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Abstract: Aerosols play a crucial role in the climate system due to direct and indirect effects, such as
scattering and absorbing radiant energy. They also have adverse effects on visibility and human health.
Humans are exposed to fine PM2.5, which has adverse health impacts related to cardiovascular and
respiratory-related diseases. Long-term trends in PM concentrations are influenced by emissions and
meteorological variations, while meteorological factors primarily drive short-term variations. Factors
such as vegetation cover, relative humidity, temperature, and wind speed impact the divergence in
the PM2.5 concentrations on the surface. Machine learning proved to be a good predictor of air quality.
This study focuses on predicting PM2.5 with these parameters as input for spatial and temporal
information. The work analyzes the in situ observations for PM2.5 over Singapore for seven years
(2014–2021) at five locations, and these datasets are used for spatial prediction of PM2.5. The study
aims to provide a novel framework based on temporal-based prediction using Random Forest (RF),
Gradient Boosting (GB) regression, and Tree-based Pipeline Optimization Tool (TP) Auto ML works
based on meta-heuristic via genetic algorithm. TP produced reasonable Global Performance Index
values; 7.4 was the highest GPI value in August 2016, and the lowest was −0.6 in June 2019. This
indicates the positive performance of the TP model; even the negative values are less than other
models, denoting less pessimistic predictions. The outcomes are explained with the eXplainable
Artificial Intelligence (XAI) techniques which help to investigate the fidelity of feature importance of
the machine learning models to extract information regarding the rhythmic shift of the PM2.5 pattern.

Keywords: PM2.5; machine learning; MODIS; ERA5; XAI; random forest; gradient boosting;
tree-based pipeline optimization tool

1. Introduction

Inhalable particulate matter (PM) can cause acute and chronic diseases by infecting
human respiratory organs. PM having ≤2.5 µm of particle size in its diameter, known
as PM2.5, has been reported as hazardous to human health by causing tuberculosis, lung
cancer, and damage to the respiratory tract [1,2]. An increase in the short-term PM2.5 is
exemplary for human health, resulting in affected mortality rates negatively [3–6]. Dif-
ferent deleterious metals present in PM2.5 affected the atmosphere, particularly in Asian
countries [7]. Lelieveld et al. [8] employed a global atmospheric model to project PM2.5
concentrations and utilized exposure–response equations from the work of Burnett et al. [9].
Variability sets the backdrop for evaluating the global premature mortality linked with
chronic obstructive pulmonary disease (COPD), cerebrovascular disease (CEVD), ischemic
heart disease (IHD), and lung cancer (LC) [10]. PM2.5 also exhibited fluctuating patterns of
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escalation and reduction across numerous regions globally, particularly in economically
advanced areas, during recent decades [11]. For PM2.5 predictions, Chen et al. [12] used
environmental and meteorological parameters like vegetation cover, relative humidity,
temperature, wind speed, and direction as they also impact the divergence in the surface
PM2.5 concentrations. Ancillary variables (like the Normalized Difference Vegetation
Index (NDVI) for vegetation cover, water bodies, forests, urban areas and settlements,
barren land, etc.) are closely linked with the emission sources and the mass movement
of the air particles.

While considering significant scale prediction, the ground observations data are often
deficit to analyze. The satellite data with good spatial and spectral information made it
possible to predict PM2.5 [13]. Aerosol optical depth (AOD) is a measure of the extinction
effect of aerosols on the atmosphere. The particle size, distribution, and composition
influence the AOD. The satellite-derived AODs and meteorological parameters are used
in predicting PM2.5 [14,15]. In addition to AOD, the reanalysis products like Modern-Era
Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) and European
Center for Medium-Range Weather Forecasting (ECMWF) ERA5 with a spatial resolution of
0.25◦ × 0.25◦ [16] widely used source of meteorological data for PM2.5 predictions. A global
land cover dataset with a 300 m spatial resolution and MODIS Normalized Difference
Vegetation Index (NDVI) with a 250 m spatial resolution are also used as supporting
parameters in predicting PM2.5. Moderate Resolution Imaging Spector-radiometer (MODIS)
is a satellite product with Terra/Aqua satellite’s; MODIS products like MODIS Dark Target
(DT) with a spatial resolution of 10 km, MODIS Deep Blue (DB) with a spatial resolution
of 10 km, and MODIS DB Multiangle Implementation of Atmospheric Correction (MAIC)
with a 1 km spatial resolution [15,17]. Sekertekin et al. [18] and Xiang et al. [19] have
demonstrated the usefulness of parameters such as AOD and land surface temperature
(LST) derived from MODIS data in improving PM2.5 prediction accuracy. Inverse distance
weighted (IDW), a spatial interpolation technique used for interpolating the ground data,
was found to have a 24% error difference in the predicted and actual value of PM2.5
concentrations for the Delhi monitoring stations [20].

For estimating PM2.5 concentrations, Ma et al. [14] used autoregressive integrated mov-
ing averages (ARIMA) and multiple linear regression statistical models. Pu and Yoo [15]
developed a multi-stage model to attribute unavailable/missing values in spatial data by
quantifying the uncertainties and gave meaningful outcomes in PM2.5 predictions. The
density of data availability is positively correlated with the strength of the outcomes. As a
result, specific methods such as wavelet transform were used to boost data abundance [21].
Machine learning (ML) algorithms are assigned via explicit programs to learn and under-
stand structural and practical data-related problems. Especially in climate and extreme
weather predictions, with the available labeled climate benchmark datasets, the ML algo-
rithms trained and understood the typical feature-based circumstances [22]. Statistical and
ML models have been used to estimate PM2.5 concentrations and to identify the specific
severity and local impact of emissions on potentially affected areas [23]. ML algorithms,
including Bayesian statistics, regression, Random Forest (RF), radial basis function long
short-term memory (RBF-LSTM) algorithms, maximum likelihood estimation (MLE), sup-
port vector machine (SVM), K-nearest neighbor classifier (KNN), and neural network (NN)
models, have also been used to extract key features of PM2.5 in time series meteorological
data and improve the accuracy of predictions [13,21,24]. Deep learning (DL) techniques
can also provide reasonably good predictions by adjusting their critical hyperparameters.
In addition, it also investigates how the proposed method can be extended to apply to the
other types of datasets in dispersion in the atmospheric chemistry domain.

eXplainable Artificial Intelligence (XAI), a novel technique to explain the transparency
and fidelity of models, has garnered interest in clarifying the significance and dependability
of features and models [25]. XAI has attracted attention for explicating the importance and
trustworthiness of characteristics and models, though some methodologies need more de-
sirable properties and face constraints. Implementing an agnostic method can significantly
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help bias control. Many XAI approaches contradict desirable properties (such as “complete-
ness” or “implementation invariance”) and often have nontrivial limits for particular issue
configurations. In neural networks, the softmax function, for instance, creates values (class
weights) with particular probabilistic properties but not actual probabilities. On the other
hand, relative frequencies are considered for the possibilities of classes in random forests
and random survival forests. They are exact probabilities determined by calculating the
percentage of various sample classes at each leaf node [26]. In both cases, it is evident that
the degree to which the class probability distributions are accurate depends on the quantity
of training data and the ML model employed to forecast the distributions. It is difficult to
influence the creation of a post hoc ML model representing an opaque system [27].

