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Abstract: Using a safe subset of C++ is a promising direction for increasing the safety of the program-
ming language while maintaining its performance and productivity. In this paper, we examine how
close existing C/C++ code is to conforming to a safe subset of C++. We examine the rules presented
in existing safe C/C++ standards and safe C/C++ subsets. We analyze the code characteristics of
5.8 million code samples from the Exebench benchmark suite, two C/C++ benchmark suites, and
five modern C++ applications using a static analysis tool. We find that raw pointers, unsafe casts,
and unsafe library functions are used in both C/C++ code at large and in modern C++ applications.
In general, C/C++ code at large does not differ much from modern C++ code, and continued work
will be required to transition from existing C/C++ code to a safe subset of C++.
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1. Introduction

For decades, the lack of memory safety in C and C++ has been the culprit behind a
significant number of software vulnerabilities [1]. C allows for unchecked access to memory
through pointers and arrays, and C++, its predecessor, maintains the same capabilities.
These features make C and C++ powerful languages, giving programmers direct control
over memory layout, allocation, and access. However, programmers often make mistakes
involving memory, and these mistakes can lead to security vulnerabilities. Despite the
numerous available approaches for preventing memory safety errors in these languages,
developers have been hesitant to adopt any of them.

Following the rise in popularity of languages like Rust, multiple organizations have
advised that software developers should transition away from using languages like C and
C++ in favor of memory-safe languages [2,3]. In response, the C++ Standards Committee
released a report on the future direction for ISO C++ [4]. As part of their response, the
committee indicated that moving toward defining a safe subset of C++ could serve the
purpose of allowing applications to be written in C++, thus gaining the advantages of
C++’s performance and productivity while improving the safety of code written in C++.
A safe subset of C/C++ restricts or bans the use of unsafe language features and, when
necessary for productivity or performance, replaces unsafe language features with safer
variants that accomplish the same goal. Prior work [5–8] has aimed to design a safe subset
of C/C++. These efforts have generally restricted the use of types and operations that may
allow unsafe accesses to memory when used incorrectly, and they have statically restricted
the use of features outside of the safe subset via a compiler or static analyzer.

Our goal is to understand how close existing code is to conforming to a safe subset
and to highlight the work that would be required to transition from existing C/C++ code
to a safe subset of C++. We examine code that is predominantly C, predominantly C++,
and a mix of both to investigate how the work required to conform to a safe subset might
vary between code bases. To accomplish this task, we applied a static analysis tool that
identifies potentially problematic code constructs in existing C/C++ code. We ran this
static analysis tool on 5.8 million code samples from the Exebench benchmark suite [9],
two C/C++ benchmark suites (LLVMTest and SPEC 2017) [10,11], and five modern C++
applications [12–16]. We analyzed the data to determine (Q1) how often raw pointers, void
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pointers, and smart pointers are used in existing C/C++ code, (Q2) how commonly unsafe
constructs are used in existing C/C++ code, and (Q3) how much “modern” C++ code
differs, in terms of using unsafe constructs, from C/C++ code at large.

This paper makes three main contributions.

• We summarize the existing work on safe C/C++ standards and the safe subsets of
C/C++.

• We present a static analysis tool and methodology for identifying potentially problem-
atic code constructs in the existing C/C++ code.

• We analyze the data from 5.8 million code samples in the Exebench benchmark suite,
two C/C++ benchmark suites, and five modern C++ applications to determine how
close existing C/C++ code is to conforming to a safe subset of C++.

The remainder of the paper is organized as follows. Section 2 provides background
information on the recent arguments over the safety of C/C++ and the motivation to
transition toward a safe subset of C++. Section 3 analyzes and compares a set of existing
safe C/C++ standards. Section 4 discusses the prior work on safe subsets of C/C++.
Section 5 introduces our experimental methodology and provides background information
on the Exebench benchmark suite, the LLVMTest and SPEC 2017 benchmark suites, and
the modern C++ applications studied in the remainder of the paper. Section 6 presents the
results of our experiments and discussion on the state of existing C/C++ code in relation
to a safe subset of C++. Section 7 discusses the limitations of our study and potential for
future work, and Section 8 concludes the paper.

2. Background

In recent years, there has been a growing chorus of concerns, primarily centered on
issues related to software safety, surrounding the use of C and C++ programming languages.
These apprehensions have arisen as a response to years of security vulnerabilities and
incidents that have underscored the risks inherent in these languages. In response to these
apprehensions, the software development community has actively sought ways to address
safety concerns, resulting in the emergence of safe C++ standards and safe subsets of C++.
This background section will delve into the contemporary arguments against using C
and C++ due to safety concerns, explore the various safe C++ standards that have been
developed, and examine the concept of safe subsets of C++, thereby shedding light on the
ongoing efforts to strike a balance between the power and efficiency of these languages
and the imperative of ensuring software security.

2.1. Memory Safety Errors in C/C++

C and C++ have long been plagued with memory safety errors due to the lack of
an enforced type of safety, lack of bounds checking, and the use of manual memory
management. These design choices make these languages more efficient in terms of
performance, but they leave room for bugs that can be exploited as vulnerabilities.

Spatial errors occur when a program writes data past the boundaries of an allocated
memory buffer. This can lead to corruption of adjacent memory locations and potentially
result in security vulnerabilities. Such errors are often exploited by attackers to execute
arbitrary code or gain unauthorized access to a system. Similar errors can occur when
casts between pointer types allow for a write outside of an allocated object or a mismatch
between the types being written to and used. Figure 1 demonstrates a buffer overflow
similar to a vulnerability found in the SSH1 protocol [17]. In this code, an array is allocated
with a size that is dependent on user input. If the user inputs a large enough number, the
calculation may wrap around from a large number back to zero, thus leading to an attempt
to allocate a zero-sized array. The subsequent access to the zero-sized array will write to
memory that has not been allocated, which is a spatial safety error. In the context of a larger
code base, errors like this can become security vulnerabilities.
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unsigned int size = getInput();
int *values = new int[size + 8];
values[0] = 15;

Figure 1. Buffer overflow in C++ due to integer overflow. If the size calculation wraps around to 0,
the array is allocated with size 0, thus leading to an overflow (even at index 0).

