsin (UW) solution (DuPont
Critical Care) before being transferred to culture plates with fresh and pre-warmed (37 ◦C)
culture medium (1 mL/well) consisting of Advanced DMEM/F-12 (Fisher Scientific, Ams-
terdam, The Netherlands) which was supplemented with 2 mM GlutaMAX, 10 mM HEPES,
100 U/mL penicillin-streptomycin, and 50 µg/mL of gentamicin. The culture plates with
the slices were incubated for 48 h at 37 ◦C, 20% O2 and 5% CO2 whilst gently being shaken
at 90 cycles/min. After incubation, samples were collected and stored.

In the second experiment, we wanted to determine whether dexamethasone could
mitigate damage in acid-exposed slices (pH 3.5). Dexamethasone (dissolved in DMSO
to either 0.5 µM or 1.0 µM) or DMSO (vehicle control) was added to the culture medium
before incubation with the acid-exposed slices.

In the third experiment, we repeated the first experiment, and an additional unexposed
control slice was incubated with an acid-exposed slice, i.e., the control slice was added after
the acid-exposed slices had undergone damage induction, to determine whether excretions
from acid-exposed slices (pH 3.5) could induce damage in control slices. The control slices
were kept in ice-cold UW.

In the final experiment, we repeated the third experiment, but added dexamethasone
(either 0.5 µM or 1.0 µM) or DMSO to the culture medium after acid incubation in order to
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determine whether dexamethasone ameliorates damage from acid-exposed slices (pH 3.5)
to control slices.

2.3.1. Evaluation of Cell Viability

The viability of PCLS was evaluated by assessing the ATP content. ATP is a measure
of mitochondrial activity, which is needed for a cell to be viable [31]. Intracellular ATP
was extracted from slices (2 per condition) using the ATP Bioluminescence Kit (Roche
Diagnostics, Mannheim, Germany). Luminescence was measured using a luminometer
(Packard LumiCount, Downers Grove, IL, USA). Calculated ATP values (pmol) were then
normalized to the total amount of protein (µg) using the Pierce BCA Protein Assay Kit.
This is a routine assay, as published by our group previously [27].

2.3.2. Cytokine Release

We assessed cytokines which play a crucial role in initiating and amplifying the
immune response: interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-
α (TNF-α), as well as TNF-related apoptosis-inducing ligand (TRAIL), which plays a
role in inducing cell apoptosis. Medium samples were taken after 48 h incubation by
collecting 1.5 mL culture media from 2 wells belonging to the ATP samples (750 µL/well).
They were then analyzed using the Mouse IL-1β Duoset Enzyme-Linked Immunosorbent
Assay (ELISA) Kit, Mouse IL-6 Duoset ELISA Kit, Mouse TNF-α Duoset ELISA kit and
Mouse TRAIL Duoset ELISA Kit (Bio-Techne, Abingdon, UK). The kits were used per
the manufacturer’s instructions. A BioTek Synergy HT Plate Reader (BioTek Instruments,
Vermont, USA) was used to measure optical densities of each plate. Optical imperfections
were corrected by subtracting readings at a wavelength of 540 nm from readings at a
wavelength of 450 nm.

2.3.3. Stainings

Slices (2 per condition) were fixed in 4% formalin and stored in 70% ethanol for at
least 24 h. The slices were then prepared for staining, which entailed enclosing the slices
in cassettes, which could subsequently be stored in 70% ethanol. Tissues were processed
and embedded in paraffin blocks. Consequently, the slices were embedded horizontally
in paraffin. Sections (4 µm) were cut and mounted on glass slides. The glass slides were
then left to dry in the drying stove at 37 ◦C for at least 24 h. Thereafter, the glass slides
were ready to be stained. Haematoxylin and eosin (H&E) staining was performed to
visualize the general morphology of each slice. Stained sections were scanned using a
C9600 NanoZoomer (Hamamatsu Photonics, Hamamatsu, Japan).

2.4. Statistics

Statistical analyses were performed using IBM SPSS Statistics (version 27.0) and
GraphPad Prism (version 9.0). Data were expressed as the mean ± standard error of
the mean (SEM). Continuous data were analyzed using one-way ANOVA followed by
Dunnett’s post hoc test or a two-way ANOVA followed by Bonferroni’s post hoc test.
Differences between groups were statistically significant when p < 0.05.

