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Abstract: DNA nanostructures have been widely explored as an encouraging tool for bioanalysis and
cancer therapy due to its structural programmability and good biocompatibility. The incorporation
of stimulus-responsive modules enables the accurate targeting and flexible control of structure and
morphology, which is benefit to precise bioanalysis and therapy. This mini review briefly discusses
the advancements in stimuli-responsive DNA nanostructures construction and their applications in
biomolecules sensing and cancer treatment.
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1. Introduction

DNA nanostructures, which are formed through the self-assembly of DNA strands, have
won considerable attention and become a breakthrough in nanotechnology. By leveraging
the principles of Watson–Crick base pairing, individual DNA strands are meticulously pro-
grammed to predetermined shapes with various functions such as sensing and therapeutic
applications [1–4]. As a natural component of all living organisms, DNA has inherently
superior biocompatibility, which reduces the risk of adverse reactions in biological systems.
Additionally, DNA structures with multifarious configurations could be easily obtained
using techniques such as DNA origami, which offers a simple method to fold long single
strands into desired shapes through self-assembly with staple strands, and larger assem-
blies could be further established from individual DNA structures [5]. More importantly, it
is convenient to functionalize DNA nanostructures with various biomolecules [6–8]. These
unique properties endow DNA structures with great power and make them a promising
tool in biological applications.

When applying DNA nanostructures in biological systems, the complexity of in vivo
environment impairs application efficiency. On one hand, biomarkers, as detection targets,
are usually in low expression levels in biological environments; therefore, specific and
efficient DNA cascade reactions are required to be embedded in DNA nanostructures [9–11]
to enhance target responsiveness and improve detection sensitivity or therapeutic efficacy.
On the other hand, the diffused distribution of biomarkers out of target position may result
in the “nonselective” activation of DNA nanostructure and cause “false-positive” signals in
diagnosis and side effect in therapy [12–14]. Therefore, responsive DNA nanostructures
that are sensitive to biological endogenous factors or external applied stimuli have been de-
signed with spatiotemporal regulation of their structure and motion for bioimaging [15–17]
or precise therapy [18–20].

Stimuli that trigger the transformation of DNA nanostructures includes external factors
(such as light [21–23], temperature [24–26], or magnetic field [27–29]) and internal factors
(such as acidity [30,31], small molecules [32–34], nucleic acids [35–37], or proteins [35,38,39]).
In response to stimuli activation, the programmed DNA nanostructures would generate
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optical or electrical signals or release cargoes through specific conformational changes
or bond breaks. Elaborate designs of configuration reversal to switch between different
conformations allow for dynamic control over the functions of DNA nanostructures. This
property has been widely utilized in applications such as molecular switches or logic gates
for bioanalysis [40–43]. Additionally, cascade reactions, including DNAzyme reactions,
hybridization chain reaction, and DNA walkers, involve a series of sequential reactions that
can be programmed into DNA nanostructures [44–46]. These reactions can be triggered by
specific stimuli and lead to a cascade of events for the amplification of desired response
and signals, which are especially essential for applications that require signal amplification
or complex molecular computations.

Stimuli-responsive DNA nanostructures offer a versatile platform for achieving con-
trolled and specific responses to various stimuli. By harnessing these responses, researchers
can develop innovative applications in areas such as biosensing, drug delivery, and pre-
cision medicine. In this review, we discussed the exciting advancements in the field of
stimuli-responsive DNA nanostructures and their potential applications in bioanalysis and
therapy. As our understanding of DNA nanotechnology advances, we can expect to see
further developments in the design and utilization of responsive DNA nanostructures for a
wide range of biomedical applications.

2. Responsive DNA Nanostructures for Biosensing and Bioimaging

Developing biosensing and bioimaging strategies is important to report the occurrence
and development of diseases, guide treatment, and evaluate therapeutic results. DNA
nanostructures for biosensing and bioimaging are usually composed of recognition seg-
ments (such as DNAzymes, i-motif, G-quadraplex, and aptamers et al.) that exhibit high
recognition ability towards specific biomarkers and signaling segments that demonstrated
measurable signal change. The recognition events of the DNA nanostructure to targets
act as stimuli, resulting in their configuration change with a correspondingly detectable
signal. There are two key points to keep in mind when designing a responsive DNA
nanostructure for biosensing/bioimaging: amplifying signals from lowly expressed detec-
tion targets and suppressing “false positive” signals from the nonspecific activation of the
DNA nanostructure.

2.1. DNA Nanostructures for Detection Signal Amplification

The precise detection of biomarkers is significant for clinical diagnosis accuracy. How-
ever, many biomarkers are usually low in abundance and require highly effective enrich-
ment and signal amplification strategies for detection. Smart responsive DNA nanostruc-
tures can not only offer specific recognition to detection targets but also amplify detection
signals by nucleic acid cascade reactions, which have been applied for multiple detection
targets including miRNAs, extracellular vesicles, and circulating tumor cells. The following
will address advances toward the development of smart responsive DNA nanostructures
for detection signal amplification.

2.1.1. In Vivo miRNAs Detection

MicroRNAs (miRNAs) are endogenous non-coding RNAs, which participate in many
physiological processes, including cells proliferation, differentiation, apoptosis and stress
responses [47–49]. Aberrant expression of miRNAs usually relates to cancer occurrence
and progression, making it a potential biomarker for clinical diagnosis and disease treat-
ment [50]. However, their short length, low abundance and high similarity among homoge-
neous sequence make miRNAs detection challenging. Nonenzymatic catalytic amplification
strategies based on DNA cascade reactions, such as hybridization chain reaction (HCR) and
catalytic hybridization assembly (CHA), and enzymatic rolling circle amplification (RCA),
have been widely applied as signal amplification techniques for sensitive miRNAs detection.
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Circulating miRNAs exist in various body fluids and emerge as a useful diagnostic
biomarker for a variety of diseases such as malignancy, cardiovascular, neurologic, and
metabolic diseases [51–53]. Besides their naturally low abundance in body fluids, one of the
main challenges for circulating miRNAs detection is that they usually exist within protein
complexes, and therefore require a pretreatment process to be released from the protein
complex before detection. To solve this problem, Doyle et al. treated raw serum samples
with SDS and RNase inhibitors to release target miRNAs from protein complexes, and
realized the direct detection of unprocessed human serum samples using a nonfouling
PEG hydrogel particle substrate (Figure 1A) [54]. The hydrogel particles were modified
with capture probes, which recognized target miRNA-141 and enabled subsequent rolling
circle amplification reactions with subsequent fluorescent reporters labelling for signal
amplification. The SDS treatment, the antifouling property of hydrogel particles, and
the contribution of DNA cascade reactions to signal amplification ensured the direct
detection of target miRNAs in small quantities of unprocessed human serum samples
without the need for RNA extraction. However, such enzymatic catalytic isothermal DNA
amplification strategies require strict reaction conditions of enzymes, which hampered their
application in clinic diagnostics. Liu et al. designed a fluorescent hydrogel array for the
high-throughput detection of miRNA-21 based on the integration of miRNA-21-responsive
DNA hybridization chain reaction (HCR) with interfacial cation exchange amplification
(Figure 1B) [55]. After the capture of target miRNA-21 in a hydrogel array via hybridization
with capture probes, HCR, independent of enzyme participation, was performed in the
hydrogel for signal amplification. HCR products were further labelled with CdS quantum
dots, which demonstrated strong fluorescence signal via a cation exchange reaction for
sensitive quantification of target miRNA-21. After the cation exchange reaction, Cd2+ was
released from CdS quantum dots and distributed in the hydrogel, which formed a product
with dye Rhod-5N and demonstrated strong fluorescence to further enhance the miRNA
detection signal. This method demonstrated great performance in the direct quantification
of miRNA-21 from crude cancer cell lysates and clinical serum samples.
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Figure 1. (A) Morphologically encoded non-fouling hydrogel particles for multiplex miRNAs de-
tection with RCA [54]. Reproduced with permission from Anal. Chem., published by American
Chemical Society, 2011. (B) Fluorescent hydrogel array for miRNA-21 detection based on HCR
coupled with interfacial cation exchange amplification [55]. Reproduced with permission from Anal.
Chim. Acta, published by Elsevier B.V., 2019.