Lifetime errors occur when a program accesses a memory location after the associated
object has been deallocated or when the pointer points to an invalid memory address.
Figure 2 demonstrates a lifetime error caused by storing the address of a stack-allocated
variable into a global pointer. The global pointer has a longer lifetime than the stack-
allocated variable, thereby allowing the pointer to refer to the memory after it has been
reallocated for a new purpose. These errors can lead to crashes, data corruption, and
unpredictable behavior in a program. The manual memory management in C and C++
means that developers must be meticulous in tracking and managing pointers, which can
be error-prone and complex. A number of similar issues, including null and uninitialized
pointer dereferences, fall into the same category of errors.

int *p = nullptr;

void foo(){
  int x = 5;
  ...
  p = &x;
}

void bar(){
  int y = 0;
  ...
  *p = 10;
}

Figure 2. Use-after-free errors in C++ due to assigning a stack-allocated address into a global pointer.

Race conditions can exacerbate both of these issues. A lack of proper synchronization
in concurrent code can lead to issues with uninitialized memory, null pointer dereferences,
use-after-free errors, and buffer overflows. These bugs can be difficult to find and fix in
parallel programs.

2.2. Recent Arguments against C/C++

In recent history, both the National Security Agency (NSA) and the National Institute
for Standards and Technology (NIST) of the United States of America have published
documents arguing against using C and C++. We summarize these arguments here for
context on why safe coding standards and subsets have risen as a potential solution.

2.2.1. Executive Order (EO) 14028

In May 2021, Executive Order 14028 from the President of the United States mandated
that NIST, operating in consultation with other relevant government agencies, publish
guidance “identifying practices that enhance the security of the software supply chain [3]”.
In particular, Section 4(e)(ix) mandates guidance on “attesting to conformity with secure
software development practices”, and Section 4(r) mandates guidance on “recommending
minimum standards for vendors’ testing of their software source code, including identifying



J. Cybersecur. Priv. 2024, 4 4

recommended types of manual or automated testing”. In response to this executive order,
both the NSA and NIST released guidance that, in part, recommended the use of memory-
safe languages.

2.2.2. NSA

On November 2022, the National Security Agency published a “Cybersecurity Informa-
tion Sheet” focused on memory safety issues in unsafe languages like C and C++ [2]. This
paper highlighted recent reports from Microsoft [18] and Google [19] regarding memory
safety vulnerabilities in their products. As noted by the NSA, memory safety vulnerabilities
are often exploited by attackers to gain remote code execution capabilities.

The NSA paper highlighted four issues with memory safety that can lead to vulnera-
bilities: buffer overflows, use-after-free errors, uninitialized variables, and race conditions.
These types of bugs can occur in C and C++ programs due to the lack of array bounds
checking, the use of manual memory management, a lack of requirements in initializing
memory, and use of a weak consistency memory model for concurrency. Memory-safe
languages solve these issues through static restrictions and dynamic checks. However, as
noted by the NSA,“memory safety can be costly in performance and flexibility”.

This paper goes on to discuss various approaches to defending against memory safety
vulnerabilities, including static and dynamic analyses. Static analyses can be costly in terms
of programmer flexibility and time, and dynamic analyses can negatively impact run-time
performance. Other approaches offer band-aid solutions in the form of anti-exploitation
features, but these can often be bypassed by a clever attacker.

The NSA paper concluded that the “path forward” should be to shift from using
languages like C and C++ to memory-safe languages when possible.

2.2.3. NIST

In October 2021, the National Institute for Standards and Technology (NIST) released
a document entitled “Guidelines on Minimum Standards for Developer Verification of
Software”. Overall, this document recommends techniques for software verification, includ-
ing static and dynamic analysis, and it does not directly recommend moving away from
languages like C and C++. However, in Section 3.1 of the document, the NIST recommends
using compile-time flags that enable run-time buffer overflow checking and other memory
safety protections. In Section 3.2 of the document, the NIST recommends using tools [20–22]
that enforce memory safety in C and C++.

2.3. ISO C++ Response

In response to the opinions from the NSA and NIST on C/C++, an ISO C++ committee
published an opinion safety in ISO C++ [4]. This opinion outlined a number of tenets as to
where the ISO C++ committee does not want to go in order to provide a safer future for
C/C++ code. We summarize those tenets here for context on what a safe subset of C++
should look like in the eyes of the ISO C++ committee. A safe subset should not break
backwards compatibility. It should not remove the ability to express powerful abstractions
in C+ or eliminate C++’s productivity advantages. A safe subset should not rely on purely
run-time checks and therefore impose performance overheads that negate the advantage of
using C++. It should provide semantic compatibility across different environments. Finally,
a safe subset should not be one size fits all, may not fix every problem in every instance,
must allow for gradual or partial adoption, and must not freeze development of C++ in
other directions.

The committee’s direction motivates the need to examine existing C/C++ code to
determine the feasibility of gradually moving toward a hypothetical safe subset of C++
that maintains the strengths and advantages of C++. Given the lack of a standardized
safe subset of C++, we examine this in the context of existing safe C/C++ standards and
existing safe subsets of C/C++.



J. Cybersecur. Priv. 2024, 4 5

3. Safe C/C++ Standards

Safe subsets of C/C++ refer to restricted or controlled portions of the C/C++ program-
ming languages that are designed to reduce the likelihood of programming errors and
work to improve code safety. These subsets are typically used in critical or safety critical
systems, where robustness and reliability are paramount. By limiting certain features and
adopting stricter rules, developers can mitigate the potential pitfalls and vulnerabilities
associated with the full C/C++ language.

A number of organizations have proposed standards and guidelines for writing safe
C and C++ code. We provide an overview of these standards and guidelines for context on
the features of C and C++ that can be considered harmful to safety.

3.1. CPP Core Guidelines

One of the most well-known safe subsets of C++ is “C++ Core Guidelines” [23].
These guidelines cover a wide range of topics, including memory management, exception
handling, and design principles, all aimed at producing more maintainable and less error-
prone code. The C++ Core Guidelines are organized into the categories of philosophy
(P), interfaces (I), functions (F), classes and class hierarchies (C), enumerations (Enum),
resource management (R), expressions and statements (ES), performance (Per), concurrency
and parallelism (CP), error handling (E), constants and immutability (Con), templates and
generic programming (T), C-style programming (CPL), source files (SF), and the standard
library (SL).

The C++ Core Guidelines also include the C+ Core Profiles for type safety, bounds
safety, and lifetime safety, which provide additional guidance on writing C++ code that
preserves these important properties. The type safety profile recommends recognizing
avoiding casts, using dynamic_cast to downcast, avoiding C-style casts, initializing all
variables, avoiding unions, and avoiding varargs. The bounds safety profile recommends
avoiding pointer arithmetic, only indexing into arrays with constant expressions, avoiding
array to pointer decay, and avoiding unsafe library functions. Finally, the lifetime safety
profile recommends avoiding dereferencing potentially invalid pointers.