3. Results
3.1. Modelling an Aspiration Event by Incubating PCLS with Acidic Saline Solutions
3.1.1. General Cell Viability

Slices exposed to pH 1.5–3.5 had a significantly reduced ATP content (p < 0.0001,
p < 0.0001 and p = 0.0076, respectively) and a significantly lower ATP/protein content
(p < 0.0001, p < 0.0001 and p = 0.0051, respectively) compared to the control (Figure 2A–C).
With pH 4.5 and 5.5, we found no significant reduction in ATP (p = 0.1102 and p = 0.9989,
respectively) and ATP/protein content compared to the control (p = 0.0724 and p = 0.3589,
respectively). The total protein content remained similar between all conditions.



Transplantology 2023, 4 189

Transplantology 2023, 4, FOR PEER REVIEW 5 
 

 

3. Results 
3.1. Modelling an Aspiration Event by Incubating PCLS with Acidic Saline Solutions 
3.1.1. General Cell Viability 

Slices exposed to pH 1.5–3.5 had a significantly reduced ATP content (p < 0.0001, p < 
0.0001 and p = 0.0076, respectively) and a significantly lower ATP/protein content (p < 
0.0001, p < 0.0001 and p = 0.0051, respectively) compared to the control (Figure 2A–C). 
With pH 4.5 and 5.5, we found no significant reduction in ATP (p = 0.1102 and p = 0.9989, 
respectively) and ATP/protein content compared to the control (p = 0.0724 and p = 0.3589, 
respectively). The total protein content remained similar between all conditions.  

 
(A) (B) (C) (D) (E) 

Figure 2. Effect of HCl-adjusted saline solutions of various pHs on the viability and cytokine release 
of slices. Slices were collected after 48 h incubation (n = 3). The ATP (panel A), protein (panel B) and 
ATP/protein (panel C) contents were measured to determine the viability of the PCLS. An ELISA 
was performed to assess IL-6 (panel D) and TNF-  (panel E). Values represent individual experi-
ments performed in triplicate and are accompanied by the mean (bar) ± standard error of the mean 
(error bars). * p < 0.0332, ** p < 0.0021, *** p < 0.0002 and **** p < 0.0001 

3.1.2. Cytokine Release 
The exposure of slices to saline solutions of various pHs resulted in a significantly 

reduced secretion of IL-6 for slices damaged by pH 1.5 and 2.5 (Figure 2D, p = 0.0004 for 
both). A similar trend is true for TNF-  (Figure 2E), where there was also a significant lack 
of cytokine secretion (p = 0.0304 for both). For IL-1β and TRAIL, the secretion was below 
the biological detection limit. 

3.1.3. Tissue Damage 
To evaluate the extent of tissue damage in the airways and lung parenchyma, we 

performed H&E staining (Figure 3). Slices damaged by pH 1.5–3.5 showed a larger extent 
of damage than the slices damaged by pH 4.5 and 5.5. This coincided with the results of 
the ATP and ATP/protein content. With respect to the airways (upper panel), there was 
karyolysis and the nuclei faded in slices exposed to pH 1.5–3.5. For the slices exposed to 
pH 4.5 and 5.5, the opposite was true. Moreover, the lung parenchyma (lower panel) also 
showed substantial differences in tissue damage for slices treated with a lower pH com-
pared to those treated with a high pH. For slices treated with pH 1.5–3.5, there was kary-
olysis (nuclei dissolution) and karyorrhexis (nuclei fragmentation), whilst the slices ex-
posed to pH 4.5 and 5.5 showed apoptotic bodies and pyknosis (nuclei shrinkage). 

Figure 2. Effect of HCl-adjusted saline solutions of various pHs on the viability and cytokine release
of slices. Slices were collected after 48 h incubation (n = 3). The ATP (panel A), protein (panel B) and
ATP/protein (panel C) contents were measured to determine the viability of the PCLS. An ELISA was
performed to assess IL-6 (panel D) and TNF-α (panel E). Values represent individual experiments
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3.1.2. Cytokine Release

The exposure of slices to saline solutions of various pHs resulted in a significantly
reduced secretion of IL-6 for slices damaged by pH 1.5 and 2.5 (Figure 2D, p = 0.0004 for
both). A similar trend is true for TNF-α (Figure 2E), where there was also a significant lack
of cytokine secretion (p = 0.0304 for both). For IL-1β and TRAIL, the secretion was below
the biological detection limit.