Besides circulating miRNAs, self-assembled DNA nanostructures were also widely
utilized to quantitatively analyze miRNAs at the single-cell level. Chen et al. performed
DNA catalytic hairpin assembly reaction within a picoliter droplet, and achieved single-
cell miRNA-21 quantification in different breast cancer cell lines (Figure 2A) [56]. This
method provided a powerful tool for rapid and precise biomedical quantitative detection.
Furthermore, Tang et al. proposed a DNA cascade reaction-based quadratic isothermal
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amplification strategy for multiple microRNAs profiling at the single-cell level, and realized
human cancer identification (Figure 2B) [57]. They performed single-cell miRNAs analysis
in water-in-oil droplets that synthesized with microfluidic technology. Single cells were
encapsulated in individual droplets with DNA amplifiers for quadratic isothermal ampli-
fication, which reduced target miRNAs degradation and confined fluorescent amplified
products in pico-liter space for signal enhancement. The resulting fluorescent signals were
collected by a multi-color fluorescence detector. This single-cell multiple miRNAs analy-
sis method indicated potential application in differentiation and identification of tumors.
Furthermore, Liu et al. designed a hydrogel microbead for single cell encapsulation and
achieved simultaneous quantification of multiplexed miRNAs by coupling with catalytic
hairpin assembly (CHA) and rolling circle amplification (RCA) (Figure 2C) [58]. Hydrogel
microbead provided similar hydrous microenvironment to maintain the function of DNA
nanostructures and its porous structure enabled the free diffusion of DNA amplification
reaction strands and ease removal of unreacted DNA strands. Single-cell encapsulated
hydrogel microbeads were fabricated with a flow focusing configured microfluidic chip
and functionalized with target miRNAs capture probes. Fluorescent dye-labelled DNA
strands were then hybridized with DNA cascade reactions products for different miRNAs
quantifications. HepG2, HCCLM3, MHCC-97L, and HHL-5 cell lines were screened and
showed distinct miRNAs profiles, demonstrating the promising identification of cancer cell
types via effectively simultaneous quantification of multiple miRNAs. Therefore, multi-
plexed miRNAs expression at single-cell levels contributed to cell heterogeneity exploration
and cell subtype discrimination.
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Figure 2. (A) Hairpin DNA isothermal amplifier for the catalytic signal enhancement of miRNA-21
expression in a single cell [56]. Reproduced with permission from Lab Chip, published by The
Royal Society of Chemistry, 2018. (B) Quadratic isothermal amplification for single-cell miRNAs
analysis in water-in-oil droplets [57]. Reproduced with permission from ChemComm, published
by The Royal Society of Chemistry, 2019. (C) Single-cell multi-miRNAs quantification by DNA
cascade amplifications in hydrogel microbeads for cell subtype discrimination [58]. Reproduced with
permission from Chem. Sci., published by The Royal Society of Chemistry, 2022.

2.1.2. Extracellular Vesicles Detection

Extracellular vesicles (EVs) are lipid bilayer confined particles that are naturally se-
creted from almost all types of cells and found to circulate through many different body
fluids [59,60]. Tumor cells related EVs contain cancer-related information and participate
in intracellular communication and pathological processes [61], which makes them a po-
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tential biomarker for cancer diagnosis. However, the small size (30–200 nm) of EVs and
low expression of surface biomarkers result in detection difficulty. DNA-based signal
amplification technologies are widely utilized to improve detection sensitivity. Taking
advantage of target-initiated DNA cascade reactions on the EVs’ membrane, Zhong et al.
realized the visualization of a single extracellular vesicle via traditional flow cytometry
and revealed the heterogeneity of EVs (Figure 3A) [62]. To perform target-initiated signal
amplification, a conformation-switchable DNA probe was designed to recognize CD63,
which is a surface protein marker in various EVs. Upon target recognition, the DNA probe
changed its configuration and exposed toehold to initiate HCR on the vesicle membrane.
The resulting fluorescent HCR products not only increased the physical size of a single
EV, but also amplified the signal for surface biomarkers with low expression, enabling
the visualization of single EVs in a conventional flow cytometer. Li et al. developed an
electrochemical detection strategy based on DNA cascade signal amplification reaction on
vesicle membrane (Figure 3B) [63]. Aptamer-modified magnetic beads which recognize
EVs membrane proteins CD63 and EpCAM were anchored on EVs surface for magnetic
separation. Cholesterol functionalized primer strands were anchored into the EVs mem-
brane via hydrophobic interaction to form SNAs and subsequently extended to a polyT
strand. Methylene blue (MB) group, as the electroactive molecule, was modified on a
polyA DNA strand and hybridized with a polyT DNA strand for signal amplification. The
as-obtained polyT-A hybrid was then cleaved by Exo III and released the polyA strand
from the substrate. The released polyA strand (MB functionalized) was collected on an
electrode to obtain an electrochemical signal and achieved quantitative EVs detection.
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Chem. Int. Ed., published by Wiley, 2018. (B) electrochemical detection of EVs based on responsive
SNAs [63]. Reproduced with permission from Biosens. Bioelectron., published by Elsevier B.V., 2021.