3.2. MISRA C++

In safety critical industries such as the aerospace and automotive industries, MISRA
(Motor Industry Software Reliability Association) C++ is a widely used safe subset of
the language [24]. MISRA C++ is derived from the MISRA C guidelines and extends the
same principles to C++. It focuses on avoiding undefined behavior, reducing the use of
dangerous language features, and promoting a consistent coding style to enhance code
readability and maintainability. The MISRA C++ rules cover the categories of language-
independent issues, general, lexical conventions, basic concepts, standard conversions,
expressions, statements, declarations, declarators, classes, derived classes, member access
control, special member functions, templates, exception handling, preprocessing directives,
libraries, language support libraries, diagnostics libraries, and input/output libraries.

3.3. AUTOSAR C++

AUTOSAR (Automotive Open System Architecture) C++ is a coding standard specifi-
cally tailored for the automotive software industry, and it is intended to ensure the devel-
opment of safe and reliable C++ code for embedded systems in vehicles [25]. It defines
guidelines and rules for C++ programming, with an emphasis on adhering to the principles
of AUTOSAR architecture and supporting automotive safety standards. AUTOSAR C++
promotes consistency, maintainability, and reliability in automotive software development
by providing specific coding practices, naming conventions, and design considerations
aligned with the AUTOSAR framework. AUTOSAR rules are classified as mandatory (M)
or advisory (A), and these rules may overlap as requirements and recommendations. AU-
TOSAR rules are also classified based on how easy the rule is to automatically enforce. Rules
that cannot be automatically enforced are classified as non-automated. The AUTOSAR
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rules cover the categories of language-independent issues, general, lexical conventions,
basic concepts, standard conversions, expressions, statements, declarations, declarators,
classes, derived classes, member access control, special member functions, overloading,
templates, exception handling, and preprocessing directives.

3.4. CERT

The CERT (Computer Emergency Response Team) C/C++ Coding Standard, devel-
oped by the CERT Division of the Software Engineering Institute (SEI) at Carnegie Mellon
University, is a set of guidelines and best practices for writing secure and reliable C and C++
code [26]. The standard is designed to help software developers and organizations reduce
vulnerabilities and improve the overall quality of their code. The CERT coding standard
consists of 11 categories of recommendations, including declarations and initialization
(DCL), expressions (EXP), integers (INT), containers (CTR), characters and strings (STR),
memory management (MEM), input output (FIO), exceptions and error handling (ERR),
object-oriented programming (OOP), concurrency (CON), and miscellaneous (MSC).

3.5. High Integrity C++

The High Integrity C++ standard consists of coding rules and best practices for writing
high-quality C++ code [27]. The High Integrity C++ standard has 155 rules that cover
various aspects of C++. The HIC standard is categorized into numeric divisions as fol-
lows: (1) general, (2) lexical conventions, (3) basic concepts, (4) standard conversions,
(5) expressions, (6) statements, (7) declarations, (8) definitions, (9) classes, (10) derived
classes, (11) member access control, (12) special member functions, (13) overloading,
(14) templates, (15) exception handling, (16) preprocessing, (17) standard library, and
(18) concurrency.

3.6. Joint Strike Fighter

The Joint Strike Fighter (JSF) C++ Coding Standard was developed by Lockheed
Martin for work on the F-35 fighter jet [28]. This coding standard attempts to provide
direction and guidance to C++ programmers that lead to safe, reliable, testable, and main-
tainable C++ code. The JSF AV (air vehicle) standard draws on prior rule sets, including
MISRA [24], the Vehicle Systems Safety Critical Coding Standards for C, and the C++
language-specific guidelines and standards. The JSF rules are classified as should, will, and
shall rules. The should rules are recommended but not required. The will rules are manda-
tory but do not require verification. The shall rules are mandatory and must be verified. The
JSF coding standard rules cover the following language features: environment, libraries,
pre-processing directives, header files, implementation files, style, classes, namespaces, tem-
plates, functions, comments, declarations and definitions, initialization, types, constants,
variables, unions and bit fields, operators, pointers and references, type conversions, flow
control structures, expressions, memory allocation, fault handling, portable code, efficiency
considerations, and miscellaneous.

3.7. Summary and Comparison

Table 1 highlights the rules in these C/C++ standards that correspond to memory
safety properties. Unlisted rules generally fall into the categories of code style, cleanliness,
maintainability, and performance. Of course, many of these rules, especially those that
involve maintainability and cleanliness, may be related to memory safety issues. The rule
below provides one such example.

C++ Core F.8: Prefer pure functions.

Rules like this improve the maintainability, readability, and cleanliness of code. Life-
time errors are less likely in functions with no side effects. Likewise, preventing spatial
safety errors may be easier in code without side effects.
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Other rules, especially those relating to spatial and lifetime safety, may be difficult to
enforce, as acknowledged by the standards themselves.

CERT EXP54-CPP: Do not access an object outside its lifetime.

JSF AV 70.1: An object shall not be improperly used before its lifetime begins or after its
lifetime ends.

AUTOSAR M5-2-5: An array or container shall not be accessed beyond its range.

Multiple standards advocate for some form of run-time checks to ensure that that
safety requirements are met. The implementation of run-time checks is left up to some
combination of the programmer and tool chain.

JSF AV 15: Provision shall be made for run-time checking (defensive programming).

CERT STR53-CPP: Range check element access.

Following a C/C++ standard will improve the quality of C/C++ code, but security
vulnerabilities like buffer overflows and lifetime errors cannot be prevented exclusively at
compile time. A safe subset of C++ will likely need to rely on both the static enforcement of
conformance to a subset and dynamic checking for run-time errors.

Table 1. Summary of the rules in Safe C++ Standards that directly relate to memory safety properties.