3.1.3. Tissue Damage

To evaluate the extent of tissue damage in the airways and lung parenchyma, we
performed H&E staining (Figure 3). Slices damaged by pH 1.5–3.5 showed a larger extent
of damage than the slices damaged by pH 4.5 and 5.5. This coincided with the results of
the ATP and ATP/protein content. With respect to the airways (upper panel), there was
karyolysis and the nuclei faded in slices exposed to pH 1.5–3.5. For the slices exposed
to pH 4.5 and 5.5, the opposite was true. Moreover, the lung parenchyma (lower panel)
also showed substantial differences in tissue damage for slices treated with a lower pH
compared to those treated with a high pH. For slices treated with pH 1.5–3.5, there was
karyolysis (nuclei dissolution) and karyorrhexis (nuclei fragmentation), whilst the slices
exposed to pH 4.5 and 5.5 showed apoptotic bodies and pyknosis (nuclei shrinkage).
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3.2. Treatment of Acid-Exposed (pH 3.5) PCLS with Dexamethasone and DMSO
3.2.1. General Cell Viability

DMSO itself had no effect on ATP or ATP/protein content, as there was no significant
difference compared to the control—see Figure 4A–C. Dexamethasone did not elicit a sig-
nificant increase (or decrease) in ATP or ATP/protein, though at the higher dexamethasone
concentration there was a negative trend.
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3.2.2. Cytokine Release

The secretion of IL-6 was significantly reduced in all groups compared to the control
(DMSO: p = 0.0106, 0.5 DEX: 0.0023; 1.0 DEX: p = 0.0035), but the differences between
these three exposures were not significant, which was also compatible with an effect of
DSMO—see Figure 4D. A similar pattern was visible for TNF-α, although the reduction
was not significant for any group—see Figure 4E). As with experiment 1, the proteins of
IL-1β and TRAIL were below the biological detection limit.

3.3. The Effects of Acid-Exposed PCLS to Unexposed Control PCLS
3.3.1. General Cell Viability

Slices that were acid-exposed showed the same trends as in experiment 1, whilst the
slices exposed to the acid-exposed slices, but unexposed to the acid itself, had no change in
ATP or ATP/protein in each group—see Figure 5A–C.
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Figure 5. Effect of incubation of acid-exposed slices with control slices on the viability and cytokines
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In addition, there was a significant difference in ATP content for pH 1.5 (p = 0.0236)
between the acid-exposed slices and the unexposed control slices. The ATP/protein content
showed significant differences between the unexposed slices compared to the slices exposed
to pH 1.5, 2.5 and 3.5 (p = 0.0007, p = 0.0332 and p = 0.0010, respectively). The protein
content was similar for all the conditions and no significant differences were found.

3.3.2. Cytokine Release

The release of IL-6 was similar for each condition, whilst for TNF-α the amount of
secretion decreased as the pH increased. However, for both cytokines, these results were
not statistically significant—see Figure 5D,E. Again, for IL-1β and TRAIL, the secretion
was below the detection limit of the ELISA.

3.4. Dexamethasone to Prevent Damage from Acid-Exposed PCLS to Unexposed Control PCLS
3.4.1. General Cell Viability

No significant interaction was found between the acid-exposed and the unexposed
slices in ATP or ATP/protein after incubation with 0.5 and 1.0 µM dexamethasone. These
results are represented by Figure 6A–C.
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3.4.2. Cytokine Release

We found a similar downward trend as with experiment 2. With the use of DMSO and
dexamethasone, especially with a higher concentration, the secretion of IL-6 was reduced.
This reduction was only significant for the groups exposed to 1.0 µM dexamethasone
(p = 0.0296)—see Figure 6D. For TNF-α, there was also a reduction in the amount secreted,
with less being secreted when there was a higher concentration of dexamethasone. However,
this trend was not significant—see Figure 6E. Both IL-1β and TRAIL secretion were below
the detection limit of the ELISA.

4. Discussion

The main objective of this study was to model aspiration-induced lung damage by
exploring the effect of acid on PCLS. We hypothesized that the lower the pH, the more
damage done in terms of cell viability (denoted by the ATP/protein content) and the
secretion of inflammatory cytokines (IL-1β, IL-6, TRAIL and TNF-α). Furthermore, we also
aimed to explore whether secretions after damage could be transferred to tissue unexposed
to acid, and what role corticosteroids might play in the prevention and treatment of acid-
induced lung damage.

Our main findings were that the incubation of PCLS with saline solutions adjusted
to pH 1.5 and 2.5 caused more cell death compared to PCLS exposed to pH 3.5–5.5. In
addition, the treatment of acid-exposed slices (pH 3.5) with dexamethasone had no effect
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on cell viability. Furthermore, in our study setting, the incubation of unexposed control
slices in co-culture with acid-exposed slices (pH 1.5–5.5) did not decrease cell viability in
the unexposed control slices. Dexamethasone did not lead to a significant increase in the
control slices’ cell viability.