2.1.3. Circulating Tumor Cells Detection

Circulating tumor cells (CTCs) were discovered in 1869 for the first time. They are
tumor cells that have sloughed off from solid tumors and circulate in the blood, representing
a real-time snapshot of solid tumors [64]. CTCs carry a variety of information concerning
tumor immunophenotype, genome, transcriptome, protein expression, tumor heterogeneity,
etc., which facilitate tumor early screening, therapy, recurrence monitoring, and prognosis
assessment, and have thus attracted considerable attention from researchers and clinicians
in the past few decades [65]. In 2004, the U.S. Food and Drug Administration (FDA)
approved “CellSearch system” as a diagnostic tool for CTC detection to predict progression-
free survival and overall survival in patients with metastatic breast cancers. In 2012, the
China Food and Drug Administration (CFDA) granted the first CTC diagnostic system
for clinical application. In 2017, “Cell Collector” was further cleared by the CFDA for
in vivo CTC diagnostics. In 2019, CTCs were officially listed as a clinical biomarker to
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evaluate therapeutic effects in the Chinese Guideline on the CSCO Breast Cancer Guidelines.
Despite the progress in CTC-based bioanalysis since their discovery, their precise detection
is still challenging due to the extreme rarity, inherent heterogeneity, and the complex
whole blood matrix. Thus, efficient and specific isolation and enrichment of CTCs are
usually required as pretreatment techniques. DNA nanostructures contain aptamers that
target specific CTC membrane molecules for CTC capture and screening. The affinity of
aptamers determines their recognition and binding capability for CTCs, which affects the
capture efficiency and detection sensitivity. Li et al. proposed an electrochemical method
for the direct analysis of CTCs in whole blood by coupling DNA nanostructures with
HCR (Figure 4A) [66]. EpCAM, one of the CTCs membrane protein was recognized by a
hairpin structure DNA strand, and subsequently initiated the HCR process to form a DNA
nanostructure on the CTC surface and bring the two originally separated segments of the
G-quadruplex sequence into close proximity. Thiol group functionalized tetrahedral DNA
nanostructures were immobilized onto a Au electrode and acted as hunters to capture CTCs
with the as-formed DNA structure. Hemin molecules were added in and reacted with
repeated G-quadruplex in the HCR products to form G-quadruplex/hemin complexes as
an electroactive molecule for the direct electrochemical analysis of rare CTCs. This strategy
achieved an ultralow detection limit as a couple of cells mL−1 and linear range from 10 to
104 cells mL−1, indicating its advantages in monitoring rare cells.

Chemistry 2023, 5, FOR PEER REVIEW 6 
 

 

CFDA for in vivo CTC diagnostics. In 2019, CTCs were officially listed as a clinical bi-
omarker to evaluate therapeutic effects in the Chinese Guideline on the CSCO Breast Can-
cer Guidelines. Despite the progress in CTC-based bioanalysis since their discovery, their 
precise detection is still challenging due to the extreme rarity, inherent heterogeneity, and 
the complex whole blood matrix. Thus, efficient and specific isolation and enrichment of 
CTCs are usually required as pretreatment techniques. DNA nanostructures contain ap-
tamers that target specific CTC membrane molecules for CTC capture and screening. The 
affinity of aptamers determines their recognition and binding capability for CTCs, which 
affects the capture efficiency and detection sensitivity. Li et al. proposed an electrochemi-
cal method for the direct analysis of CTCs in whole blood by coupling DNA nanostruc-
tures with HCR (Figure 4A) [66]. EpCAM, one of the CTCs membrane protein was recog-
nized by a hairpin structure DNA strand, and subsequently initiated the HCR process to 
form a DNA nanostructure on the CTC surface and bring the two originally separated 
segments of the G-quadruplex sequence into close proximity. Thiol group functionalized 
tetrahedral DNA nanostructures were immobilized onto a Au electrode and acted as hunt-
ers to capture CTCs with the as-formed DNA structure. Hemin molecules were added in 
and reacted with repeated G-quadruplex in the HCR products to form G-quadruplex/he-
min complexes as an electroactive molecule for the direct electrochemical analysis of rare 
CTCs. This strategy achieved an ultralow detection limit as a couple of cells mL−1 and 
linear range from 10 to 104 cells mL−1, indicating its advantages in monitoring rare cells. 

Compared with monovalent aptamers, multivalent aptamers were also applied to 
enhance binding affinity to CTCs. Yang and his coworkers have made a great progress 
toward capturing and releasing CTCs in a controllable approach using DNA nanostruc-
tures with multivalent recognition elements [67–69]. They engineered a deterministic lat-
eral displacement (DLD)-patterned microfluidic chip modified with multivalent aptamer-
functionalized gold nanoparticles to enhance CTCs capture efficiency (Figure 4B). The 
multivalent aptamer enhanced CTCs capture efficiency by more than 300% compared 
with a monovalent aptamer. Moreover, the captured CTCs were released through a thiol 
exchange reaction with up to 80% release efficiency and 96% of cell viability, which facil-
itated downstream CTCs culture and analysis [67]. 

 
Figure 4. (A) Direct analysis of CTCs on the responsive DNA nanostructures functionalized elec-
trode surface [66]. Reproduced with permission from Anal. Chem., published by American Chemi-
cal Society, 2020.  (B) Nanointerfaces with multivalent aptamers as recognition elements for CTCs 
[67]. Reproduced with permission from Angew. Chem. Int. Ed., published by Wiley, 2019. 

2.2. DNA Nanostructures against False-Positive Detection Signal 
DNA nanostructures have been widely used for intracellular bioimaging for their 

high programmability, ease of synthesis, and good biocompatibility. Wang et al. devel-
oped a series of DNA nanostructures via construction of a cascade DNA amplification 
circuit for reliable cancer cell discrimination and in vivo bioimaging [70–75]. For example, 
inspired by the self-reproducing growth of dandelions, they engineered a stimuli-respon-
sive autocatalytic hybridization assembly (AHA) circuit through the autonomous cross-
initiation of cascade hybridization reaction (CHR) and catalytic DNA assembly (CDA) 

Figure 4. (A) Direct analysis of CTCs on the responsive DNA nanostructures functionalized electrode
surface [66]. Reproduced with permission from Anal. Chem., published by American Chemical
Society, 2020. (B) Nanointerfaces with multivalent aptamers as recognition elements for CTCs [67].
Reproduced with permission from Angew. Chem. Int. Ed., published by Wiley, 2019.

Compared with monovalent aptamers, multivalent aptamers were also applied to en-
hance binding affinity to CTCs. Yang and his coworkers have made a great progress toward
capturing and releasing CTCs in a controllable approach using DNA nanostructures with
multivalent recognition elements [67–69]. They engineered a deterministic lateral displace-
ment (DLD)-patterned microfluidic chip modified with multivalent aptamer-functionalized
gold nanoparticles to enhance CTCs capture efficiency (Figure 4B). The multivalent ap-
tamer enhanced CTCs capture efficiency by more than 300% compared with a monovalent
aptamer. Moreover, the captured CTCs were released through a thiol exchange reaction
with up to 80% release efficiency and 96% of cell viability, which facilitated downstream
CTCs culture and analysis [67].