Safe C/C++
Standard Initialization Spatial Lifetime Type

Core
guidelines [23]

I.12, F.60, F.22,
F.23, ES.20, ES.22

I.13, C.90, C.152,
R.14, ES.27,
ES.42, ES.55,
ES.71, ES.103

I.11, F.7, F.26,
F.27, F.42, F.43,
F.44, F.45, F.53,
C.21, C.31, C.33,
C.49, C.82, C.127,
C.149, R.1, R.3,
R.4, R.5, R.10,
R.11, R.36, ES.61,
ES.65

I.4, F.55, C.46,
C.146, C.164,
C.181, C.182,
C.183, ES.34,
ES.48, ES.49,
SL.4

MISRA [24] 0-3-1, 8-5-1
0-3-1, 3-1-3,
5-0-15, 5-2-12,
18-0-5, 27-0-1

0-3-1, 7-5-1,
7-5-2, 7-5-3,
15-0-2, 18-4-1

5-2-2, 5-2-4,
5-2-6, 5-2-7,
5-2-8, 9-5-1

Autosar [25] A3-3-2, A5-3-2,
A8-5-0, A12-6-1

M5-0-15, M5-2-5,
M5-2-12,
A17-1-1,
M18-0-5,
A18-1-1, A27-0-4,
A27-0-2

A3-8-1, A5-1-4,
A5-3-3, M7-5-1,
M7-5-2, A7-5-1,
A8-4-11, A8-4-12,
A8-4-13, A18-1-4,
A18-5-1, A18-5-3,
A18-5-8, A20-8-1

M5-2-2, A5-2-1,
A5-2-2, A5-2-4,
M5-2-6, M5-2-8,
M5-2-9, A9-5-1,
A13-5-2, A13-5-3

CERT [26] EXP53
CNTR50, CTR53,
CTR55, STR50,
STR53

EXP51, EXP54,
EXP61

DCL50, EXP58,
INT50, MEM50,
MEM51, MEM56

HIC [27] 8.4.1 4.1.1, 6.2.1, 17.2.1 3.4.1, 3.4.2, 8.1.1 3.5.1, 5.4.1, 5.4.3,
12.1.1

JSF [28] 71, 71.1, 117, 118,
142, 143, 174

15, 20–25, 96, 97,
215

70.1, 111, 173,
206

153, 178, 179,
182, 183, 185

4. Safe Subsets of C/C++

Safe subsets of C/C++ take safety one step beyond secure coding standards by replac-
ing language features that are difficult to ensure safety for with safe constructs and banning
language features that cannot reasonably be secured. We highlight three safe subsets of C
and one safe subset of C++ from prior work.
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4.1. SafeC

SafeC [5] improves the memory safety of the C programming language by replacing
pointers with a SafePtr structure that enables memory safety checks. The SafePtr structure
includes the original pointer, a base pointer, a size, a storage class (heap, local, and global),
and a capability.

To apply SafeC to existing C code, all pointers must be translated to a safe pointer
structure. Once pointers have been translated, safety checks can be inserted into the code
that perform tests using the additional metadata. Operations on pointers must also be
modified to produce new pointer structures.

SafeC introduced the concept of securing C through transformations on pointers, but
its implementation was limited by the lack of template support in C++ at that time. The safe
pointer definition has a template-like definition, but it cannot not use operator overloading
to implement the safety checks or pointer operations. SafeC highlights the necessity of
securing pointer operations to produce secure code written in C.

4.2. CCured

Similar to SafeC, CCured [6] adds memory safety guarantees to C programs via
program transformations on pointers. CCured introduces SAFE, SEQ, WILD, and RTTI
pointer types to replace raw pointers in C programs. SAFE pointers do not use pointer
arithmetic or casts. SEQ pointers can use pointer arithmetic but not casts. WILD pointers can
perform both pointer arithmetic and casts. SEQ and WILD pointers must carry additional
metadata to secure these additional operations. RTTI pointers allow downcasts by carrying
run-time type information. CCured’s automatic program transformation identifies, via a
pointer analysis, the correct type for each pointer in a program.

In a real-world study [29], the authors of CCured examined the types of pointers that
were required to secure C programs. In a set of Apache models, they found that the expen-
sive WILD and RTTI pointers were rarely required. Similarly, in a set of system software
applications, the SAFE and SEQ pointers made up the majority of pointers required. This
study emphasizes the importance of identifying how pointers are used at the source level
of a C program to efficiently enforce memory safety.

4.3. Cyclone

Cyclone [7] restricts unsafe idioms in C and provides extensions to allow programmers
to safely use similar constructs. Cyclone requires that pointers are initialized before use
and applies safety checks to pointer usage. Cyclone restricts casts and provides tagged
unions to ensure type safety. Cyclone restricts the use of control-flow constructs like goto,
setjmp, and longjmp. Cyclone introduces the idea of using static analysis in a compiler to
ensure that the code conforms to the safe subset of C.

4.4. Ironclad C++

Ironclad C++ [8] implements a safe subset of C++ by replacing raw pointers with
templated smart pointers. An automatic refactoring tool replaces pointer types in C/C++
code with smart pointers, and the smart pointer classes implement safety checks on oper-
ations using operator overloading. A static analysis tool ensures that programs conform
to the safe subset. Like prior work, Ironclad C++ introduces pointer types with different
capabilities and required checks. The ptr class allows only singleton pointers to heap or
global memory, and the aptr class allows pointers to arrays with the same storage classes.
The lptr and laptr classes allow pointers to stack-allocated memory and implement a
safety check on stack scoping.

Ironclad C++ restricts the use of unsafe idioms in C/C++ through the use of a static
analysis validator. Pointer types must be replaced by smart pointers, and all casts must use
the cast template, which enforces run-time type checking. Unions are disallowed. Refer-
ences cannot be class members, and references cannot be initialized from the dereference
of a pointer. These rules prevent dangling references and are required because reference
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operations cannot be effectively wrapped by Ironclad C++ due to the lack of operator
overloading for the dot operator.

Ironclad C++ identified a number of corner cases in which it was difficult to translate
from existing C/C++ code to a safe subset of C++. Variable names in C, such as this, came
into conflict with C++ keywords. Refactoring unsafe casts often required programmer
intervention, especially in situations that required a class hierarchy to replace C-style
”classes“ using void pointers. Additional effort was also required to translate code that
relied on implicit casts from string literals to character pointers in a constructor because
replacing the raw character pointer with a smart pointer in a constructor exceeds the
number of implicit casts allowed by the C++ compiler.

SaferCPlusPlus [30] is a more thorough implementation of Ironclad C++ that wraps
many of the library features provided by C/C++ to ensure safety.