Some studies were made on the XAI technique using remote sensing datasets. Kako-
georgiou et al. [28] used saliency methods to qualitatively evaluate the input benchmark
datasets BigEarthNet and SEN12MS that are used to fill the gaps via deep learning models.
Input × Gradient (InputXGrad), Integrated Gradients (IntGrad), Guided Backpropaga-
tion (GuidedBackprop), Grad-CAM, Guided Grad-CAM, Occlusion, DeepLift, Lime, and
SmoothGrad (SG) were used, which resulted in achieving lowest max-sensitivity, providing
reliable data classification. The Shapley Additive Explanations (SHAP) model was used to
understand different datasets (Ecological Spectral Information System; Spectro-radiometer,
ASD Field Spec bare fiber) over different scenarios, with the analysis of plant tissues, in-
cluding information such as contents of nitrogen, leaf area index, and water content, in
Israel [29]. Stadtler et al. [30] used a multi-labeled global air quality benchmark dataset
over black box models using SHAP, Neural Network Activation, Random Forest Acti-
vation, and Explaining Inaccurate Predictions with k-nearest neighbors to explain the
prediction of ozone’s averaged distribution over different periods. Betancourt et al. [31]
and Stirnberg et al. [32] also used the SHAP model to explain the transparency and contri-
bution of datasets in the model. As input, the global dataset AQ-Bench and reanalyzed
observations (ReObs) collected at Paris Charles de Gaulle Airport, located northeast of
Paris, were used in machine learning models to predict variations in tropospheric ozone
and PM1 concentrations, respectively. The Regression Activation Mapping (RAM) model
was used in the Indian wheat belt region to explain the contribution of datasets at each
time step in predicting meteorological and satellite-derived vegetation variables at daily
temporal resolution.

In this study, the prediction of monthly PM2.5 concentrations spatially using satellite
products along with targeting sparse observation data measured at different sites for vali-
dation in the north, south, central, east, and west directions over Singapore (detailed in
Section 3) is undertaken. The environmental and meteorological variables and the AOD
data-driven methods are referred for mapping spatial predictions. This study’s primary
contribution is to explore different ML models for spatial prediction. The secondary contri-
bution focuses on anticipating better ML model performance for predicting PM2.5 spatially
by incorporating multiple input variables and improving the model performance using
a meta-heuristic approach and ensemble models. This study also explains the factors
responsible for prediction using novel XAI techniques on different models. The ML models,
Random Forest regression, Gradient Boosting regression algorithm, and TP are employed
over meteorological variables, including wind, relative humidity, temperature, and vegeta-
tion cover, in conjunction with AOD data to forecast surface PM2.5. ML techniques have
been utilized for one-time-step training and prediction, and sequential information is
produced with reasonable accuracy for subsequent time steps. The model is designed
to predict each pixel/data point within the study area and is scrutinized using the XAI
technique. Although the prediction of PM2.5 level has been explored extensively with
ML models in recent years, the spatial pixel-based prediction is still to be explored.
Even though several popular neural network architectures are used in PM2.5 prediction,
the neural networks do not focus on peak variations like extreme events [33], and it
is tough to interpret the model’s transparency, uncertainty, and explainability. They
also have more chances of overfitting the exploratory variable when the external factors
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are added [33]. ML approaches can learn high-dimensional, complex representative
features [34] and are easily interpretable. There is still a research gap in understanding
the model complexity, interpretability, temporal and spatial dynamics, feature selection,
and engineering and involving multiple/hybrid models that lead to enhanced prediction
accuracy in the spatial domain.

The results of this study concentrating on various air pollutants can be beneficial in
devising mitigation. This goal seeks to foster sustainable, resilient, and safe cities and
human settlements that are inclusive. With remote sensing technology, open source data
products, statistics, and ML with XAI models can significantly improve the level of accuracy
in PM2.5 predictions and inform air quality management for better practices. The novelty of
this work includes the identification of the potential of dynamic ML models that incorporate
past data and important features in predicting PM2.5 with the input of spatial and temporal
satellite datasets, including multiple meteorological variables and the identification of input
variables that strongly explain the PM2.5 predictions over Singapore based on temporal
statistical premises, explaining the need of multiple features variables as input and the
inter- and intra-variation of different tree-based machine learning models with and without
optimization algorithms. The following objectives are taken into consideration when
creating and deploying a novel ML framework to forecast spatial PM2.5 distributions and
analyze temporal changes of delicate particulate matter:

(i) Predicting the spatial PM2.5 values over Singapore and validating the outcomes using
machine learning models.

(ii) Investigating the fidelity of the model outcomes with XAI.

The scope of this work is to identify a good spatial prediction ML model for PM2.5 by
comparing the performance of different ML models in the Singapore region. This study
is structured into five sections. Section 1 provides an introduction and literature review.
Section 2 contains details of the study area and a description of the datasets used in this
study. The workflow is described in Section 3. Section 4 presents and discusses the results
obtained in detail including exploratory analysis. Finally, Section 5 presents the conclusion
of this study.

2. Study Area and Data Description

Located at the southernmost point of the Malay Peninsula, Singapore is a highly ur-
banized city-state with a population of 5.7 million residents and 3 million daily commuters,
situated approximately 137 km north of the Equator [35–37]. With an equatorial climate
characterized by year-round rainfall, humidity, and high temperatures, our study focuses
on the in situ sites selected to cover the spatiotemporal dynamics of Singapore’s air quality,
as presented in Figure 1. The National Environmental Agency (NEA) of Singapore regularly
monitors ambient air pollutants, including particulate matter (PM2.5 and PM10). As already
discussed, PM2.5 represents finer particulates with a diameter ≤2.5 µm, and they are pri-
marily associated with health impacts and large distance transportations [38,39]. While
PM10 is defined as particles with diameters ≤10 µm, it corresponds to larger particulates,
respectively [40]. Due to their bigger sizes, their health impacts are not severe, though they
are important for the weather and climate processes [41] and are important for studying
forest fires [42], industrial transportation [43], and pollution contributions [44]. For the
present study, our focus is bounded to PM2.5 [6] measured at north, south, east, west, and
central sites across Singapore (as shown in Figure 1). The data obtained have been averaged
on a monthly analysis for 2014–2019, focusing on June, July, August, and September, which
exhibit consecutive rainfall deficits compared to other months.
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Figure 1. Satellite imagery of study area, Singapore.