4.1. Incubation of PCLS with Acidic Saline Solutions Causes Cell Death

The effects of 15 min of acid exposure (pH 1.5–5.5) on PCLS caused cell death; the
lower the pH the less viable the cells were. We found that the ATP and ATP/protein
content in slices exposed to pH 1.5 and 2.5 was 0, indicating no mitochondrial activity.
This led to the inability of cells to sustain homeostasis [31]. PCLS exposed to pH 3.5–5.5
showed no significant differences in ATP and ATP/protein compared to the control group.
Upon histological analysis, there were signs of necrosis (karyolysis and karyorrhexis).
Interestingly, the slices that were exposed to less acidic saline solutions (4.5 and 5.5) showed
signs of apoptosis rather than necrosis. Similar observations have been made in an in vitro
study by Chen et al., where cells treated with HCl (pH 4.0) for 15 min showed decreased
cell viability with increased IL-8 and LDH release, and cell apoptosis [32]. In other studies,
cell necrosis has also been demonstrated after the intratracheal administration of HCl (pH
1.0–1.2) in pigs and mice [33–35]. Teabeaut et al. found that the pH of the aspirate plays an
important role in the development of aspiration pneumonitis [17]. The presence of food
material in the aspirate results in even more severe lung injury [19].

Nonetheless, it is still unknown when exactly the slices die; upon direct exposure to
acidic saline solutions, or during the 48 h incubation. We suggest that the cells die within
15 min of incubation, as it was observed that the slices become discolored. Moreover,
there were no signs of acute inflammation found in the slices exposed to very acidic saline
(pH 1.5–2.5) solutions, suggesting that cytokine-producing cells such as macrophages
ceased to function, most likely due to cell death. In a rat model by Knight et al., it
was demonstrated that there was indeed a downregulated macrophage response upon
HCl instillation [18]. In addition, other studies have suggested that there was a delayed
inflammatory response characterized by neutrophil activation and the release of pro-
inflammatory mediators—which could also lead to further injury [19,21,22]. PCLS, as an
ex vivo model, has the advantage of offering controlled experimental conditions. However,
they may not fully capture the complex immune responses seen in vivo due to their lack of
neutrophils, which presents an opportunity for the further refinement of the model.

4.2. Treatment of Acid-Exposed PCLS with Dexamethasone Has No Effect on Cell Viability

After damaging the slices with pH 3.5, we investigated whether dexamethasone
could treat the damage as it is used in the clinic to treat patients with aspiration pneumoni-
tis [23]. We hypothesized that dexamethasone would result in a higher ATP/protein content
through its anti-inflammatory effects, causing less cell damage and thus less cell death.

Dexamethasone had no marked effect on improving or maintaining cell viability in
PCLS damaged by pH 3.5. This is substantiated by the fact that there was no significant
difference between the control group, where slices were only exposed to pH 3.5. Moreover,
there was a significant decrease in IL-6 release and for TNF-α there was a lower amount
detected in the medium. These results could suggest that dexamethasone might play a role
in decreasing the pro-inflammatory response. However, when compared with the DSMO
vehicle control we saw no significant differences. This could suggest that the observed
dexamethasone effects were in fact due to DSMO, or were of similar magnitude as DSMO
without synergism.

Since Mendelson’s report on aspiration pneumonitis in 1946, the beneficial effects of
corticosteroids have been both studied and observed in case reports and animal studies in
rabbits. [24,25,36,37]. Bannister and Sattilaro found that rabbits treated with corticosteroids
showed less acid-induced lung damage than rabbits without corticosteroid treatment [38].
In the literature, we found that 1.0 µM of dexamethasone significantly reduced inflamma-
tory cytokine production in the PCLS of rats with bleomycin-induced lung injury [39]. In
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a more recent study performed by Zhao et al., stroke patients diagnosed with aspiration-
related ARDS had reduced hospital mortality after low-dose and short-term treatment with
corticosteroids [40]. Although these studies did not directly investigate acid damage, they
involved similar inflammatory processes. Therefore, we speculate that acid damage causes
an inflammatory process in the lungs and dexamethasone might still have a beneficial effect
on the outcomes after aspiration by downregulating the inflammatory response. The latter
might be dose–response related, or related to the timing of the measurement, neither of
which we investigated in this study.

Moreover, it would be of benefit to study other corticosteroids further. The main
reason we chose dexamethasone was due to the fact that it is widely available and used
in current clinical practice in our center. Another corticosteroid of interest is budesonide.
Budesonide is known as the cause of a beneficial reduction in inflammation, as well as
apoptosis, leading to greater survival outcomes [41,42].

4.3. Incubation of Unexposed Control PCLS with Acid-Exposed PCLS Has No Effect on Control
PCLS Viability

We showed that co-incubation with acid-exposed PCLS did not affect acid-unexposed
control PCLS. There was a significant difference in ATP and ATP/protein content between
control and acid-exposed slices. The interaction of acid-exposed slices with unexposed
slices did not confer damage. The amount of ATP and the ATP/protein content was similar
in each control slice regardless of which acid-exposed slice they were incubated with. Thus,
the acid-exposed slices did not appear to affect the control slice. It must be noted that since
the slices were not in direct contact with each other, the transfer of damage was solely
dependent on the diffusion of chemokines, cytokines, and DAMPS from the acid-exposed
slice into the control slice.

In a study by Kim et al., murine lung slices were spatially injured with HCl (pH
1.1) for 1 min leading to an isolated region of acid damage [43]. The acid-exposed region
contained a high proportion of dead cells with a small number of live cells. In the same
slice, the uninjured region contained a similar proportion of live cells as the control. This
corroborates the idea that acid damage does not spread easily. The reverse reasoning
could also be put forward: the unexposed control slices did not mitigate cell damage in
acid-exposed slices.

The lack of interaction between acid-exposed slices and unexposed slices rendered the
last experiment with dexamethasone incubation uninformative.

4.4. Advantages and Disadvantages of Murine PCLS

The main advantage of using PCLS is that they reflect the microenvironment of the
respiratory tract by maintaining the 3D architecture of the lung. This provides a platform
for studying organ-specific cellular mechanisms. Another advantage is that multiple
experimental conditions can be tested using a single animal, thereby reducing the need for
animal testing whilst keeping biological differences to a minimum [44,45].

However, there are some limitations. Firstly, we lack the full immune response, such
as the influx of inflammatory cells and especially neutrophils from the blood. Secondly, we
cannot evaluate how lung functioning is affected as, in the setting of lung transplantation,
this is defined as the arterial oxygen tension (PaO2) divided by the fraction of inspired
oxygen (FiO2). In our experimental setting, this cannot be measured.

4.5. Limitations of the Study

To start off, in vivo only a section of the lung would be damaged whilst, with our
experiments, the whole slice is damaged. This is due to gravitational forces. Furthermore,
in most aspiration events the exposure time of the tissue to aspirate might be significantly
longer than 15 min, as such events can also go unnoticed, allowing the damage to continue.

To continue, this study had a relatively small sample size. Increasing the number
of biological replicates would allow us to interfere with minute differences within the
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population. In addition, the results were primarily based on analyses of cell viability and a
select number of cytokines. In addition, we do not know when exactly the slices died, as
we only took samples after 48 h. By taking samples at multiple time intervals, we could
have established more precisely when cell death occurred.

Furthermore, when we examined whether the damage could be transferred to the
control tissue, the control slices did not physically interact with the acid-exposed slices.
Damage transfer solely depended on the secretion of DAMPs, cytokines and chemokines
into the incubation medium, and on these molecules reaching the control slices. In ad-
dition, cytokines can have a rather short half-life. This needs to be considered during
future experiments.

Moreover, a dose–response experiment needed to be performed to see which concen-
tration of dexamethasone would be optimal for the slices.

However, with these pilot experiments, we were able to illustrate the value of murine
PCLS as a model for lung and transplantation research. This model will be further opti-
mized in future studies, keeping in mind the aforementioned factors.

5. Conclusions

Our study has shown that PCLS are indeed a suitable ex vivo model for lung research.
Our findings provide considerable insights: a brief exposure to acidic saline solutions
(pH 1.5 and 2.5) causes more cell damage than exposure to less acidic solutions (pH 4.5
and 5.5). In addition, damage does not appear to be transferable to unexposed control
PCLS. Lastly, dexamethasone does not appear to play a role in the prevention or treatment
of acid damage in unexposed PCLS. For slices damaged by pH 3.5 (corresponding to the
pH of stomach acid), there is no significant difference with the unexposed control and this
might suggest that there is still a potential for this damaged lung tissue to be rehabilitated.
Insights from our research are beneficial to both lung transplant patients and researchers. If
we could rehabilitate acid-exposed donor lungs, this should increase the donor pool and
consequently reduce waitlist mortality. Also, outside of the context of lung transplantation,
a better understanding of aspiration will be beneficial to other patient categories with
increased aspiration risk.
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