4.5. What Work Has Been Required to Translate to Previous Safe Subsets of C++?

Moving from standard C/C++ code to a safe subset of C++ would likely require
translating unsafe constructs to safe constructs. Generally, this task can be accomplished
by replacing unsafe constructs in the source code or instrumenting the unsafe code with a
compiler extension. For this analysis, we focused on translation at the source code level
because it better captured the workload required to move from unsafe C/C++ code to a
safe subset. We also noted that compiler transformations may have difficulty capturing
source-level semantics such as singleton versus array pointers and class hierarchies that can
impact the performance of the translated code. We assumed that backwards compatibility
is a requirement for any safe subset, and as such did not assume that existing language
constructs can be co-opted into a new functionality.

Given that pointers are the main source of unsafety in C/C++, moving to a safe subset
will require replacing raw pointers with types that can provide capabilities such as null
checking, bounds checking, and lifetime checking when necessary. Prior work [8,29] has
shown that the run-time performance overhead of safety checks on pointers can be reduced
by matching pointer types to their required capabilities. With smart pointer classes, or
potentially a new set of basic types for pointers, only the types of pointers would need to
be translated to move to a safe subset. Operations on pointers can use the same syntax as
they do now.

Functions that create pointers, such as malloc and new, would also need to be modified
or translated. New allocation functions would create new pointer types that carry the
required metadata for safety checks. Likewise, operations like address-of (&) may need
special treatment to ensure that the metadata is maintained. Unsafe functions, like strcpy,
must be replaced with safe versions of those functions.

Unions and unchecked casts would also need to be eliminated or replaced. In general,
treating one type as another type should be checked at run time or proven at compile time
to be safe.

Existing code may feature language constructs that are difficult to automatically
translate to a safe subset of C++, and they would therefore require more programmer effort
to realize a safe subset. Replacing raw pointers with smart pointers can cause more implicit
casts to be required than the number that is allowed to be used by the C++ language.
C++ allows an implicit conversion sequence of up to one standard conversion, up to
one user-defined conversion, and up to one standard conversion after the user-defined
conversion [31]. A standard conversion consists of up to one lvalue-to-rvalue, array-to-
pointer, or function-to-pointer conversion, as well as up to one numeric conversion, up to
one function pointer conversion, and up to one qualification conversion. The limit of one
user-defined conversion may be an issue for smart pointer replacements for raw pointers
because the constructor for the smart pointer is a user-defined conversion; as such, a class
that takes a pointer as one of the parameters to its constructor may now need two implicit
user-defined conversions. Figure 3 demonstrates this issue. In this example, the Slice class
has a constructor that takes a char* as an argument. This constructor allows a Slice to be
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implicitly constructed from a string literal to match a function or method definition that
takes a Slice as a parameter. If we introduce a smart pointer class and wrap the char* as
a smart_pointer<char>, the code in the if statement conditional would now require two
user-defined casts. One of these casts would need to be made explicit in the source code.
Generally, this issue can be mitigated by either applying an explicit conversion or using a
first-class type instead of a smart pointer class to replace raw pointers.

class Slice{
  char *_str;
  Slice(char *str) : _str(str) {}
  bool equals(Slice & other) {

...
  }
};

void CompareSlices(){
  Slice s1("OK"); // Constructor is explicit
  // Implicit conversion from StringLiteral
  if (s1.equals("NOT")) { 

...
  }
}

Figure 3. An example of code that may be impacted by introducing smart pointers due to the limited
number of user-defined casts that can be performed per implicit conversion sequence.

References have also posed a challenging issue for previous safe subsets because the
dot operator cannot be overloaded. However, references are not as difficult to secure as
pointers because the address that a reference refers to cannot be changed after the reference
has been initialized. Therefore, references can partially be secured by static rules rather than
via run-time enforcement. Ironclad C++ [8] secures references by disallowing reference
class members and restricting the values that could be used as a return value by reference.
In particular, only the dereference of a smart pointer, a reference function parameter, the
dereference of the this pointer, or a class member could be returned by reference from
a method. Existing safe C++ standards also restrict the values that can be returned by
reference and generally restrict how references can be used in C++ code.

Array operations, especially on two-dimensional or higher arrays, can be difficult
to implement efficiently when bounds checks are required for safety. In C/C++, two-
dimensional arrays are naturally represented as a pointer to a pointer. Accessing the
elements of a two-dimensional array therefore requires two pointer dereferences, which
may require two safety checks. This issue can be mitigated by using a large one-dimensional
array to represent a two-dimensional array, but fixing the issue in this manner negates
the productivity benefit of representing the two-dimensional array naturally. Taking the
address of an array element can also be problematic for a safe subset of C++ because the
address of an operator produces a pointer into the array that may lack the supporting
metadata from the original array. Most existing safe C/C++ standards restrict code to be
used only in a single pointer indirection and disallow multiple levels of indirection.
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4.6. Summary

Safe subsets have been previously applied to both C and C++ code. SafeC, CCured,
and Cyclone demonstrated that C code could be secured using a safe subset, but the
implementation used in these approaches was limited by the lack of class features like
operator overloading and templates in C. Ironclad C++ and SaferCPlusPlus demonstrated
how both C/C++ code could be secured using smart pointers and function wrappers.

In a discussion of a safe subset of C++, the goal of securing C, C++, or a mix of the two
languages must be considered. In our view, it is difficult to separate C++ from the unsafe
features of its predecessor, including raw pointers, arrays, unchecked casts, and unsafe
functions from the C library. Therefore, we examined applications that are predominantly
C, a mix of C and C++, and predominantly C++ in this study to fully understand the effort
required to refactor these types of applications to a safe subset of C++.

5. Methodology

We developed a static analysis tool to identify the relevant features in C/C++ code
and applied that tool to all of the code samples in the Exebench benchmark suite. We also
applied the same tool to a set of larger, modern C++ applications. Our goal in using this
static analysis tool was to answer three main experimental questions.

(Q1) How often are raw pointers, void pointers, and smart pointers found in existing
C/C++ code?

(Q2) How often are “problematic” code constructs found in existing C/C++ code?
(Q3) Is “modern” C++ code closer to a safe subset than C/C++ code at large?

5.1. Static Analysis Patterns

In this section, we described the static analysis tool that we used to identify language
features in C/C++. This tool was developed using LLVM and clang version 17.0.0. This
tool is open source and can be found on Github (https://github.com/crdelozier/subsets
accessed on 22 December 2023). We used clang’s ASTMatchers library [32] to identify the
patterns matching the language features described in the previous section. We highlighted
the relevant rules from existing C++ standards that motivate the static analysis patterns
that we chose to identify in the source code.