The geographical location and visual representation (map) of the study area are
depicted in Figure 1, encompassing five monitoring stations strategically placed in the west,
north, east, south, and central regions of Singapore to collect observational data.

3. Methodology

The methodological flowchart in Figure 2 depicts the methodology of the work carried
out in this study. MODIS and ERA-5 spatial datasets have been utilized. The climate data
store (https://cds.climate.copernicus.eu/, accessed on 24 March 2022) makes the ERA5
data available globally in 0.25◦ × 0.25◦ grids of latitude–longitude with time scales for the
fifth generation of the ECMWF, atmospheric reanalysis of global climate. For this study, the
MODISplatform having Terra and Aqua satellites with the Collection of 6.1, level 2 aerosol
optical depth product at 550 nm wavelength for both land and ocean [45], with a spatial
resolution of 10 km, is used.

Python is mainly used to prepare datasets and run to the ML models, and spatial
maps were plotted using ArcGIS 10.3. Preprocessing is performed to transform data into
an efficient input format that will be fed to the model. The different preprocessing methods
used in this research work include feature variable selection, handling missing values to fill
the spatial gaps with observation points, and creating test/training datasets with 30% and
70% for feeding into ML algorithms.

Inverse distance weighted (IDW) is used to interpret observed data points to validate
the spatially predicted outputs; an example is shown in Figure 3. The input data are
resampled into coarse resolution ~0.25◦ × 0.25◦ while pre-processing to feed into the
machine learning models. The systematic methodology and the different parameters for
different methods used in this work are shown in Figure 2.

https://cds.climate.copernicus.eu/
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3.1. The Machine Learning Models
3.1.1. Random Forest (RF) Regression

RF is a machine learning algorithm for classification and regression problems. It is a
bootstrapping tree-based model ensemble with a bagging algorithm that combines multiple
decision trees to make accurate predictions. The random forest algorithm builds a forest
of decision trees, where each tree is constructed using a different subset of training data
and random subset features at each node in the tree. The sample is based on the counts
of trees, and the tree growth depends on the best split and the node of the input variables
in the dataset [46]. This randomness in the tree construction helps to reduce overfitting
and improve the model’s generalization ability. The accuracy of the RF algorithm depends
on two main parameters: the number of decision trees and the number of features in the
random subset at each node.

Adding more decision trees increases the model’s accuracy, but the computational
cost also increases. The square root of the total number of features in the dataset is used to
determine how many features are included in each node’s random subset. The subset’s
feature count can be adjusted to balance the bias and variance. The random forest approach
produces the mean of all the individual regression trees’ predictions in regression problems.
Each regression tree predicts the target variable as a constant value, and the final prediction
made by the random forest is the average of all the tree forecasts. This strategy aids in
lowering the model’s variance and raising the forecast’s precision.

3.1.2. Gradient Boosting (GB) Regression

GB, like RF, is also an ensemble learning method, but this model builds them sequen-
tially instead of having multiple decision trees. Integrating two model algorithms with
decision trees and a supervised method is used to aggregate the final output prediction. The
GB uses the loss function for the converging output to minimize the loss using less complex
decision trees [47]. Gradient boosting iteratively adds weak learners to the ensemble, each
weak learner attempting to outperform the prior weak learners. The trees are created to
remedy the flaws of the preceding tree. At each iteration, the algorithm calculates the
negative gradient of a loss function with respect to the predictions of the previous trees.
Then it fits a new tree to the negative gradient. One of the advantages of gradient boosting
is that it can handle different loss functions, such as mean squared error for regression
problems and cross-entropy loss for classification problems. It can also handle missing
values and outliers in the data. The performance of gradient boosting depends on several
hyperparameters, such as the learning rate, the number of trees, the depth of the trees, and
the regularization parameters. The learning rate controls the contribution of each tree to the
final prediction, and a lower learning rate generally leads to better performance but slower
convergence. The number of trees determines the complexity of the ensemble, and a more
significant number of trees can improve the performance and increase the computational
cost. The depth of the trees controls the complexity of each weak learner, and a larger
depth can lead to overfitting. Finally, the regularization parameters, such as the minimum
samples per leaf and the maximum depth, can also help to prevent overfitting.

3.1.3. Extreme Gradient Boosting Regression (XGBoost)

The robust ML algorithm uses a Gradient Boosting algorithm based on a decision tree-
based ML algorithm. The model performance is found to outperform the small to medium-
sized datasets. Although certain hyperparameters need to be tuned, the parameters are
tuned automatically to stop the learning when the best value is reached [48,49].

3.1.4. Tree-Based Pipeline Optimization Tool (TP) Optimization Algorithm

Optimization algorithms are divided into exact algorithms and heuristics mostly.
Heuristic algorithms are particular, problem-dependent, and meta-heuristic approaches
like the Genetic Algorithm (GA) [50]. Random Search [51], Grid Search, and Evolutionary
Algorithm (EA) [52] are common approaches to building AutoML systems for diverse
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applications. It is an AutoML tool created to create optimal pipelines through GA effectively,
the emerging method to be faced in the irregular research space [53–55]. Many randomly
assembled candidate pipelines are evaluated by TP [56], which are used in this study. The
complexity of model accuracy is accounted for using the pipeline. TP uses feature selection
and feature engineering, model selection, and hyperparameter optimization. Complete
pipeline cross-validation is carried out based on their cross-validated score [57], such as
balanced accuracy or mean squared error.

3.2. Error Metrics

Error metrics are used to evaluate the models to select or make an efficient ML model.
Several metrics are available for different kinds of machine-learning problems. Since the
problem at hand is a regression task, Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE),
and R2 score have been used to evaluate our regression model outcomes in predicting
PM2.5 [58–60].