2.2. DNA Nanostructures against False-Positive Detection Signal

DNA nanostructures have been widely used for intracellular bioimaging for their high
programmability, ease of synthesis, and good biocompatibility. Wang et al. developed a
series of DNA nanostructures via construction of a cascade DNA amplification circuit for
reliable cancer cell discrimination and in vivo bioimaging [70–75]. For example, inspired
by the self-reproducing growth of dandelions, they engineered a stimuli-responsive auto-
catalytic hybridization assembly (AHA) circuit through the autonomous cross-initiation of
cascade hybridization reaction (CHR) and catalytic DNA assembly (CDA) (Figure 5A). The
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initiator, I, (dandelion seed) initiated the generation of stick-like CHR nanowires where
the tandem, T, catalyzed the assembly of numerous CDA products bearing newly exposed
I analogs (dandelion seeds). Then, the released I analog continuously motivated the au-
tonomous cross-activation of CHR and CDA constitutes of AHA circuit, which gave rise to
the accumulation of new initiators and progressive reaction acceleration in a certain space
for unlimited exponential signal amplification that enabled the accurate imaging of miRNA
from living cells and mice [72].

Though demonstrating an impressive capability to amplify signals from low-abundance
biomarkers, the further application of smart responsive DNA nanostructures for precise
intracellular biomarkers imaging still faces the following challenges: (1) the “always active”
design of most DNA nanostructures makes them susceptible to extracellular targeting
in the tumor microenvironment or serum, which would cause nonspecific fluorescence
signal amplification before intracellular delivery and result in a false positive signal; (2) the
different cells uptake efficiency would also contribute to intracellular signal differences due
to the “absolute intensity-dependent” mode with a single luminance channel for signal
acquisition. Both of these factors impair the detection accuracy.

Only having target specificity is not enough for precise imaging, since the as-obtained
DNA nanostructures not only responded to the detection target at the tumor position but
also to target molecules that diffused in systematic circulation out of the tumor position.
This would inevitably result in inaccurate detection and high background noise in im-
ages due to nonspecific extracellular activation. DNA nanostructures with the capability
of controllable activation contributed to the elimination of the false positive signal. Lu
et al. designed a light-regulated aptamer biosensor responsive to ATP and realized the
spatiotemporal controlled imaging of mitochondrial ATP in living cells [76]. The recog-
nition of aptamer to ATP was blocked by a photo-cleavable (PC) strand and loaded onto
a dequalinium-based liposome-like vesicle (DQAsome), which targeted mitochondria.
When it reached the mitochondria, the PC strand complementary to ATP aptamer was
cut upon 365 nm ultraviolet light irradiation and the corresponding ATP recognition re-
sulted in intracellular fluorescence recovery. Although UV-activated probes improved
the spatiotemporal precision for bioimaging, poor tissue penetration and phototoxicity of
UV light limited their further in vivo application. Upconversion nanoparticles (UCNPs)
are capable of converting near-infra-red (NIR) excitation into visible and ultraviolet emis-
sions, which benefits cell bioimaging with deep tissue penetration, excellent photostability,
and low phototoxicity [77]. By coupling with DNA nanodevices, UCNPs act as energy
transducers, and transfer NIR excitation to UV emission for photoactivation of DNA nanos-
tructures. Li et al. developed a novel DNA nanodevice by combining a photoactivatable
DNA probe with UCNPs for NIR light-activated spatiotemporal imaging of intracellular
miRNA (Figure 5B) [78]. A photocleavable linker was incorporated into the hairpin loop
of a molecule beacon, which blocked the target miRNA recognition region. UCNPs acted
as the NIR-to-UV transducers, and upon NIR light irradiation, UCNPs emitted UV light,
which caused the photolysis of the PC linker and enabled dose-dependent displacement of
the quencher-labeled strand in the cleaved PBs, resulting in a significant fluorescent signal
increase. UCNPs also acted as the carrier for DNA strands loading and delivery, which
enhanced the intracellular delivery efficiency of negatively charged DNA strands. This
NIR light activated the miRNA sensing strategy and achieved successful cancer-specific
bioimaging both in vitro and in vivo.
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Figure 5. (A) An autocatalytic hybridization assembly circuit engineered by the autonomous cross-
initiation of cascade hybridization reaction (CHR) and catalytic DNA assembly (CDA) for amplified
in vivo miRNA imaging [72]. (I) In vivo imaging of miRNA based on the AHA strategy, (II) Principle
of the AHA for exponentially amplified detection of target nucleic acid using enzyme-free autocat-
alytic hybridization assembly (AHA) circuit. Reproduced with permission from Angew. Chem. Int.
Ed., published by Wiley, 2022. (B) A NIR-light-activated DNA probe for spatiotemporal control
imaging of intracellular miRNA [78]. Reproduced with permission from J. Am. Chem. Soc., published
by American Chemical Society, 2019. (C) FluoELs modified with molecular beacon detection probes
for multiplexed miRNA detection [79]. Reproduced with permission from Angew. Chem. Int. Ed.,
published by Wiley, 2022. (D) A UV-light-activated DNA machine with an internal standard for
precise intracellular miRNA imaging [80]. Reproduced with permission from Chem. Sci., published
by The Royal Society of Chemistry, 2020. (E) A NIR-light-activatable DNA nanomachine with an
internal standard for the accurate intracellular imaging of Zn2+ [81]. Reproduced with permission
from Anal. Chim. Acta, published by Elsevier B.V., 2022.

To correct the false positive signals caused by the cellular uptake variation of dif-
ferent cells, Dong et al. proposed a robust combinatorial fluorescence-encoding method
to quantify multiplexed miRNAs in a single living cell, termed fluorophores-encoded
error-corrected labels (FluoELs) (Figure 5C). The FluoELs were prepared by proportionally
embedded Cy3 and Cy5 in the mesoporous silica nanoparticles (MSNs) for FL encoding
and the same amount of AMCA fluorophores for error correction. The as-obtained FluoELs
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were modified with molecular beacon detection probes for the simultaneous imaging of
multiple miRNAs in individual living cell and facilitated evaluation of miRNA expression
profiles [79]. In addition, the multiple luminescence emissions of UCNPs under NIR light
excitation offer an opportunity for the self-correction of intracellular bioimaging. Liu et al.
presented a photo zipper locked DNA nanomachine based on Er-doped UCNPs with an
internal standard, and applied it for precise miRNA imaging in living cells (Figure 5D) [80].
The DNA nanomachine was constructed by simultaneously connecting the DNAzyme
walker hybrid with a photo zipper, the corresponding substrate strands, and Cy3 as an
energy transducer on UCNPs surface. The miRNA recognition area was blocked effectively
with the exquisitely designed photo zipper to protect the DNA nanomachine from extracel-
lular activation during cell delivery. After NIR activation, DNA nanomachine responded
to miRNA in living cells to produce significant fluorescence amplification for the highly
sensitive imaging of intracellular miRNA. Taking advantage of the multiple luminescence
emissions of UCNPs, imaging internal standard was chosen as the unchanged emission
at 658 nm for self-correction of Cy3 fluorescence to achieve ratiometric detection. This
strategy would have broad applications in the detection of other biomarkers. Furthermore,
Liu et al. designed a NIR light activatable P-DNA nanomachine based on Tm-doped
UCNPs with an internal standard, and achieved the accurate intracellular imaging of Zn2+

(Figure 5E) [81]. The P-DNA nanomachine was constructed by FITC modified UCNPs,
photo-locked DNAzyme strand and its corresponding substrate strands labelled with
BHQ1. In addition, 980 nm NIR light excitation was transduced to 365 nm emission for
photolysis of PC linker and activation of DNAzyme walker. The unchanged emission at
450 nm worked as internal standard to improve the detection accuracy, while the 980 nm
activated DNA walker responded to Zn2+ and cleaved the BHQ1 labelled substrates, result-
ing in FITC fluorescence recovery at 540 nm. This method achieved accurate Zn2+ sensing
in living cells.