Figure 4 provides an example of one of the matcher rules used in this study. As shown,
nodes in the abstract syntax tree can be identified by name and type, and quantifiers can be
used to match against one or more specified patterns. Each matcher rule is paired with a
MatchCallback that allows further processing of the matched AST nodes.
StatementMatcher UnsafeCastMatcher =

anyOf(
cStyleCastExpr().bind("cast"),

   cxxReinterpretCastExpr().bind("cast")
   );
    
class UnsafeCastFinder : public MatchFinder::MatchCallback {
public :

virtual void run(const MatchFinder::MatchResult &Result) override {
   ASTContext *Context = Result.Context;
   const CastExpr *VD = Result.Nodes.getNodeAs<CastExpr>("cast");
   // ...
   }
};

Figure 4. Example of a static analysis pattern using the ASTMatchers library. The bind() operation
allows the MatchCallback to access the AST nodes that matched the pattern.

5.1.1. Pointers

As a first step, the static analysis tool identifies all the pointers, void pointers, and
smart pointers in the C/C++ code. Enforcing safety on pointers is a critical task to move

https://github.com/crdelozier/subsets
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toward a safe subset, and work will likely be required by programmers to ensure that
pointers are used safely. This need to understand how often pointers are used in existing
code is motivated by the existing rules in safe C++ standards and subsets.

C++ Core ES.42: Keep use of pointers simple and straightforward.

C++ Core ES.65: Do not dereference an invalid pointer.

C++ Core R.3: A raw pointer is non-owning.

C++ Core I.11: Never transfer ownership by a raw pointer (T*) or reference (T&).

Pointers are identified as any declaration with PointerType. On each pointer match,
the tool checks for Void Pointers, which are identified by the VoidPointerType.

Smart Pointers are identified by searching for declarations with a C++ class type with
the names unique_ptr, shared_ptr, weak_ptr, auto_ptr, and ptr. We note that ptr is not
a standard library smart pointer type, but at least one of the applications that we examined
created their own smart pointer wrappers with this name.

5.1.2. Unsafe Functions

Unsafe functions have long been a problematic source of errors in C/C++ code. Migrat-
ing a safe subset of C++ will likely require replacing uses of unsafe functions or wrapping
them, and moving from C to C++ will require replacing uses of malloc and free. This is
motivated by existing rules in the safe standards of C/C++.

C++ Core R.10: Avoid malloc() and free().

AUTOSAR A18-5-1: Functions malloc, calloc, realloc, and free shall not be used.

C++ Core SL.4: Use the standard library in a type-safe manner.

HIC 17.2.1: Wrap the use of the C standard library.

AUTOSAR A17-1-1: Use of the C standard library shall be encapsulated and isolated.

Unsafe Functions are identified by first matching all call expressions with Pointer
arguments. The called function name is then compared against a list of known unsafe
functions, such as memcpy, textttstrcmp, and puts. Calls to Malloc and Free are also
identified by function name.

5.1.3. Casts

Unchecked casts can break type safety in C/C++ code. Existing C/C++ standards
highlight the need to avoid C-style casts and other unchecked casts.

C++ Core ES.48: Avoid casts.

C++ Core ES.49: If you must use a cast, use a named cast.

C++ Core C.146: Use dynamic_cast where class hierarchy navigation is unavoidable.

HIC 5.4.1: Only use the casting forms static_cast (excl. void*), dynamic_cast, or explicit
constructor call.

AUTOSAR A5-2-2: Traditional C-style casts shall not be used.

AUTOSAR A5-2-4: The reinterpret_cast shall not be used.

MISRA 5-2-4: C-style casts (other than void casts) and functional notation casts (other
than explicit constructor calls) shall not be used.

As noted in the prior section, implicit casts to constructors may complicate the transi-
tion to a safe subset because smart pointers add an extra user-defined conversion. The C++
Core Guidelines also recommend avoiding implicit casts to constructors.

C++ Core C.46: By default, declare single-argument constructors as explicit.
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Like unsafe casts, unions break type safety in C/C++ code by allowing an implicit
conversion between types. C/C++ standards recommend avoiding unions and replacing
them with tagged unions.

C++ Core C.181: Avoid “naked” unions.

Unsafe Casts are identified as C-style casts and reinterpret_cast. Construct from
Implicit Casts are identified by finding implicit cast expressions with constructor ancestors
in the abstract syntax tree. In this case, we use the ancestor matcher instead of the parent
matcher because there may be multiple casts applied to a single constructor. Unions are
identified by type.

5.1.4. References

References can pose a uniquely difficult problem to solve for a safe subset because
they can cause similar lifetime and initialization errors to pointers, but they cannot be
checked as effectively due to the inability to check for null references or to overload the dot
operator. Existing C++ standards and subsets specify rules for how references should be
used, especially in the context of return by reference.

C++ Core F.43: Never (directly or indirectly) return a pointer or reference to a local object.

JSF AV 111: A function shall not return a pointer or reference to a non-static local object.

MISRA 7-5-1: A function shall not return a reference or a pointer to an automatic variable
(including parameters) defined within the function.

MISRA 7-5-3: A function shall not return a reference or pointer to a parameter that is
passed by reference or a const reference.

Reference Class Members are identified as reference-type declarations with a class
ancestor. Reference Returns and const Reference Returns are identified by finding function
declarations that return a reference type, and which further identify the constant references.
Reference to Dereferenced are identified as variable declarations with a reference type that are
initialized with the pointer dereference unary operator.

5.1.5. Arrays

Of course, without bounds checking on array operations, a safe subset will be doomed.
Out-of-bounds reads and writes are still some of the most common vulnerabilities found
in C/C++ code [1]. We examined two issues with arrays that may affect a safe subset.
First, array-to-pointer decay may lose information about the bounds of the array. Array-
to-pointer decay can happen in multiple contexts, including when the address of an array
element is taken. Bounds checking on arrays may also hinder the run-time performance of
a safe subset if two-dimensional arrays are not handled carefully.

C++ Core I.13: Do not pass an array as a single pointer.

C++ Core ES.27: Use std::array or stack_array for arrays on the stack.

HIC 8.1.1: Do not use multiple levels of pointer indirection.

The Address of Array Subscript operations are identified by the address of operator
with an array subscript operand, and 2D Arrays are identified as array subscript expressions
with an array subscript expression as an ancestor. We note that this may also find further
nested arrays, such as three-dimensional arrays.