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (1)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (2)

MAE =
1
n

n

∑
i=1

∣∣ŷi − yi
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MAPE =
1
n

n

∑
i=1
|
ŷi − yi

yi
| × 100% (4)
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∑n

i−1(yi − ŷi)
2

∑n
i−1(yi − ȳ)2 (5)

GPI =
4

∑
k

αk(mk − nik) (6)

MSE, being a popular metric, efficiently points out the mean squared error of predicted
and actual values. To find the deviation between the targeted and the predicted values, the
RMSE is used. MAPE is used for calculating the relative absolute error in percentage to
compare forecast accuracy between the models [61]. MSE is a commonly used metric to
validate ML model performances by measuring the average squared differences between
predicted and actual values. The squaring of the differences emphasizes more significant
errors in the model predictions. RMSE is another commonly used evaluation metric, which
accounts for the scale of the response variables in the dataset, in contrast to MSE, which
does not consider the scale. This makes RMSE more sensitive than MSE to differences in
the response variable values. R2 has often been used as a metric to assess the variability
in regression model responses. It represents the proportion of variance in the response
variables that the model’s predictor variables can explain. A higher R2 value indicates a
better fit of the model to the data.

R2 score is a posted metric calculated using the sum of squared errors. If the sum of
the square of error is small, which is near 1, it means the variance of the target variable is
wholly captured and vice versa for the high value of the square error of the regression line.

Zhu et al. [62] proposed using the Global Performance Index (GPI) as a method for
ranking the performance of machine learning models. The GPI combines multiple metrics
into a score to determine which model performs the best. The GPI formula includes a
constant αk, set to 1 for metrics like MSE, RMSE, and MAPE and −1 for R2. The scaled
value of each statistical indicator is represented as nik, with mk being the median of the
scaled statistical indicator j for all models (where k = 1, 2, 3, and 4). Higher GPI values
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indicate better model performance, and the model with the highest GPI value at a given
station is considered to have the best predictive capacity.

3.3. XAI Methods

The SHapley Additive exPlanations (SHAP) method is widely used in explainable AI
as it explains the importance of features in ML models and can be applied to different types
of models since it is model-agnostic. The method is based on game theory, which allows it
to determine the optimal contributions of different features in a game [63,64]. SHAP values
can be efficiently computed for tree models using Tree SHAP, a tree-based version of the
method [64].

Singh et al. [19] demonstrated the effectiveness of SHAP in identifying feature im-
portance in various machine learning models by eliminating individual features and
monitoring the changes in their contribution to the overall model. The SHAP method has
both global and local explanations. The global explanation provides an overview of the
model’s feature importance, while the local explanation explains individual predictions.

Local explanation approaches can be model-agnostic and used to explain tree mod-
els [65]. However, these approaches may be slow or experience sampling variability when
used with models that have many input features. In summary, SHAP is a powerful and
widely used XAI method that explains feature importance in machine learning models.
It can provide both global and local explanations, which can help interpret the model’s
output for individual predictions.

4. Results and Discussion

PM2.5 predictions use multiple meteorological parameters (NDVI, relative humidity,
temperature, and U—wind) with Aerosol Optical Distribution (AOD). Following the pro-
posed systematic procedure shown in the methodology section in Figure 2, the performance
of the result is to be analyzed and discussed in subsequent sub-sections. Predictions are
made using several ML algorithms, incorporating several machine learning methods. Still,
our analysis is focused on regression problems. Furthermore, MSE, RMSE, R2 score, MAE,
and MAPE metrics with XAI (an interpretable ML technique having SHAP, a contemporary
algorithm used as a global interpreter) are used to perform inference analysis.

4.1. Performance Comparison with RF and GB Models

The following output is obtained using RF and GB regression models with MSE, RMSE,
and R2 scores. The parameters used are given in Table 1. The performance of the regression
models is inferred below.

Table 1. Parameters used to perform Random Forest and Gradient Boosting regression algorithms.

Parameters Random Forest Gradient Boosting

n_estimator 10 1200

criterion mse friedman_mse

max_depth None 4

min_sample_split 1 2

min_samples_leaf 1 1

min_density 0.1 None

learning_rate None 0.01

random_state None 3

subsample None 0.5

Out of Bag(OOB)_score bool None

n_jobs 1 None
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The Random Forest regression algorithm results show the lowest MSE and RMSE
values for the test data, 0.01, in June 2019. Table 2 shows that the highest MSE and RMSE
values were observed in August 2015, with a value of 0.63 for test data in September. The
R2 values were highest in August 2014, with 0.89 and lowest in June 2017 and July 2019 for
test data (0.26). The MAE and MAPE values were also computed in Tables 3 and 4. The
lowest MAE values for training data were observed at 0.01 to 0.04, and the highest values
at 0.1 to 0.13 over the months of June to September for the years 2014 to 2019. The lowest
MAPE values were observed at 0.0003 to 0.0007, while the highest values were observed at
0.0014 to 0.0023 from Table 4.

Table 2. MSE and RMSE value for test and training datasets using RF and GB models for June–
September (2014–2019).

RF

MSE RMSE

Training Test Training Test Training Test Training Test Training Test Training Test Training Test Training Test

June July August September June July August September

0.04 0.2 0.02 0.07 0.02 0.05 0.03 0.11 0.2 0.49 0.15 0.28 0.16 0.24 0.17 0.33

0.1 0.04 0.08 0.16 0.25 0.05 0.07 0.63 0.2 0.31 0.29 0.4 0.23 0.5 0.27 0.79

0.05 0.07 0.05 0.07 0.09 0.49 0.05 0.03 0.22 0.27 0.23 0.27 0.31 0.7 0.22 0.18

0.04 0.04 0.01 0.02 0.02 0.05 0.06 0.08 0.21 0.22 0.14 0.15 0.16 0.22 0.25 0.29

0.03 0.19 0.04 0.3 0.03 0.14 0.01 0.06 0.18 0.44 0.2 0.54 0.17 0.37 0.1 0.24

0.004 0.01 0.001 0.01 0.003 0.01 0.02 0.12 0.07 0.12 0.04 0.12 0.06 0.13 0.15 0.34

GB

4.48 0.32 2.77 0.09 0.0002 0.06 5.65 0.18 0.56 0.006 0.005 0.3 0.01 0.25 0.007 0.42

0.21 0.0002 0.002 0.58 0.0006 0.2 0.0005 0.51 0.46 0.01 0.05 0.76 0.02 0.45 0.02 0.71

0.04 4.006 5.02 0.27 0.001 0.8 0.0007 0.08 0.22 0.006 0.52 0.007 0.89 0.04 0.02 0.28

0.11 0.0002 1.57 0.04 0.0002 0.13 0.0002 0.17 0.33 0.01 0.003 0.21 0.01 0.37 0.01 0.41

0.01 4.65 0.003 0.33 0.0001 0.1 0.0001 0.08 0.382 0.006 0.06 0.58 0.01 0.32 0.01 0.29

1.75 0.02 5.43 0.01 9.73 0.01 0.006 0.11 0.004 0.16 0.002 0.1 0.009 0.14 0.07 0.34

Table 2 presents the results of the Gradient Boosting regression algorithm for the test
data, the MSE was highest at 4.65 during June 2018, and the lowest value of 0.0002 was
observed during June 2017. The RMSE values were highest in August 2016, with 0.89 for
the training data, and in July 2015, with 0.76 for the test data, as shown in Table 2. The
lowest value of RMSE for the test data was 0.006 in June 2014. The R-squared values were
overestimated with training data across all the years and months, with a value of 0.99. The
test data showed the highest value of 0.89 in August 2014 and the lowest value of −0.01 in
June 2019, as indicated in Table 3.

The minimum values of MAE and MAPE in the training data, as shown in Tables 4 and 5,
were 0.02, 0.01, 0.02, and 0.03 for MAE and 0.0005, 0.0002, 0.0003, and 0.0004 for MAPE for
June–September for the years 2014 to 2019. The maximum values were 0.07, 0.08, 0.10, and
0.09 for MAE and 0.0014, 0.0017, 0.0018, and 0.0010 for MAPE. The variation in absolute error
for the training dataset was at its minimum in July 2019, with an MAE of 0.01 and MAPE of
0.0003 for the RF model and an MAE of 0.01 in July 2019 and a MAPE of 0.0018 in July 2019
for the GB model. The maximum variation error was observed during August 2019, with an
MAE of 0.13 and MAPE of 0.0023 for the RF model and an MAE of 0.01 in July 2019 and a
MAPE of 0.0018 in July 2019 for the GB model.
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Table 3. R2 and MAE values for test and training datasets using RF and GB regression models for
June–September (2014–2019).

RF

R2 MAE

Training Test Training Test Training Test Training Test Training Test Training Test Training Test Training Test

June July August September June July August September

0.95 0.65 0.95 0.82 0.96 0.89 0.95 0.78 0.1 0.24 0.08 0.14 0.08 0.13 0.1 0.21

0.95 0.86 0.93 0.81 0.94 0.62 0.94 0.34 0.07 0.17 0.11 0.22 0.1 0.27 0.12 0.36

0.93 0.8 0.94 0.88 0.93 0.54 0.92 0.87 0.09 0.14 0.08 0.15 0.13 0.33 0.08 0.11

0.86 0.65 0.86 0.54 0.88 0.55 0.87 0.78 0.05 0.1 0.03 0.06 0.04 0.1 0.07 0.15

0.91 0.28 0.92 0.6 0.94 0.74 0.95 0.66 0.07 0.18 0.09 0.26 0.08 0.19 0.04 0.14

0.92 0.35 0.94 0.26 0.96 0.84 0.95 0.74 0.03 0.07 0.01 0.05 0.03 0.06 0.06 0.17

GB

0.99 0.54 0.99 0.79 0.99 0.89 0.99 0.65 0.07 0.24 0.06 0.17 0.06 0.15 0.08 0.21

0.99 0.7 0.99 0.34 0.99 0.7 0.99 0.46 0.06 0.18 0.08 0.29 0.08 0.27 0.09 0.37

0.99 0.87 0.99 0.54 0.99 0.25 0.99 0.68 0.06 0.16 0.07 0.18 0.1 0.35 0.06 0.14

0.99 0.225 0.99 0.11 0.99 −0.18 0.99 0.57 0.03 0.12 0.02 0.07 0.04 0.12 0.05 0.15

0.99 0.45 0.99 0.55 0.99 0.8 0.99 0.52 0.05 0.2 0.08 0.28 0.05 0.2 0.03 0.13

0.99 −0.01 0.99 0.53 0.99 0.82 0.99 0.75 0.02 0.08 0.01 0.04 0.02 0.07 0.04 0.17

Table 4. MAPE value for test and training datasets using RF and GB regression models for June–
September (2014–2019).

RF

MAPE

Training Test Training Test Training Test Training Test

June July August September

0.002 0.0047 0.0014 0.0026 0.0015 0.002 0.0012 0.0026

0.0016 0.0036 0.0023 0.0048 0.0015 0.004 0.0009 0.0026

0.0017 0.0028 0.0016 0.003 0.0022 0.0057 0.0014 0.002

0.001 0.0023 0.0007 0.0013 0.001 0.0022 0.0013 0.0028

0.0014 0.0036 0.0015 0.0044 0.0014 0.0032 0.0007 0.0022

0.0007 0.0017 0.0003 0.0009 0.0004 0.001 0.0006 0.0017

GB

0.0014 0.0046 0.0011 0.003 0.0011 0.0029 0.001 0.0027

0.0013 0.0038 0.0017 0.0061 0.0012 0.0039 0.0006 0.0027

0.0013 0.003 0.0013 0.0036 0.0018 0.0061 0.001 0.0025

0.0008 0.0028 0.0005 0.0017 0.0008 0.0027 0.0009 0.0028

0.0011 0.0039 0.0014 0.0047 0.0009 0.0033 0.0005 0.0022

0.0005 0.0019 0.0002 0.0008 0.0003 0.0011 0.0004 0.0017
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Table 5. MSE, RMSE, R2, MAE, and MAPE values for test and training datasets using the TP model for June–September (2014–2019).