3. Smart Responsive DNA Nanostructures for Therapy

The flexibility of the structure design with convenience for chemical modification fur-
ther extends the application of DNA nanomachines to drug delivery and disease treatment.
The following will describe several typical DNA nanostructures with different response
mechanisms for the application of cancer therapy.

3.1. Response to Small Molecules
3.1.1. pH

Intracellular pH plays a vitally important role in the cellular metabolism as well as
the proliferation and apoptosis of cells. The endosomes and lysosomes, which participate
in the endocytic process of nanoparticles, exhibit a relatively low pH ranging from 4.5 to
6.5 [82]. Moreover, cancer cells and the tumor microenvironment mostly have a lower
pH (6.5 to 4.5) in comparison with normal cells and organs, which provides an afflatus
for the precise targeted delivery of drugs [83]. Willner et al. designed a pH-responsive
delivery system based on DNA i-motif structures (Figure 6A) [84]. In this study, UiO-66
metal organic framework nanoparticles NMOFs were proposed, which are locked by DNA
tetrahedral gates to load doxorubicin (Dox). At acidic pH, the gated tetrahedra dissociates
with NMOFs through the formation of the i-motif structure, which led to NMOFs unlocking
and drug release. Additionally, AS1411 aptamer was used for the targeting of cancer cells
through its combination with overexpressed nucleolin receptors. Ding et al. created a
vaccine based on DNA nanodevices for cancer immunotherapy. By accurately assembling
antigens and multiple adjuvants within the inner cavity of a tubular DNA nanostruc-tures,
adjuvants and antigens are released in a pH-responsive manner, and the purpose of efficient
co-delivery and controlled release of multiple therapeutic cargoes is realized [85].
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Taking advantage of the relatively low pH value (pH 6.5) in the tumor microenvi-
ronment, responsive therapeutic strategies have been developed. Lu et al. designed an
engineered DNAzyme molecular machine based on pH change to regulate the i-motif
structure (Figure 6B) [86], in which the i motif is folded under the acidic tumor microen-
vironment to shorten the distance between cells. Subsequently, the release of T cells from
cancer cells was achieved through DNAzyme cleavage in the presence of metal ions Zn2+.
This strategy contributed to the dynamical regulation of T cell/cancer cell interactions.

Shi et al. designed a pH-responsive interlocked DNA nano-spring (iDNS) to specifi-
cally activate T-cell proliferation for antitumor immunotherapy (Figure 6C) [87]. The lower
pH value in the solid tumor drove the springlike shrinking of the interlocked structure of
iDNS, which possessed a more rigid scaffold for the precise control of the spatial distribu-
tion of ligands. This iDNS achieved accurate regulation of the nanoscale distribution of
receptors on the T cell surface, generating significant T-cell proliferation for the enhanced
antitumor immunotherapy efficacy.

3.1.2. ATP

5′-adenosine triphosphate (ATP) is one of the most abundant physiological molecules
in cells as a coenzyme, and has been used as a new trigger for drug delivery. Gu et al.
used ATP as a trigger for the controlled release of anticancer drugs. The designed nano
gel is mainly composed of three different functional components: ATP-responsive DNA
motif with doxorubicin (Dox) and protamine and hyaluronic acid (HA) cross-linked shell
(Figure 7A). Anionic HA is encapsulated in the core complex to form a protective shell and
also supports active tumor targeting. After intravenous injection, nano gel accumulated at
tumor sites due to passive and active targeting. HAase degraded HA shell, exposed the
complex of protamine and Dox-inserted double-stranded bodies (Dox/double stranded
bodies). The protamine component promoted endosome escape, and enabled the effec-
tive transport of Dox/Duplex into cytosol. ATP-responsive Dox/Duplex dissociation
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resulted in effective release of Dox, which eventually accumulates in the nucleus to produce
cytotoxicity and apoptosis [88].
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In addition, ATP was also used as stimulus to regulate receptor clustering at the cell
membrane for protein degradation and cellular behavior manipulation. Li et al. developed
an ATP-activated DNA nanodevice to enhance membrane phase separation through the
clustering of dynamic lipid rafts (Figure 7B) [89]. The designed DNA anchored on the cell
membrane could be activated by the overexpressed ATP in the tumor microenvironment
to form a long DNA duplex on the cell membrane, which improved membrane phase
separation and inhibited cancer cell migration. This DNA nanodevice provides a novel
approach to regulate membrane phase separation and thus control cell motility with DNA
nanotechnologies, and the versatile programmability of DNA provides multiple possi-
bilities for biomedical and therapeutic applications. Nie et al. demonstrate a nongenetic
approach for small-molecule-controlled receptor activation and consequent cell behavior
via DNA-mediated chemically induced dimerization (D-CID) (Figure 7C) [90]. After the
DNA strand displacement in the presence of ATP, this DNA nanodevice could trigger
the activation of c-Met via dimerization and induce c-Met signaling. Using various func-
tional nucleic acids, D-CID could be used to manipulate the behaviors of multiple cell
populations and facilitate the precise control of cellular systems for bioengineering and
therapeutic applications.

Glutathione (GSH) displays a much higher expression level in multiple types of
tumor cells; thus, it has been widely applied as the trigger for on-demand drug release
and targeted cancer therapy. Using DNA origami technology, Ding et al. designed a
multifunctional DNA nanodevice, which can encapsulate and efficiently deliver many
molecules, including siRNA and chemotherapy drugs. Due to their precisely designed
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structure and controlled payload release, the DNA-origami-based delivery carriers play
important roles in controllable therapy [91].

3.2. Response to Biomacromolecules
3.2.1. Nucleic Acids

MicroRNAs (miRNAs), as a class of endogenous, single-stranded, small RNA molecules,
are actively involved in and regulate many biological processes. Therefore, they affect gene
expression and have potential applications as disease biomarkers [92]. The typical role of
these small non-coding RNA is to affect messenger RNA (mRNA) through the recognition
site of the 3′ untranslated region (UTR), thus regulating its stability [93]. Some miRNAs and
mRNAs have been reported to display abnormally high expression levels in cancer cells,
which makes them one of the most highly effective and specific stimuli that trigger drug
delivery systems. Ju and Liu et al. designed a DNA nanomachine (DNM) using miRNA-21
as a trigger and the siRNA produced through a cascade reaction can significantly inhibit
VEGF mRNA and protein expression in cell and in vivo tumor growth (Figure 8A) [94].
The DNA/RNA hybrids (DR and D′R′) are alternately arranged on the DNA scaffold,
forming DNM, which was previously produced via rolling circle amplification (RCA). By
hybridizing ssDNA (D or D′) with specific RNA (R or R′), DR and D′R′ are synthesized.
Here, the 5′ end of R is labeled with Cy3 (Cy3-R) for the in situ monitoring of cellular
processes, and its 3′ end has a complementary toehold with the 5′ end of target miRNA.
Intracellular target miRNA can recognize the toehold of R and hybridize with the first
22 nucleotides of R starting from the 3′ end, correspondingly opening DR. The released part
of D subsequently reacted with D′, thus triggering a strand displacement reaction between
DR and D′R′, generating dsDNA (DD′) on the DNA scaffold, and releasing siRNA (RR′)
and miRNA from DNM. The released miRNA continuously reacted with R, and triggered
a strand displacement reaction between DR and D′R′ with the generation of siRNA. In
addition, a negatively charged DNM can form stable nanocomposites with cationic folate
modified polyethylene imine (FPEI) to promote target-cell-specific delivery and help the
endosomes of DNM escape into the cytoplasm.
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Using disease-associated extracellular miRNAs as input signals, Nie et al. presented a
modular and programmable miRNA-responsive DNA nanodevice for biomarker-driven
therapy (Figure 8B) [95]. The designed chimeric DNA receptor was grafted on a natural
membrane receptor by virtue of aptamer anchoring, and the extracellular miRNA could
trigger complementary-mediated strand displacement reaction to autonomously induce
dimerization-mediated receptor activation. The in vivo experimental results demonstrated
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the promoted MET signaling of hepatocytes and in situ repair and liver function restoration
of this DNA nanodevice.

3.2.2. Proteins

Protein-responsive DNA nanostructures play a significant role in tumor therapy by
providing targeted and controlled drug delivery systems [96] or activating therapeutic
operation [97]. These nanostructures are designed to respond to specific proteins that are
overexpressed in tumor cells for the selective delivery of therapeutic agents to the tumor
site or enhance the cell apoptosis.

The design of oligonucleotide-based synthetic switches can be used to reprogram
ligand specificity of growth factor receptors. The aptamer domain of the bispecific aptamer
can be tailored for specific external cues. Sando et al. reported the DNA aptamer-mediated
Reprogramming of the Interaction Partner of Receptor tyrosine kinases (DRIPaR). DRIPaR
is based on bispecific DNA aptamers, which consist of an aptamer sequence that binds to
the target RTK and another aptamer sequence that binds to a given cue in the extracellular
space. The binding of growth factors induces dimerization of RTK and subsequent phos-
phorylation of intracellular domains is a key step in triggering the intracellular signaling
cascade. Two bifunctional aptamers will form a ternary complex with one PDGF homod-
imer to induce Met activation. This approach could potentially be applied to design a new
class of chemical tools that can control the activity of natural cells and represent smart and
safe re-generative medicine [98]. By using DNA origami, Ding et al. builted an autonomous
DNA robot capable of transporting payloads and presenting them specifically in tumors.
The nucleolin-targeting aptamer as targeting domains and molecular triggers for DNA
nanorobots enables DNA nanorobots to perform precise drug delivery. In the presence of
nucleolin, the aptamer at both ends of the tube nanocarrier bonded with nucleolin, breaking
the binding of two sides and opening the tube into DNA sheet to expose the encapsulated
thrombin [96].

Using the recognition of aptamers to cell membrane proteins, Yang et al. proposed
a two-step self-assembling strategy based on the selective Watson−Crick base pairing
properties of oligonucleotides (Figure 9A) [97]. This pretargeting−postassembly approach
multivalently tethers receptor-prebound antibodies to albumin at the cell surface, allowing
sequential actions of receptor binding and clustering to induce cell death.

Vascular endothelial growth factor (VEGF) is a signaling protein secreted by cells, used
to promote the growth of new blood vessels. Due to its relatively higher expression around
cancer cells compared to normal cells, it has been widely studied as a cancer biomarker
and therapeutic target for cancer treatment plans. Liu et al. selected subcutaneous Raji
lymphoma as a tumor model to develop a selective receptor aggregation (SMARC) strategy,
which selectively aggregated CD20 on cell membrane via VEGF secretion (Figure 9B) [99].
Considering the cell membrane receptor CD20 is not only expressed by cancer cells, but
also normal cells, merely CD20 specificity is not enough to achieve therapeutic precision.
Therefore, incorporating the capability of cell selectivity to responsive DNA nanostructure
is very important. By hybridizing DNA strands S, H, and H2, DNA nanostrings with
extended configurations (EDNS) were synthesized. In order to anchor EDNS to Raji cell
membrane, it was hybridized with CD20 antibody-conjugated DNA strands (H3-CD20) to
obtain CD20 antibody-conjugated DNA nanochains (EDNS-CD20). The hairpin fragment
with 27 bp and many repetitive units S/H provides sufficient length difference between the
EDNS and CDNS (contracted DNA nanostring) configurations for DNA nanostrings (DNS).
After intravenous injection, EDNS-CD20 recognized the CD20 receptor and bound to the
Raji cell membrane. VEGF, as a cytokine selectively secreted by cancer cells, was chosen
to distinguish cancer cells from normal cells. The designed VEGF amplifier consisted of
cyclic reactions between double-stranded DNA strand IS-AptVEGF and DNA strand H1,
IS, and DNA nanochains. IS-AptVEGF recognized and bound to VEGF secreted by Raji
cells, which released DNA strand IS. IS then hybridized with DNA strand H1 to unfold
its hairpin structure. The obtained IS-H1 double stranded body served as a trigger for
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the configuration change of DNA nanostrings: IS-H1 hybridized with EDNS through a
toehold in H2 and generated the DNA nanostrings in transient state (TDNS). The strand
displacement reaction between IS-H1 and H2 continues, which pulled H2 away from the
DNA nanostring, thus restoring the hairpin structure of H and transformed the DNA
nanostring into a contractile configuration (CDNS). This process also regenerated IS, which
continuously hybridized with H1 for multiple reaction cycles, amplified the VEGF effect
and led to the effective contraction of the DNA nanostring on cell membrane with CD20
clustering. The CD20 receptor aggregation then resulted in calcium influx and cell apoptosis.
Binding to IS-AptVEGF can also inactivate VEGF, thereby blocking the activation of the
VEGF receptor (VEGFR) and further facilitating tumor treatment.

Chemistry 2023, 5, FOR PEER REVIEW 15 
 

 

 
Figure 9. (A) Illustration of synthesis of conjugates and the pretargeting−postassembly approach 
that assembles OBN antibodies at cell surface [97]. (i) Actin remodeling, (ii) lysosome disruption,  
(iii) ROS production, (iv) receptor crosslinking, (v) calcium influx, (vi) caspase activation. Repro-
duced with permission from ACS Nano, published by American Chemical Society, 2019. (B) Vascu-
lar endothelial growth factor (VEGF) secreted by Raji cells regulated CD20 receptors aggregation on 
cell membrane [99]. Reproduced with permission from J. Am. Chem. Soc., published by American 
Chemical Society, 2023. 