5.2. Running Analysis on Exebench

ExeBench [9] is an innovative benchmark suite with the primary objective of expanding
the potential of machine learning in the fields of compilation and software engineering. The
data set addresses the critical challenge of limited available data sets for various tasks, such
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as neural program synthesis and machine learning-guided program optimization. One of
the key issues tackled by ExeBench is the scarcity of real-world code with references to
external types and functions, as well as the need for the scalable generation of IO examples.
It stands out as the first publicly accessible data set that pairs the authentic C code sourced
from GitHub with IO examples, thereby enabling the execution of these programs. To
accomplish this, a specialized tool chain was developed to scrape GitHub, analyze the code,
and produce runnable code snippets. Exebench contains 5.8 million compilable functions
from the Anghabench [33] and the Github public archive [34]. The code samples from
Exebench are largely C code with a small amount of C++.

We developed a Python script to execute the static analysis tool on each code sample
in Exebench. This tool extracts the C/C++ code samples from the Exebench JSON files
and outputs a C++ file. This file includes both the function under test and the supporting
function definitions, headers, and variables to allow the function to be compiled. We
verified that the file can compile using gcc/g++. We passed the lines numbers of the function
under test to the static analysis tool to isolate our analysis to that specific function to avoid
including the synthetic test code generated by Exebench.

5.3. Running Analysis on C/C++ Benchmark Suites and Modern C++ Programs

We also ran our static analysis tool on a set of C/C++ benchmarks and modern C++
applications, as described in Table 2. We identified the modern C++ applications by reading
threads about the projects that demonstrate modern C++ coding style on popular social
media platforms and programming forums, including Reddit and HackerNews. We then
downloaded the source code for these applications and ran the static analysis tool by
replacing the CC and CXX build variables with a Python (version 3.7.0) wrapper script that
runs the static analysis tool prior to running the standard compiler. This approach allowed
us to gather data on these open-source applications without needing to manually run the
static analysis tool on every C++ file in the project. We counted the lines of code in these
applications using the cloc utility.

Table 2. Applications and code sample benchmark suites studied with the static analysis tool. Lines
of code are measured using the Count Lines of Code (cloc) [35] tool.

Application/Suite Description Language Lines of Code

Cereal [12] Serialization Library C++ 31,355

Fmt [13] Formatting library
alternative C++ 43,993

Folly [14] Facebook core library
components C++ 377,963

Json [15] JSON support for
modern C++ C++ 103,137

Redex [16] Bytecode optimizer
for Android C++ 281,642

Exebench [9] Exebench code
samples C 112,710,884

LLVM Test Suite [10] LLVM Code Samples C/C++ 1,366,158

SPEC CPU 2017 [11] SPEC 2017
Benchmarks C/C++ 4,806,869

The LLVMTest benchmark suite [10] consists of a set of C/C++ programs that are
used to benchmark clang and LLVM. The applications range from microbenchmarks and
single-file applications to larger programs with multiple source files.

The SPEC 2017 benchmark suite [11] features a set of performance benchmarks for
testing CPU performance. There are 9 predominantly C applications, 3 applications that
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are a mix of C and C++, and 5 applications that are predominantly C++. Compared to the
other applications studied, these benchmarks focus on computationally intensive tasks
such as artificial intelligence, compression, and molecular dynamics. These applications
tend to use more array operations compared to the other code samples in this study.

To avoid counting code constructs in header files multiple times, we included only
statistics from the main file for these programs. We note that the main file includes
templated classes from headers if the template has been instantiated in that file.

6. Results

We present the results collected by running the static analysis tool on 5.8 million code
samples from Exebench, two C/C++ benchmark suites, and the modern C++ applications,
as listed in Table 2.

6.1. Pointers, Smart Pointers, and Void Pointers

Figure 5 shows the percentage of pointer variables that are raw pointers, void pointers,
and smart pointers. As shown, the large majority of pointer variables in all of the code
samples examined were raw pointers. Void pointers are fairly common, even in modern
C++ applications. Smart pointers are relatively rare. Clearly, quite a bit of work needs to be
conducted to eliminate raw pointers from C/C++ code to transition to a safe subset that
can provide checked pointer operations.
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Figure 5. Pointers found in Exebench and other C++ applications. Each bar shows the percentage of
all pointer variables that are raw pointers, void pointers, and smart pointers.

These results may be somewhat expected based on the existing safe C/C++ standards.
Only the C++ Core Guidelines advocate strongly for smart pointer use, and its recom-
mendations for using smart pointers are limited to certain allocation ownership scenarios.
On the other hand, previous work on safe subsets of C/C++ have advocated that smart
pointers, or other pointer type replacements, will be necessary to dynamically enforce
memory safety properties.

Likewise, the results for void pointers may be expected based on existing standards.
Void pointers are generally used to implement polymorphism without class hierarchies or
to enable the storage of data with any type. We expect that the relatively large ratios of void
pointers found in these modern C++ applications are used to enable the storage of data with
any type, especially for use cases such as serialization. Existing standards caution against
the use of dynamic_cast, which may hinder the performance and cause of unexpected



J. Cybersecur. Priv. 2024, 4 16

run-time errors when a cast fails. To avoid the use of dynamic_cast, programmers may err
on the side of using void pointers to implement polymorphism.

6.2. Unsafe Functions

Figure 6 shows the total number of mallocs, frees, and unsafe library functions found
in the C/C++ samples and applications. From the data, we can see that malloc, free, and
other unsafe functions are still used even in some modern C++ applications, and they are
prevalent in the Exebench function samples. We note that there are more frees than mallocs
because multiple frees may be required per malloc to handle all the potential control flow
paths along which an allocation must be freed. redex uses jemalloc, which does not match
the function call name identifiers used in our tool, and so we identified no uses of malloc
in redex, but we did identify uses of free.

We find that modern C++ code is still using unsafe library functions despite decades of
recommendations to stop using them. In Exebench, 27% of all code samples use an unsafe
library function. It is possible that these uses of unsafe library functions are wrapped as
recommended by multiple C++ standards, but our static analysis tool cannot effectively
check for this appropriate wrapping. Work will be required to replace or wrap uses of these
unsafe library function calls to move toward a safe subset of C++. As for future work, we
also intend to identify which unsafe functions are still widely used and why they are still
used instead of safe alternatives.
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Figure 6. Calls to unsafe functions found in Exebench and other C++ applications.

Figure 7 shows a heat map of the unsafe function calls in folly. The heat map was
generated by recording the source location of each unsafe function used in folly. We
then mapped the file and line numbers to the bins between 0 and 99. The number of
unsafe functions in each bin was normalized to values between 0 and 1.0 using NumPy
(version 1.26.2), and the graphic was generated using MatPlotLib (version 3.8.2). This heat
map demonstrates that the use of unsafe functions, at least in this application, were not
concentrated in one particular file or even in one location in each file. Apart from a few
relatively safe files, the uses of unsafe functions were spread throughout the application.
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Figure 7. Heat map of calls to unsafe functions in folly.

6.3. Casts and Unions

Figure 8 shows the data relating to the type safety for these code samples and applica-
tions. As shown in the figure, unchecked casts are common in even modern C++ applica-
tions. Likewise, unions are found in almost all of these applications. Fixing these issues
may be difficult because switching from C-style casts to static_cast and dynamic_cast
requires careful consideration of the inheritance hierarchies and the exact type conversions
that are required. In Ironclad C++, the authors noted that extracting inheritance hierarchies
was one of the manual tasks that had to be performed by a programmer to conform to the
Ironclad C++ safe subset.
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Figure 8. Casts and unions found in Exebench and other C++ applications.
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We also find that constructors that take the result of an implicit cast are relatively
common in all applications examined in this study. Therefore, it may take additional effort
to translate to a safe subset if smart pointers are used more frequently within that subset.

The folly application is a significant outlier for unsafe casts because it deals with file
and network interfaces that require casting from untyped bitstreams to usable data types.
Figure 9 shows a heat map of the unsafe casts used in folly. Unlike its use of unsafe functions,
the unsafe casts in folly are concentrated to fewer files and fewer locations in those files.
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Figure 9. Heat map of the unsafe casts in folly.

6.4. References

Figure 10 shows the total number of reference types used in the contexts of class
members, return values, and references initialized by the dereference of a pointer. We did
not include the results for the Exebench suite because we found a negligible number of
references used in the function samples. Only a small number of Exebench code samples
used return by reference. On the other hand, the C/C++ benchmarks and modern C++
applications examined in this study used references in all of these contexts. We note that
not all references are dangerous, and return by reference may be acceptable if the returned
value does not live beyond its scope. More work will be required on our static analysis tool
to narrow down the cases in which returning by reference may be dangerous, and this is
based on the rules presented in the existing C++ standards.
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Figure 10. References found in Exebench and other C++ applications.
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Reference class members and references to dereferenced pointers create the possibility
of invalid references due to initialization or lifetime errors unless the initialization is
checked. It is difficult to check for initialization in these cases, and more work is required
to determine if these cases are dangerous or not. In general, references are commonplace
enough in modern C++ code that a solution will be required to ensure memory safety for
references in a safe subset of C++.

6.5. Arrays

Figure 11 shows the total number of potentially problematic array operations in the
C++ samples and applications. In total, the arrays were not nearly as prevalent in the
Exebench and modern C++ applications as the pointers and references were. However,
there was a high incidence of array operation in the LLVMTest and SPEC 2017 benchmark
suites due to the use of arrays in the computation-intensive applications that are common
in benchmark suites. Some work may be required to ensure the metadata are maintained
and to prevent arrays from decaying to pointers. Further, performance optimizations may
be required for two-dimensional and higher arrays. However, the effort required to deal
with issues related to arrays seems small compared to handling pointers and references.
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Figure 11. Arrays found in Exebench and other C++ applications.

6.6. Summary

To summarize, we return to the three questions posed at the beginning of the method-
ology. For (Q1), we find that pointers are common both in C/C++ code at large and in
more modern C++ code. Although modern C++ code has begun to adopt smart pointers,
raw pointers, and even void pointers, they are much more common than smart pointers.
Significant work, either at the source level or within the compilation tool chain, will be
required to replace raw pointers in a safe subset of C++.

For (Q2), we find that problematic constructs like unsafe functions, unsafe casts, and
unions are found in both C/C++ code at large and modern C++ code. Again, work will be
required to transition from existing C/C++ code toward a safe subset of C++ that avoids
these unsafe constructs.

For (Q3), we find that modern C++ code is not all that different in terms of the use of
unsafe constructs than C/C++ code at large. The one main difference appears to be the use
of references, as we could find little to no use of references in the Exebench code samples.
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7. Limitations and Future Work

Due to limited time, we did not perform an exhaustive search for all code characteris-
tics related to existing safe C/C++ standards and subsets. We intend to perform a more
detailed study of the characteristics found in safe standards on the same set of applications
to further classify how well modern C++ code conforms to these standards.

Given the data-driven approach in this paper, we cannot completely verify that the
statistics gathered by our static analysis tool are precise. All of the static analysis performed
in this paper identifies “trivial” (i.e., not semantic) code properties that should be unaf-
fected by the usual false positives that plague static analysis tools. The main threat to
validity is false negatives due to ASTMatcher patterns that may not handle all the possible
combinations of C/C++ constructs that can occur in code. We tested the tool on a set of
unit tests that demonstrated the code characteristics we wanted to find, but corner cases
may exist in the diverse set of C++ code samples we examined in this study. However, it is
possible that the tool is under counting these constructs due to unseen cases. In general, it
will be impractical to verify that the statistics are exactly correct on all 5.8 million of the
samples from Exebench, the C/C++ applications in the two benchmark suites, and a large
collection of the C++ files from the modern applications.

8. Conclusions

We analyzed the code characteristics of 5.8 million code samples from the Exebench
benchmark suite, the LLVMTest and SPEC 2017 benchmark suites, and five modern C++
applications using a static analysis tool. Our analysis of C/C++ code, both at large and
in the context of more modern C++ practices, has revealed important insights. We have
found that raw pointers remain prevalent in both categories, despite some adoption of
smart pointers in modern C++ code. This indicates a substantial need for efforts, whether
at the source code level or within the compilation tool chain, to replace raw pointers with
safer alternatives in a safe subset of C++.

Furthermore, we find that problematic constructs, such as unsafe functions, unsafe
casts, and unions, have shown their persistence in both C/C++ code at large and modern
C++ code. This underscores the necessity of a transition from existing C/C++ code toward
a safer subset of C++ that avoids these hazardous constructs.

Lastly, we observed that modern C++ code does not significantly differ in terms of
safety when compared to C/C++ code at large. The primary distinguishing factor is the
usage of references, which are notably absent or rarely utilized in the Exebench code
samples. In summary, these findings emphasize the importance of ongoing efforts to
enhance the safety and modernization of C/C++ code-bases.
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