Regression
Models TP

Metrics MSE RMSE
Case Training Test Training Test Training Test Training Test Training Test Training Test Training Test Training Test

Year/Months June July August September June July August September
2014 0.27 0.30 0.21 0.30 0.14 0.28 0.15 0.38 0.52 0.55 0.46 0.55 0.38 0.53 0.38 0.62
2015 0.20 0.38 0.57 0.58 0.51 0.32 0.68 0.54 0.45 0.61 0.76 0.76 0.72 0.57 0.82 0.74
2016 0.40 0.21 0.26 0.51 0.99 1.57 0.34 0.27 0.63 0.46 0.51 0.72 1.00 1.25 0.58 0.52
2017 0.17 0.07 0.10 0.04 0.12 0.08 0.35 0.38 0.41 0.27 0.31 0.19 0.35 0.28 0.60 0.61
2018 0.29 0.45 0.32 0.59 0.28 0.28 0.10 0.11 0.54 0.67 0.57 0.77 0.53 0.53 0.31 0.34
2019 0.03 0.03 0.02 0.03 0.05 0.09 0.21 0.24 0.18 0.18 0.14 0.17 0.23 0.30 0.46 0.49

R2 MAE
2014 0.68 0.52 0.59 0.23 0.79 0.52 0.78 0.27 0.27 0.35 0.25 0.37 0.21 0.32 0.24 0.42
2015 0.80 0.45 0.59 0.31 0.54 0.49 0.62 0.41 0.19 0.45 0.38 0.56 0.32 0.38 0.31 0.40
2016 0.56 0.40 0.79 0.03 0.37 −0.59 0.53 −0.16 0.26 0.30 0.19 0.57 0.48 0.88 0.24 0.31
2017 0.63 0.42 0.49 0.18 0.60 0.24 0.14 0.04 0.13 0.15 0.11 0.11 0.13 0.16 0.28 0.41
2018 0.34 −1.05 0.52 0.09 0.52 0.49 0.60 0.18 0.23 0.33 0.26 0.42 0.27 0.36 0.15 0.20
2019 0.55 −0.25 0.30 −0.48 0.53 0.10 0.60 0.42 0.09 0.11 0.05 0.08 0.12 0.20 0.19 0.26

MAPE
2014 0.00529 0.0068 0.0045 0.0066 0.0039 0.006 0.003 0.0053
2015 0.004 0.0095 0.0078 0.0116 0.0046 0.0054 0.0023 0.0029
2016 0.0047 0.0055 0.0036 0.0113 0.008 0.0148 0.0042 0.0054
2017 0.0028 0.0032 0.0022 0.0023 0.0029 0.0036 0.0052 0.0074
2018 0.0045 0.0064 0.0044 0.007 0.0044 0.0059 0.0024 0.0031
2019 0.0021 0.0027 0.001 0.0014 0.0017 0.003 0.0018 0.0025
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The results of both RF and GB regression models were compared, with RF demonstrat-
ing strong performance in predicting PM2.5 values. Regarding MAPE, GB produced the
lowest error of 0.0002, while RF had the highest error of 0.0007. The maximum percentage
error was 0.001 for GB, and the lowest was 0.0023 for RF regression. Although RF did not
perform as well as GB in terms of accuracy, it exhibited the lowest error variation, indicating
error consistency. On the other hand, GB was found to overestimate, as demonstrated
by the R2 score within the trained dataset. Additionally, the analysis of the variation of
absolute error for the training dataset revealed that RF exhibited a minimum error in July
2019, with an MAE of 0.01 and MAPE of 0.0003, while GB exhibited a minimum error in
July 2019, with an MAE of 0.01 and MAPE of 0.0002. The maximum error variation was
observed in August 2019 for RF, with an MAE of 0.13 and MAPE of 0.0023, and in July 2019
for GB, with an MAE of 0.01 and MAPE of 0.0018.

4.2. Comparative Analysis Using TP (AutoML) Meta-Heuristic Approach Using
Genetic Algorithm

Different time periods are used as input, and the regression-based models that TP
suggests are unpruned [66]. Based on a pipeline fit with five genetic iterations and a
negative mean absolute error, the cross-validation score (5 folds) is calculated. According
to the optimum pipeline recommendation of TP, tree-based regression ensemble methods
are primarily used in the dataset.

The best pipeline models are generated by TP, each with different regression models
and their corresponding hyperparameters. The evaluation metrics over TP revealed that
the mean squared error (MSE) values were highest during August 2016, registering at 0.99
and 1.57 for training and test data, respectively. In contrast, the lowest MSE values were
observed during July 2019, with a score of 0.0291 for test data, as shown in Table 5. The
root mean squared error (RMSE) scores were highest for both training and test data during
August 2016, measuring at 1.2535 and 0.9952, respectively, while the lowest RMSE score for
training data was 0.18 in June 2019 and for test data, it was 0.17 in July 2019.

The R2 values for the training data were higher, with a maximum of 0.52 in June
2014 and a minimum of 0.144 in September 2017. In contrast, the R2 value for test data
was highest at 0.80 in June 2014 and lowest at −1.04981 in June 2018. The mean absolute
error (MAE) values for both training and test data were the highest in August 2016, with
scores of 0.48 and 0.88, respectively. However, the MAPE values were lower in June and
July of 2019, registering at 0.11 for test data and 0.05 for training data. The highest MAPE
values were recorded in August 2016, with scores of 0.008 and 0.014 for training and test
data, respectively, while the lowest values were observed in July 2019 and July 2017 at
0.0023 for training and test data, respectively. MSE, RMSE, MAE, and MAPE metrics
were used to infer the outcome for the TP model. Using the XGB Regressor with specific
hyperparameters, such as the alpha value of 0.014, max depth of 3, minimum child weight
of 3, and 100 estimators, as shown in Table S1, provided in the supplementary material, the
August 2016 PM2.5 concentration values differ from those of another period.

Although evaluation metrics such as MSE, RMSE, R2, MAE, and MAPE indicate
different accuracy levels with specific models and periods, the GPI values serve as a helpful
tool to understand these performance fluctuations and provide insights into the impact of
different meteorological variables and patterns on the predictive accuracy of the models.

Meteorological variables and seasonal patterns influence PM2.5 predictions on local
scales according to changes in time. This leads to variations in the performance of models
on a monthly and yearly basis apart from data uncertainties.

As shown in Figure 4, with regard to GPI values for the RF algorithm, August 2016
has the highest predicted value, while August 2019 has the lowest. For the GB algorithm,
August 2016 has the highest predicted value, while September 2018 has the lowest. The
range of predicted values varies significantly for different algorithms and month combina-
tions. Some have a large range (e.g., August 2016 for GB), while others have a much smaller
range (e.g., June 2019 for RF). The TP model’s performance indicates its predictive capacity
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during different time periods, and the range of values varies significantly across years and
months. The GPI values are used to evaluate the performance of the models. TP’s highest
GPI value was 7.4 in August 2016, and the lowest was −0.6 in June 2019. The TP model
exhibits positive performance, with the negative GPI values being less pessimistic than
other models.
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4.3. Global Interpretability and Local Interpretability Using SHAP Model

Global explanation using SHAP values can explain predictors/features’ contribution to
the output features. The regression models are used as the base model with a tree explainer
for calculating SHAP values. Upon analyzing the results of the RF and GB regression
models for July 2019 and August 2019, with mean accuracy scores of 0.35 and 0.68 for RF
and GB test datasets, a brief study was conducted to investigate the relationship between
features and PM2.5 values. The results indicated that RH for July 2019 and UWIND for
August 2019 were the major contributors in predicting PM2.5 values using both RF and GB
regression methods, as shown in Figure S1. Specifically, over the southern region, both
regression methods showed high positive SHAP values above 0.6 for UWIND in the August
2019 dataset, accounting for approximately 66.30% of the total variation, as depicted in
Figures S2 and S3. Furthermore, as AOD strongly correlates with PM2.5, the relationship
between AOD and influencing features was investigated. Figures S4 and S5 indicated that
temperatures above 300 K and RH between ~76 and 78, with a UWIND speed of ~−1.0 m/s,
were the most influential features for both RF and GB during July 2019 and August 2019.
The results that were consistent with Figures S5–S7 and also with local comparison on a
directional basis for both models were shown in Figures S8–S10, which showed that UWIND
and RH were the most influential features in predicting PM2.5 values.

Fine particulate matter (PM2.5) is a significant air pollutant; by studying variability
in PM2.5 it is possible to understand the factors that contribute to its distribution and can
be informed to policymakers to reduce its impact. The SHAP method was used to explain
the feature importance of TP’s best pipeline results in predicting PM2.5 levels. The SHAP
values are used to measure the impact of each feature on the model output, and Figure 5
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shows the distribution of SHAP values and feature importance for different features.
The bee swarm plots are used to visualize the continuous distribution of variables for
different categories along with the SHAP values. They help to visualize how data points
are spread out to reveal patterns or outliers within categories. NDVI, which measures
live green vegetation based on satellite data, had lower importance in SHAP values for
all periods due to the scarcity of data availability. This suggests that the model may not
be as sensitive to changes in vegetation cover as it is to other factors such as weather
patterns or human activity.
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UWIND, which measures the east–west wind speed component, had the highest
mean SHAP value in 2016, indicating that it was the most important feature in predicting
PM2.5 levels for that year. This could be due to specific weather patterns or other more
prevalent factors in 2016. RH which measures water vapor content in the air relative to
its maximum capacity was an important feature in most months of 2015 except for June.
This could be due to varying weather patterns or other factors that affected humidity
levels during that year.

The mean SHAP value plot in Figure 6 provides a way to aggregate the SHAP values
across all observations and calculate the average impact of each feature on the model output.
The histogram shows the distribution of categorical feature importance based on SHAP
values in high to low order. The bar plot shows that UWIND had the highest mean SHAP
value among all the features, indicating that it was the most important feature overall in
predicting PM2.5 levels. This could be due to UWIND being strongly correlated with other
features that are important in predicting the model output, or because it captures important
information about the health or air condition that the model aims to predict. Overall, these
findings provide insights into the factors that contribute to PM2.5 variability and highlight
the importance of considering multiple features in predicting PM2.5 levels.

The heat map plot shown in Figure 7a,b presents the global interpretation. The heat
map is used to represent the linearized density and continuity in the distribution of data,
with values shown as colored lines. In August 2016, UWIND showed the highest feature
importance with the highest MAE and MAPE values using the XGB-regression model. In
contrast, RH was the dominating feature in Figure 5, with the lowest MAPE value with
the XGB regressor in July 2019. Figure 7 shows that the RH variable in July 2019 improved
the predictions for more than 150 observations, resulting in a contribution greater than
37% with SHAP values of 0.2. The contribution of temperature ranked second (5–6%),
with SHAP values ranging between 20 and 25. Insignificant contribution, with SHAP
values close to 0, was observed for the rest features. The SHAP values analysis and global
explanation heatmaps provided insights into the model’s behavior and the importance of
different features in predicting PM2.5 concentrations. The study found that UWIND was
the most important feature in August 2016, while RH was the most important feature in
July 2019.

The study also evaluated different explanation metrics applied to RF, GB, and XGBoost
models using July and August 2019 datasets. The Random explainer had larger explanation
errors in all the regression tree models, with good performance when excluding positive
model output values (Figures S11–S16). The Partition, Permutation Part, Tree, Exact, and
Permutation explainers resulted in fewer errors when explaining the RF model. The Tree,
Partition, and Permutation Part explainers had fewer explanation errors with the July and
August 2019 datasets.
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pore. According to XAI analysis, UWIND exerts a strong influence among all the param-
eters even over the entire year of 2016; additionally, RH and TEMP also make significant 
contributions, although the intensity of variation was not the same. 

Chen et al. [67] estimated that the overall R2 values were around 0.88 using the RF 
model for locations in China, and Hu et al. [68] estimated that the daily PM2.5 variation 
using RF models has achieved R2 values of 0.80 for the United States. In our study in Sin-
gapore, the overall temporal mean R2 values were around 0.65. The variation in the values 
is likely due to the dynamic variations in meteorological and topographic structures. 

Figure 7. Two heat maps are shown: (a) June–September (2014–2016) and (b) June–September
(2017–2019). Heatmap visualizations of SHAP values for RF Tree-based explainer and feature im-
portance are shown in a color gradient ranging from high to low impact, with the model output
displayed on the top x-axis in log odds. The y-axis shows the order of features by importance, and
observations are clustered by function.
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4.4. Spatio-Temporal Interpretation Using RF and GF Prediction

The interpretation of PM2.5 temporal and spatial variations of both RF and GF algo-
rithms is made from Figures 8 and S17. The high and lower levels in PM2.5 concentrations
are denoted in µg m−3. The un-optimized algorithms are considered for the spatial and
temporal variation based on the highest performance of GPI. August 2016 exhibited higher
values when using RF compared to other periods. From RF prediction monthly variation
of PM2.5, the highest spatial density variation is found in central Singapore. Compared
to other months in 2016, August had the highest variation in PM2.5 concentrations than
in the northern part with the highest and the lowest concentrations in the eastern part
of Singapore. According to XAI analysis, UWIND exerts a strong influence among all
the parameters even over the entire year of 2016; additionally, RH and TEMP also make
significant contributions, although the intensity of variation was not the same.
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(2014–2019).

Chen et al. [67] estimated that the overall R2 values were around 0.88 using the RF
model for locations in China, and Hu et al. [68] estimated that the daily PM2.5 variation
using RF models has achieved R2 values of 0.80 for the United States. In our study in
Singapore, the overall temporal mean R2 values were around 0.65. The variation in the
values is likely due to the dynamic variations in meteorological and topographic structures.
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4.5. Insights, Strengths and Limitations

The changes in predicted outcomes of ML models for PM2.5 concentrations, specific
points are emphasized here for a clear insight:

• The structure of the ML algorithm: Depending on the structure of ML algorithms (RF,
GB, and TP), the prediction mechanism and the spatial estimation of the outcome
undergo changes. For instance, as an ensemble method, RF combines multiple decision
trees to make predictions; GB builds an ensemble of decision trees sequentially, where
each tree corrects the errors of the previous one; TP is an optimization algorithm
used for hyperparameter tuning and model/feature selections. These predictions can
capture complex relationships between the datasets.

• Integrating external factors for prediction: NDVI, temperature, wind speed, and
humidity can impact the dispersion, transformation, and accumulation of PM particles
in the air. Thus, these factors contribute more to the temporal and spatial dynamics of
PM concentration.

• Need for spatial and time series prediction with data-driven analysis: Best ML pre-
diction provides insights regarding how well PM2.5 concentrations across different
locations in the study area are predicted spatially. Time series and spatial prediction
help to understand the yearly-based monthly patterns of PM2.5 concentration included
with meteorological variables’ effects.

In the XAI-interpretable analysis with the RF model, meteorological variable variations
like UWIND and RH strongly influenced PM2.5 predictions due to dynamic variations
in meteorological variables and seasonal influences [69]. The performance of the models
considering the yearly variation showed significant variation in magnitudes of GPI values
overall, especially in the years 2014, 2015, 2016, 2017, and 2018.

Among all the machine learning explainers, the tree-based explainers were found
to predict better than others, which denotes that the tree-based models exhibit good
performance in predicting PM2.5. Even with the lack of spatial pixel information at some
random areas, the tree models performed better in prediction. However, the availability of
the data sets in both spatial and temporal resolutions is a limitation, which can affect the
accuracy of outcomes. Particularly in the context of policy decisions related to air quality
management, this analysis could be highly supportive.

Ji et al. [34] used RF to explore the potential impacts of several air-pollutant concentra-
tions including PM2.5 on the incidence of pediatric respiratory diseases in Taizhou, China.
RF served as the best-performing model in [34], and this supports our results indeed. Gu
et al. [33] used a hybrid model that combines an interpretable model and a deep neural
network, achieving an overall RMSE of 15.0835. Bai et al. [70] using LSTM obtained RMSE
values ranging from 13 to 14 for PM2.5 prediction in China; comparatively, our predictions
resulted in ~0.49 for RF and ~0.77 for TP, representing the highest values among the time
series predictions.

5. Conclusions

The analysis of PM2.5 variability using regression models and XAI provided insights
into the important features and their contribution to predicting PM2.5 concentrations.
SHAP value analysis and global explanation provided a powerful means of achieving
the prediction of PM2.5 concentrations and ensuring the reliability and transparency
of air quality models. Analyzing the feature contribution highlights the need for a
comprehensive and dynamic approach to predicting air quality. In this study, different
features contributed significantly over different periods for predicting PM2.5. Although
this prediction includes the lack of data availability and uncertainty (noises, coarse
resolution, etc.), this feature contribution analysis was considerably good and reasonable,
even when investigated directly. The Tree explainer performed comparatively well with
other SHAP explainers on RF, GB, and XGBoost. RF considerably outperformed GB
regarding MAE and MAPE values.
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While comparing the outcomes of RF and GB without hypertuning the algorithm, RF
showed good performance in predicting the PM2.5 concentrations, while GB overestimated
the prediction. Through hypertuning of the XGB regressor and comparing MSE, RMSE,
MAE and MAPE, July 2019 PM2.5 concentration values were better predicted compared
to other periods, resulting in genetic iterations with the TP model. The study results
also suggest that the XGBoost regression model is an effective tool for predicting PM2.5
concentrations with lower MAE and MAPE values compared to other models. RH was the
important feature for more significant prediction. Global explanation using SHAP values
provided insights into the relative importance of the input features for both RF and GB
models. UWIND was the most important feature in predicting PM2.5 concentrations in
August 2016, while RH was the most important in July 2019. This suggests that different
features were important in different periods or under other environmental conditions,
which significantly ensures the dependency of micro-climate.

Regression models and XAI tools are essential to predict and interpret PM2.5 concen-
trations. Particularly in the context of policy decisions related to air quality management,
this analysis could be highly supportive.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ai4040040/s1, Figure S1: RF and GB local comparison line plots
are shown at the top and overall contributions at the bottom for July 2019; Figure S2: RF and GB
local comparison line plots are shown at the top and overall contributions at the bottom for August
2019; Figure S3: RF local comparison based on the direction for August 2019; Figure S4: Showing the
local interpretation comparison plot for the AOD feature in RF for July 2019; Figure S4: cont. Same as
Figure S4 but for the GB method; Figure S5: Showing the local interpretation comparison plot for the
UWIND feature in RF and GB methods for July 2019; Figure S5: cont. Same as Figure S5 but for the
RH feature; Figure S6: Showing the local interpretation comparison plot for the UWIND feature in RF
and GB methods for August 2019; Figure S6: cont. Same as Figure S6 but for the RH feature; Figure S7:
Showing the local interpretation comparison plot for the AOD feature in the RF method for August
2019; Figure S7: cont. Same as Figure S7 but for the GB method; Figure S8: RF local comparison based
on the direction for July 2019; Figure S9: GB local comparison based on the direction for July 2019;
Figure S10: GB local comparison based on the direction for August 2019; Figure S11: Displaying RF
performance graph with and without random values on the left and explanation errors, computation
time, and overall model output on the right for July 2019; Figure S12: Displaying GB performance
graph with and without random values on the left and explanation errors, computation time, and
overall model output on the right for July 2019; Figure S13: Displaying XGB performance graph with
and without random values on the left and explanation errors, computation time, and overall model
output on the right for July 2019; Figure S14: Displaying RF performance graph with and without
random values on the left and explanation errors, computation time, and overall model output on
the right for August 2019; Figure S15: Displaying GB performance graph with and without random
values on the left and explanation errors, computation time, and overall model output on the right for
August 2019; Figure S16: Displaying XGB performance graph with and without random values on the
left and explanation errors, computation time, and overall model output on the right for August 2019;
Figure S17: Spatial map using GB regression PM2.5 concentration predictions for June–September
(2014–2019); Table S1: Best pipeline model given by TP algorithm for June–September (2014–2019).
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