3.3. Response to Light Irradiation 
Light is an exogenous, noninvasive stimulus that has superior spatiotemporal con-

trollability and accuracy, and the rapid development of optical techniques provides oper-
ational convenience and decreases costs. Therefore, it has been widely used in controlled 
drug delivery and corresponding therapy. 

Liu et al. designed a DNA copolymer nanocage that self-assembled on the cell mem-
brane to encapsulate individual T cells and could be peeled off from cell membrane upon 
UV irradiation (Figure 10A) [100]. The photo-responsive DNA nanocage contained a self-
quenched IFN- γ aptamer, which responded to IFN- γ secretion and restored fluorescence 
to indicate the activity of individual T cells. The wrapping of DNA nanocage confined the 
diffusion of secreted IFN- γ and eliminated interference from nearby cell secretion. After-
wards, active T cells were collected via flow cytometry and cell sorting, and subsequently 
exposed to 5 min of ultraviolet radiation to release nanocages from the cell membrane. 
Jurkat cells and CD19 CAR-T cells with higher activity were successfully selected with 
enhanced downstream cell activation and cancer cell killing capability. Yang et al. pro-
posed a nongenetic approach for logic actuation of endogenous receptor assembly and 
corresponding modulation of signal transduction via aptamer recognition and receptor 
assembly (Figure 10B) [101]. Under the activation of nucleic acid molecules and/or light 
irradiation, DNA logic assembly brings c-Met and CD71 into close proximity, which in-
terfered with the ligand–receptor interactions of c-Met. This programmable design has 
been successfully exemplified for modulating cellular signal transduction and provides a 
convenient tool for biomedical applications. 

Figure 9. (A) Illustration of synthesis of conjugates and the pretargeting−postassembly approach
that assembles OBN antibodies at cell surface [97]. (i) Actin remodeling, (ii) lysosome disruption,
(iii) ROS production, (iv) receptor crosslinking, (v) calcium influx, (vi) caspase activation. Reproduced
with permission from ACS Nano, published by American Chemical Society, 2019. (B) Vascular
endothelial growth factor (VEGF) secreted by Raji cells regulated CD20 receptors aggregation on
cell membrane [99]. Reproduced with permission from J. Am. Chem. Soc., published by American
Chemical Society, 2023.

3.3. Response to Light Irradiation

Light is an exogenous, noninvasive stimulus that has superior spatiotemporal control-
lability and accuracy, and the rapid development of optical techniques provides operational
convenience and decreases costs. Therefore, it has been widely used in controlled drug
delivery and corresponding therapy.

Liu et al. designed a DNA copolymer nanocage that self-assembled on the cell mem-
brane to encapsulate individual T cells and could be peeled off from cell membrane upon
UV irradiation (Figure 10A) [100]. The photo-responsive DNA nanocage contained a self-
quenched IFN- γ aptamer, which responded to IFN- γ secretion and restored fluorescence
to indicate the activity of individual T cells. The wrapping of DNA nanocage confined the
diffusion of secreted IFN- γ and eliminated interference from nearby cell secretion. After-
wards, active T cells were collected via flow cytometry and cell sorting, and subsequently
exposed to 5 min of ultraviolet radiation to release nanocages from the cell membrane.
Jurkat cells and CD19 CAR-T cells with higher activity were successfully selected with
enhanced downstream cell activation and cancer cell killing capability. Yang et al. proposed
a nongenetic approach for logic actuation of endogenous receptor assembly and corre-
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sponding modulation of signal transduction via aptamer recognition and receptor assembly
(Figure 10B) [101]. Under the activation of nucleic acid molecules and/or light irradiation,
DNA logic assembly brings c-Met and CD71 into close proximity, which interfered with
the ligand–receptor interactions of c-Met. This programmable design has been successfully
exemplified for modulating cellular signal transduction and provides a convenient tool for
biomedical applications.
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Considering the poor tissue penetration and phototoxicity of UV or visible light,
near-infrared (NIR) light is more appropriate for biomedical applications. Ju and Liu
et al. designed a DNA–azobenzene nanopump for rapid and efficient drug release through
combining DNA nanostructures with upconversion nanoparticles (UCNPs), which con-
verted NIR light to UV and visible light (Figure 11A) [102]. DNA hybrids that assembled
on UCNPs continuously switched configuration upon NIR irradiation, which act as the
pump-type switcher. The anticancer drug doxorubicin (DOX) can selectively insert into
GC base pairs of DNA for efficient loading. The continuous rotation–inversion movement
of the phenyl moiety of azo in the hybridization zone of DNA backbones (DNA strands
LAAzo, LCAzo with three azo moieties per DNA strand) resulted in the switching of DNA
hybridization and dehybridization status, which facilitated DOX release. Moreover, HIV-1
TAT is a nuclear localization peptide that was conjugated to the DNA–azo nanopump
for nuclear targeting. Itamar Willner’s group introduced different orthonitrobenzyl phos-
phate protective nucleic acids as functional units to induce liposome cell fusion processes
(Figure 11B). Liposome L1 was loaded with upconversion nanoparticles (UCNP) and dox-
orubicin (DOX), which emitted light at 365 nm under near-infrared radiation (980 nm).
HeLa cells were functionalized with a cholesterol-labelled DNA strand, and liposome was
modified with complimentary DNA strand. The hybridization of the HeLa DNA strand
and liposome DNA strand was prevented by a photo sealing strand, which was cleaved
upon NIR irritation and facilitated liposome–cell fusion, thus realizing the space–time
control of membrane fusion [103].
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Using the photothermal effect of gold nanoparticles, Liu et al. reported a design
principle for stabilizing upconversion nanoparticles based on the coupling of small-sized
Au nanoparticles (≈2 nm) and hairpin DNA (hpDNA) conjugation. The coupling of gold to
up-converting nanoparticles modulates luminescence in the near-infrared region (≈800 nm).
HpDNA strands allow for efficient drug loading through the double helix, which turned
into single strands and released the loads under the high temperature generated from the
gold nanoparticles under NIR light. The ideal platform for the constructed upconverted
Au nanoconjugates enables simultaneous deep tissue imaging and site-specific anticancer
drug administration [104].

3.4. Dual-Responsive DNA Nanostructures

Considering the complexity of physiological environment and the dynamical change of
biomarker expression levels, DNA nanostructure activation only relied on a single stimulus
that would bring in “off-target” toxicity and side effect. Therefore, “dual responsive” DNA
nanostructure has been developed in the last few years to improve targeting precision and
minimize the toxicity to circumjacent normal cells and tissues.

Furthermore, dual-responsive DNA nanostructures can also perform cell-subtype-
specific recognition and precise drug delivery through multi-step DNA reactions. Ju’s
group designed a ‘dual lock-and-key” strategy to achieve controllable and accurate siRNA
delivery through successive responses to two receptors on the cell membrane of CEM
cells (Figure 12A) [105]. The triangular rung units (TRUs) with two overhangs at each end
were synthesized as building blocks for ONV. Then, siRNAs were hybridized with the
overhangs of TRU. The siRNA–TRUs were subsequently assembled with a long continuous
DNA backbone strand produced by rolling circle amplification (RCA) to form siRNA–ONV.
The hairpin structure of the DNA primer had an auto-cleavable position, which could be
autocatalytically cleaved by the Zn2+-dependent DNAzyme contained in sgc4f aptamer to
form a DNA single strand. The cleaved single-strand DNA primer continuously hybridized
with sgc8c aptamer to open its hairpin structure, acting as a smart key to be activated
on-site by reacting sequentially with double locks sgc4f and sgc8c. The “dual locks and
key” strategy resulted in efficient siRNA delivery and gene silencing.
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system [106]. Reproduced with permission from Angew. Chem. Int. Ed., published by Wiley, 2020.
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MiRNA-21 and H2O2, which were highly expressed in the cancer cell, were also se-
lected as stimuli to activate DNA nanomachine. Wang’s group designed a biocompatible
nanocapsule composed of DNAzyme prodrug and MnO2 with tumor-specific recogni-
tion/activation characteristics (Figure 12B). The DNA probe in this nanocapsule is labeled
with ICG, a near-infrared anthocyanin dye that can effectively convert near-infrared light to
temperature increase and reactive oxygen species (ROS) generation, efficiently internalized
DNA nanocomposite into the cytoplasm of tumor cells. PLGA (poly (D, L-lactide glycolic
acid) scaffold was also decomposed through the photothermal effect of ICG, which exposed
MnO2 to endogenous H2O2, and effectively generated Mn2+ ion for gene silencing [106].

Taking advantage of their aberrant expression at cancer cells, miRNAs have been
applied as trigger to activate DNA nanomachine for precise therapy. However, the extensive
distribution of miRNAs in the microenvironment of tumors and systemic circulation might
induce nonspecific activation before the nanoprobes entering tumor cells, which impairs
therapeutic efficiency and causes side effects on normal tissues and organs. To solve
this problem, miRNA and cell membrane receptor were used as dual stimuli to activate
DNA nanomachine. Ju and Liu’s group designed a miRNA/PTK7-responsive DNA nano
machine (Figure 12C) [107], which achieved high-precision treatment only for cancer cells
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in the complex solid tumor microenvironment. The DNA nanomachine is composed of
multishell-structured upconversion nanoparticles (multishell UCNPs) and DNA frames
L012 (assembled by DNA strands L0, L1, L2) and H012 (assembled by DNA strands H0, H1,
H2). LA-apt is a DNA strand containing an 18bp DNA fragment (DS) and sgc8 aptamer,
which acted as input 1 for DNA calculation. DS captures DNA nanomachines and reacts
with them, while protein tyrosine kinase-7 (PTK7) overexpressed on cancer cell membranes
acts as the first responsive signal to target sgc8. Select intracellular miRNA-21 acted as
input 2 for DNA calculation. L012 contained a DS hybridization zone and a miRNA-21
hybridization zone for “AND” gate operation. To perform an “AND” logic gate across the
cell membrane, DS was hybridized with L012 via toehold T1, which releases L1 and exposes
toehold T2 for miRNA recognition. Moreover, it also anchors the DNA nanomachine to the
cancer cell membrane and facilitated subsequent endocytosis process. Self-quenched H1
is prepared by labeling photosensitizer Rose Bengal (RB) and its corresponding quencher
BHQ in proximate positions. To operate the DNA nanomachine, L2 hybridized with H1 and
opened its hairpin structure to activate RB with reactive oxygen species (ROS) generation
under the green emission of multishell UCNPs upon 808 nm light irradiation. The unfolded
H1 subsequently hybridized with adjacent H2, which set L2 free to react with the next H012
for continuous RB activation. This results in efficient photo-dynamic therapy (PDT).

4. Conclusions and Perspectives

Due to their structural programmability and good biocompatibility, DNA nanostructures
have been widely applied in bioanalysis and therapy. External stimuli-responsive DNA
strands such as metal-ion-bridged duplexes, i-motifs, triplex nucleic acids, G-quadruplexes,
and programmed double-stranded hybrids of oligonucleotides have been widely explored
and incorporated into DNA nanostructures for bioanalysis and cancer therapy with prospec-
tive outcomes. In this review, we outlined the advancements in stimuli-responsive DNA
nanostructures construction and their applications in biomolecules sensing and cancer therapy.

Despite the remarkable progress in the field of stimuli-responsive DNA nanostruc-
tures for bioanalysis and therapy, the in vivo stability of DNA structures would be a big
challenge for their further application. Phosphorothioate modification, covalent linkage
between basic groups [108], and establishing a double-stranded rigid structure effectively
enhanced the stability of DNA strands [109]. Ex vivo applications of DNA nanostructures
for the detection of EVs or CTCs are more achievable in real use. In addition, there are still
several challenges to be considered: (i) DNA nanostructures need specific ionic strength to
maintain their morphology, which makes them less stable under physiologicial conditions
and fragile to nucleases in vivo. Modification on the backbone or bases would enhance
their stability. (ii) The negative charge of DNA nanostructure may bring difficulty for the
endocytosis process, and generating a rigid structure would contribute to the effective
intracellular delivery of the DNA nanostructure. (iii) Most currently reported DNA nanos-
tructures demonstrated good target specificity, which is not enough for complicated in vivo
conditions. Cell selectivity beyond target specificity with the selective discrimination be-
tween the normal cell and cancer cell that express the same target is also very important
for in vivo application. With progress in the above-mentioned field, we truly believe that
stimuli-responsive DNA nanostructures would establish an appealing toolbox for precise
bioanalysis and personalized cancer therapy.
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Abbreviations

miRNA microRNA
HCR Hybridization chain reaction
CHA Catalytic hairpin assembly
RCA Rolling circle amplification
MCP miRNA capture probe
EVs Extracellular vesicles
MB Methylene blue
Exo III Exonuclease III
SNAs Spherical nucleic acids
CTCs Circulating tumor cells
AP aptamer
FluoELs Fluorophores-encoded error-corrected labels
MSNs Mesoporous silica nanoparticles
PC Photo-cleavable
DQAsome Dequalinium-based Liposome-like vesicle
UCNPs Upconversion nanoparticles
NIR Near-infra-red
AHA Autocatalytic hybridization assembly
Dox Doxorubicin
iDNS Interlocked DNA nano-spring
ATP 5′-adenosine triphosphate
HA Hyaluronic acid
D-CID DNA-mediated chemically induced dimerization
GSH Glutathione
mRNA messenger RNA
UTR 3′ untranslated region
DR/D′R′ DNA/RNA hybrids
SMARC Selective receptor aggregation
PLGA Poly (D, L-lactide glycolic acid
ROS Reactive oxygen species
PDT Photo-dynamic therapy
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