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Abstract: Power-based Side-Channel Analysis (SCA) began with visual-based examinations and has
progressed to utilize data-driven statistical analysis. Two distinct classifications of these methods
have emerged over the years; those focused on leakage exploitation and those dedicated to leakage
detection. This work primarily focuses on a leakage detection-based schema that utilizes Welch’s t-test,
known as Test Vector Leakage Assessment (TVLA). Both classes of methods process collected data
using statistical frameworks that result in the successful exfiltration of information via SCA. Often,
statistical testing used during analysis requires the assumption that collected power consumption
data originates from a normal distribution. To date, this assumption has remained largely uncontested.
This work seeks to demonstrate that while past studies have assumed the normality of collected
power traces, this assumption should be properly evaluated. In order to evaluate this assumption, an
implementation of Tiny-AES-c with nine unique substitution-box (s-box) configurations is conducted
using TVLA to guide experimental design. By leveraging the complexity of the AES algorithm,
a sufficiently diverse and complex dataset was developed. Under this dataset, statistical tests
for normality such as the Shapiro-Wilk test and the Kolmogorov-Smirnov test provide significant
evidence to reject the null hypothesis that the power consumption data is normally distributed. To
address this observation, existing non-parametric equivalents such as the Wilcoxon Signed-Rank
Test and the Kruskal-Wallis Test are discussed in relation to currently used parametric tests such as
Welch’s t-test.

Keywords: test vector leakage assessment; side-channel analysis; AES encryption; side-channel;
statistical methods

1. