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Abstract: In this work, α-Ag2WO4 particles with different cross-sections were obtained using the
co-precipitation method at different synthesis temperatures. The samples were characterized by X-ray
diffraction (XRD), field-scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy
(XPS). The antimicrobial activity was analyzed using the Minimum Inhibitory Concentration (MIC)
and Minimum Bactericidal Concentration (MBC) methods against the Escherichia coli and Salmonella
spp. gram-negative bacteria. The antimicrobial tests against Escherichia coli and Salmonella spp. indi-
cated that concentrations of 2.5–5 mg/mL and 5 mg/mL completely inhibit its growth, respectively.
The antimicrobial activity was analyzed employing band-edge positions for ROS generations and the
superficial distribution of Ag+ species that contribute to antimicrobial activity. Quantum-chemical
calculations were used at the DFT level to investigate the surface-dependent reactivity of α-Ag2WO4,
and we demonstrated how the antimicrobial properties could be tailored by the geometry and
electronic structure of the exposed surfaces, providing guidelines for the morphology design.
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1. Introduction

Diseases caused by microbes are a global problem, and it is even more severe in
underdeveloped countries due to lack of hygiene or even proper treatment [1,2]. In addition,
treating microbes with conventional remedies results in making them more resistant over
time, and it is increasingly necessary to use stronger medications for the treatment to
promote the expected result [3,4]. Metallic oxide particles are a well-recognized strategy
because they are toxic to microbes, but present low toxicity to humans [5–7]. The use
of semiconductor oxides enables the manipulation of their properties by increasing the
separation process of electron/hole charge pairs (e−/h+), which enhances the formation
of reactive oxygen species (ROS), such as hydroxyl radical (•OH) and superoxide radical
(•O2

−), that degrade the constituent proteins and membranes of the microorganisms [8].
Our research group and other authors have been involved in a research field in

which complex silver-based oxides, such as Ag2CrO4 [9,10], the three polymorphs of
Ag2WO4 [11–14], Ag3PO4 [15,16], α-AgVO3 [17], and β-Ag2MoO4 [18–21], are investigated
as biocide materials. α-Ag2WO4 becomes even more interesting because it absorbs a large
amount of radiation in the visible region and has optoelectronic properties closely related
to particle size, allowing for better control [11,12,22–27].
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In this work, nanoparticles of α-Ag2WO4 with rod morphology were obtained by a
co-precipitation method. The cross-section of the rods was changed from hexagonal to
quadratic through an increase in the synthesis temperature from 30 to 70 ◦C. The cross-
section effect in the antimicrobial properties was analyzed against Escherichia coli and
Salmonella spp. In addition, DFT calculations, on realistic surface models, were carried
out to investigate the geometry, electronic structure, and properties of α-Ag2WO4. Based
on these results, we hope to understand how the different surfaces change their energies
throughout the synthesis process and propose a mechanism by which the experimental
and theoretical morphologies of the α-Ag2WO4 perform the antimicrobial activity more
efficiently. We believe that these novel results are of significant relevance since they may
inspire the efficient synthesis of this material and provide critical information to expand
our fundamental understanding of this property in this compound.

2. Experimental Procedure
2.1. Synthesis

Silver nitrate (AgNO3—Synth, 99%), sodium tungstate (Na2WO4
.2H2O—Synth, 99.5%),

polyvinylpyrrolidone (PVP—Vetec, MM. 40.000), and deionized water were used as received.
Firstly, 4 mmol of AgNO3 and 10 mmol of PVP were dumped in 40 mL of deionized

water and in a glass beaker and continuously stirred. Then, 2 mmol of Na2WO4
.2H2O

and 10 mmol of PVP were dissolved in 40 mL of deionized water in another glass beaker.
After 10 min, the solution containing Ag+ cations was immersed in the W6+ solution and
was maintained under vigorous stirring for 30 min at 30 ◦C (AW30 sample). The same
procedure was repeated, increasing the precipitation temperature to 70 ◦C (AW70 sample).
After 30 min, the supernatant was separated by centrifugation, washed with deionized
water, and dried at 100 ◦C for 24 h.

2.2. Characterization

The crystalline phase of the powder was analyzed by X-ray diffraction using CuKα

radiation (1.5418 Å), scanning from 10 to 80◦, using a speed of 1◦/min and a step of
0.02◦ in a Shimadzu diffractometer (XRD-6000). Rietveld refinement was performed in
the General Structure Analysis System (GSAS) program (Developed by the Advanced
Photon Source, Argonne National Laboratory, Developed by the Advanced Photon Source,
Argonne National Laboratory, Lemont, IL, USA) with a EXPGUI graphical interface ver-
sion 1166 [28] using background, scale factor, microstructure, crystal, texture, and strain
parameters for refinement. The α-Ag2WO4 rods morphology was observed by a field emis-
sion scanning electron microscope (FE-SEM, Carl-Zeiss—microscope, ZEISS Microscopy,
Oberkochen, Germany). X-ray photoelectron spectroscopy (XPS) was performed in a ES-
CALAB 250Xi (Thermo Fisher Scientific, Waltham, MA, USA) device operating with AlKα

(hν = 1486.68 eV) radiation at 225 W and 15 kV. The XPS spectra were collected at 200 eV
and 20 eV for survey spectra and individual elements, respectively.

2.3. Antimicrobial Tests

The α-Ag2WO4 powders’ antimicrobial capacity was analyzed using the Minimum
Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) methods.

Minimal inhibitory concentration (MIC) of the α-Ag2WO4 powders was determined
using the broth microdilution method [29] with modifications using 96-well microtiter
plates. The pre-inoculum culture consisted of a bacterial colony cultivated in 5 mL Muller–
Hinton medium (MH) at 37 ◦C for 16–18 h under 180 rpm agitation. After this period, 5 µL
of pre-inoculum was transferred to 5 mL of MH and incubated at 37 ◦C with agitation
until optical density reached 0.1 at 600 nm measured by UV-VIS (Quant, Biotek, American
Laboratory Trading, San Diego, CA, USA). The α-Ag2WO4 samples were firstly dissolved
in sterile distilled water and added to the MH medium for a final dose of 5 µg/mL. The
samples were serially diluted, and 50 µL was added to each well. The bacterial inoculums
were adjusted to 106 CFU/mL concentration and inoculated with samples and MH at
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a final volume of 100 µL/well. The plates were incubated at 37 ◦C for 16–20 h with no
agitation. MIC was considered as the lowest concentration which inhibited visual growth.
Next, an aliquot of each growth well content was inoculated in an MH agar plate and
incubated at 37 ◦C for 24 h for the Minimum Bactericidal Concentration (MBC) test. MBC
was considered as the lowest concentration at which no bacterial colonies were observed.
The bacteria used were gram-negative Escherichia coli and Salmonella spp. Negative and
sterility controls were included, and all experiments were performed in triplicate.

2.4. Computational Details

Computational methods and theoretical procedures were employed to study the bulk
and surfaces related to α-Ag2WO4. Density Functional Theory (DFT) calculations were
carried out using the periodic ab initio CRYSTAL17 [30] package within B3LYP [31,32]
hybrid functional. This computational technique has been successfully applied to study
the electronic and structural properties of various Ag-based materials [33–37]. The Ag and
W atoms in all calculations were described using effective core pseudopotential HAYWSC-
311d31G and HAYWSC-11d31G, respectively, while O atoms were described using atom-
centered all-electron Gaussian basis 8-411G [38–40]. Low-index (100), (001), (001) and (101)
slab models were employed in order to evaluate the physical and chemical properties
associated with α-Ag2WO4 surfaces. Herein, the previous optimized surface models [11,41]
obtained combining semi-local PBE exchange-correlation functional and plane-wave basis
set were considered as first guess for electronic structure analysis with atom-centered basis
set and a hybrid functional approach. The electronic structure analysis was carried out
combining band-edge positions, electrostatic potential isosurfaces, and surface-dependent
chemical environment from undercoordinated cations.

3. Results and Discussion

The diffractograms for the Ag2WO4 powders obtained at 30 and 70 ◦C are shown
in Figure 1a,b, respectively. According to diffractograms, all peaks corresponding to the
alpha phase of the silver tungstate, which have an orthorhombic system and space group
P2n2 (no. 34), are characterized by the ICSD 243987 card. The absence of secondary peaks
indicates that the co-precipitation method at different temperatures is efficient for the
α-Ag2WO4 phase obtention. The ICSD 243987 card was used for Rietveld refinement in
the GSAS software and Table 1 shows the obtained data. According to data obtained by
the refinement, the increase in the precipitation temperature provided a little increase in
the crystallite size, followed by a reduction in the microstrain. The growth of crystallites
occurred due to the increase in the lattice parameters of the material, as shown in Table 1.
These changes occurred because of the greater energy during the synthesis procedure,
enabling the greater lattice accommodation and energy reduction associated with crystal-
lites. Table S1 shows the fractional coordinates of the atoms, indicating that the increase in
temperature favors the displacement of the atoms, facilitating their accommodation in the
crystalline lattice. The low values of the refinement coefficients, in parallel with the good
fit between the theoretical and practical diffractograms, indicate the reliability of the data
obtained by the refinement.

Figure 1c,d show the micrographs for the AW30 and AW70 samples, respectively. The
growth of particles in well-defined morphologies can be explained by the energy associated
with the surface planes. According to the highlighted images, it is clear that the temperature
increase changed the cross-section of the rods, changing them from hexagonal to square
form. Roca et al. [42] showed the possible morphologies of α-Ag2WO4 through DFT
calculations using the Wulff construction obtained by a microwave-assisted hydrothermal
method and according to the surface energy of the crystallographic planes. According
to this study, the markings 1, 2, 3, and 4 refer to the (010), (001), (101), and (100) planes.
Therefore, we suggest that the rods obtained in this work at 30 ◦C preferentially grow in
the [010] direction, while the increase in precipitation temperature to 70 ◦C favors growth
in the [100] direction. The increase in precipitation temperature provides greater energy
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to the system, allowing the growth of particles in a morphology which has less energy
associated with its crystallographic planes. As seen through the diffractograms, α-Ag2WO4
has an orthorhombic crystalline structure, justifying the growth of the particles in the [100]
direction when increasing the precipitation temperature.
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Figure 1. (a,b) Diffractograms and (c,d) SEM images highlighting the morphology and growth plans
for AW30 and AW70 samples, respectively. Where numbers 1, 2, 3, and 4 refer to (010), (001), (101),
and (100) planes.

The chemical environment for (100), (010), (001), and (101) surfaces were analyzed
based on the Wulff construction [42], as presented in the Figure 2. In this case, the (100)
surface exposed a 5-fold Ag and W center, while (010) exposed a 4-fold Ag-center. On
the other hand, the (001) and (101) surfaces exhibited Ag5c and Ag4c centers summed
to W5c (101) and W4c (001). Therefore, the (100) and (010) surfaces showed a more reg-
ular environment in comparison to the (001) and (101) surfaces that presented a higher
undercoordinated degree.
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Table 1. Refinement data obtained by the GSAS software (EXPGUI graphical interface version 1166).

Samples AW30 AW70

Crystallite size (nm) 24.8 25.1
Microstrain (×10−4) 4.04 4.00

a (Å) 10.874(9) 10.875(0)
b (Å) 12.000(7) 12.002(7)
c (Å) 5.896(3) 5.897(3)

Vollum (Å3) 769.505(0) 769.770(8)
Chi2 1.292 1.31

Wrp (%) 9.99 10.36
Rp (%) 7.86 8.06
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lattice oxygen and the oxygen of water molecules adsorbed on the surface, respectively 
[45]. 

Figure 2. Schematic representation of (100), (010), (001), and (101) surfaces of α-Ag2WO4.

Figure 3 shows the XPS spectra for the AW70 sample. According to Figure 3b, Ag
3d had two peaks at 367.2 and 373.2 eV, which could be assigned to Ag 3d5/2 and Ag
3d3/2, respectively. These peaks were ascribed to Ag+ and the absence of minor peaks after
deconvolution of these peaks indicated the non-formation of metallic silver (Ag0) [43]. The
high-resolution spectra for W 4f are shown in Figure 3c. The peaks at 34.1 and 36.3 eV
correspond to W 4f7/2 and W 4f5/2, respectively, relative to W6+ [44]. Figure 3d shows the
deconvolution of the O 1s peak in two, 529.5 and 530.7 eV, which can be attributed to lattice
oxygen and the oxygen of water molecules adsorbed on the surface, respectively [45].

The antimicrobial capacity of the α-Ag2WO4 powders was estimated by MIC and
MBC methods. Table 2 shows the methodology of presentation of the inhibitory results,
and Tables 3 and 4 show the results against Escherichia coli and Salmonella spp. according to
the plates shown in Figures S1 and S2 (Supplementary Materials). The negative control
refers to a well without α-Ag2WO4 samples, while the sterility controls refer to a well
without bacteria or α-Ag2WO4. According to Tables 3 and 4, the growth in all wells in
columns 8 and 9, and the non-growth in the wells in columns 10 and 11, indicate the correct
sterilization during the preparation process, indicating the reliability of the results. The
results against E. coli indicate that the 5 and 2.5 mg/mL concentrations of AW30 and AW70
samples inhibited the growth of the bacteria, while lower concentrations did not hinder
them. On the other hand, only 5 mg/mL concentration against Salmonella spp. resulted in
the inhibition of bacterial growth for the AW30 and AW70 samples.
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Table 2. Presentation of antimicrobial results, where C1 to C7 refer to concentrations of 5, 2.5,
1.25, 0.625, 0.3125, 0.156, and 0.078 mg/mL, respectively. NC and SC are negative and sterility
controls, respectively.

1 2 3 4 5 6 7 8 9 10 11

AW30
C1 C2 C3 C4 C5 C6 C7 NC NC SC SC
C1 C2 C3 C4 C5 C6 C7 NC NC SC SC
C1 C2 C3 C4 C5 C6 C7 NC NC SC SC

AW70
C1 C2 C3 C4 C5 C6 C7 NC NC SC SC
C1 C2 C3 C4 C5 C6 C7 NC NC SC SC
C1 C2 C3 C4 C5 C6 C7 NC NC SC SC

Table 3. Inhibition of Escherichia coli, where (+) and (−) correspond to growth and inhibition, respectively.

1 2 3 4 5 6 7 8 9 10 11

AW30
− − + + + + + + + − −
− − − + + + + + + − −
− − + + + + + + + − −

AW70
− − + + + + + + + − −
− − + + + + + + + − −
− − − + + + + + + − −
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Table 4. Inhibition of Salmonella spp., where (+) and (−) correspond to growth and inhibition, respectively.

1 2 3 4 5 6 7 8 9 10 11

AW30
− + + + + + + + + − −
− + + + + + + + + + +
− + + + + + + + + − −

AW70
− + + + + + + + + − −
+ − + + + + + + + − −
− + + + + + + + + + −

From now on, our major interest is devoted to explaining the antimicrobial capacity
of the α-Ag2WO4 powders based on electronic structure analysis. It is well known that
Ag-based semiconductors can exhibit superior antimicrobial activity due to their capability
of generating ROS from O2 adsorption, activation, and evolution along with the exposed
surfaces [11,13,46,47]. In addition, other authors argue that the presence of exposed Ag+

ions are toxic and are able to kill the bacteria through the denaturation or oxidation mecha-
nism [48,49]. In both cases, morphological modulations seem to be the best alternative to
tailor the biological activity and provide superior behaviors.

In this context, Ag- and Cu-based nanoparticles have recently had their interest re-
newed, as experimental results indicate the antiviral potential of semiconductor materials
against SARs-CoV-2 virus, also known as COVID-19 [8,50–52]. In particular, ROS genera-
tion summed to the metal-rich surface exposure induces the superior biological activity of
such materials, contributing to designing innovative materials and reducing the drastic
effects of COVID-19 and similar pathogens. Moreover, theoretical results have also con-
firmed the role of surface exposure to provide superior ROS generation, indicating that
the rational design of solid-state materials plays a key role in present and future medical
applications [53–56].

Aiming to complement such discussion, the vacuum band-edge positions were com-
puted using the expressions:

ECB = χ − Ee − 1
2

Egap (1)

EVB = ECB + Egap (2)

in which ECB and EVB correspond to the VB and CB potential, Ee is the energy of free
electrons vs. hydrogen electrode potential (NHE = 4.5 eV) [57], χ is the Mulliken electroneg-
ativity calculated as 5.989 eV for α-Ag2WO4, and Egap is the band-gap value estimated
here by DFT calculations. In this context, it is important to mention that the calculated
band-gap values showed good agreement with the experimental data for AW30 and AW70
(Figure S3—Supplementary Materials), where the role of exposed surfaces explain the re-
duced band-gap values in comparison with the bulk. Figure 4 exhibits the band edge
potential for bulk and surfaces of α-Ag2WO4 with respect to NHE. In order to verify if
the bulk and different surfaces of α-Ag2WO4 are capable of generating ROS species, i.e.,
hydroxyl (•OH) and superoxide radicals (•O2

−), from adsorbed H2O and O2 molecules, it
is possible to compare the VB/CB position with the potential of H2O/•OH and O2/•O2

−

reactions, respectively, at different pH levels, such as 0 and 7.
According to Figure 4, the position of VB shows that the bulk and surface models of

α-Ag2WO4 can be used to generate •OH radicals from H2O oxidation at pH = 0, since the
VBM are more positive than the redox potential +1.23 V for H2O/•OH versus NHE. Only
the (101) cannot be used to generate •OH radical at pH = 7, since the VBM is more negative
that the redox potential of +2.72 V (NHE). With regard to the reduction reaction involving
adsorbed oxygen species O2/•O2

−, only the CB positions for the bulk and (010) surfaces
are properly able to active the adsorbed species and generate •O2

−, since the CB values are
higher than the redox potential of −0.33 V (NHE).
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Figure 4. Band-edge values for bulk and surfaces models of α-Ag2WO4 with respect to hydrogen
electrode potential (NHE).

Based on these results, we can argue that the bulk and (010) surfaces band-edge poten-
tial of α-Ag2WO4 are the most favorable in provoking the formation of ROS considering
both oxidative and reductive reactions, being that the VBM and CBM potential, associated
with the superficial chemical environment represented in Figure 2, contributes as hole-
trapping centers which activate adsorbed H2O and O2 species to generate •OH and •O2

−,
respectively. Moreover, we can argue that all investigated surfaces of α-Ag2WO4 contribute
to generate at least one type of ROS (•OH) that help us to explain the biological activity
reported in this work and by previous experimental results [12,13,24,26,47].

Very recently, our research group proposed a new concept to describe the atomic
coordination environment of surface atoms. We found a relationship between the ma-
terial properties (biological and catalytic behavior) and the exposed surface at the mor-
phology, as well as finding that the ROS generation in the α-Ag2WO4, β-Ag2MoO4, and
Ag2CrO4 [9,21,58] was sustained. On the other hand, the reactivity and antimicrobial
behavior of shape-oriented Ag2O nanoparticles were attributed to the presence of (100)
surfaces with increased distribution of Ag+ species [48,49,59]. Moreover, the electrostatic
potential isosurface contributes to depicting the charge density distribution to describe the
reactivity of exposed surfaces in the morphology of different materials [60,61]. Therefore,
the calculated charge density distributions for α-Ag2WO4 surfaces are shown in Figure 5.

An analysis of the results point out that the (001) and (101) surfaces exhibit a large
positive charge concentration, while (100) and (010) show the presence of negative and
positive charge centers along the exposed surfaces. In addition, we can interpret that the
most positive surfaces induce reduced formation energy for Ag vacancies, contributing to
Ag+ release. Therefore, the (001) and (101) can attach to the bacteria membrane and release
Ag+ cations that contribute to oxidative stress and cell death.

Moreover, the electrostatic potential surface and band-edge positions can be combined
to understand the activation process of adsorbed H2O and O2 in ROS generation. The
more positive surfaces exhibit a metal-rich environment which can contribute to localizing
the excited hole after the exciton dissociation. On the other hand, increasing the oxygen
contribution, the semiconductor surfaces can trap both excited electrons and holes at
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different crystalline sites. In fact, the (101) and (001) surfaces exhibit a characteristic band-
edge for VB which contributes to generate •OH radicals from oxidation mediated by the
excited holes trapped on the undercoordinated silver and tungsten clusters. Nonetheless,
the (010) surface exhibits a chemical environment with Ag-O-W bond paths where the
excited electrons and holes can be dissociated and located at different sites, contributing to
both the oxidation and reduction reactions responsible for ROS generation.
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Thus, the electronic structure analysis, combined with the α-Ag2WO4 surface environ-
ment, helps us to rationalize the role of the cross-section morphology in the antimicrobial
properties. In addition, the obtained results can also contribute to designing new solid-state
materials based on Ag-exposed surfaces for both antimicrobial and antiviral applications.

4. Conclusions

This work provides a valuable strategy for understanding how ROS are generated
in an α-Ag2WO4 semiconductor with photoenhanced catalytic and antimicrobial activity.
The temperature variation in the co-precipitation synthesis was efficient in controlling
the cross-section of the α-Ag2WO4 rods. The diffractograms also showed that there was
no formation of secondary phases, confirming the efficiency of this method in obtaining
α-Ag2WO4 particles. The cross-section variation in the α-Ag2WO4 sticks did not show
significant differences in the antimicrobial tests. Escherichia coli bacteria were completely
inhibited at concentrations of 2.5–5 mg/mL for both samples, while only a concentration of
5 mg/mL completely inhibited Salmonella spp. growth. These low α-Ag2WO4 concentra-
tions indicate that both cross-sections are efficient for treating environments that contain
such bacteria. The theoretical results based on DFT calculations confirmed that the bulk and
(010) and surfaces are responsible for the biological activity due to the band-edge position
in ROS generation and cation distribution along the exposed surfaces, which contributes to
enhancing the reactivity and biological response.
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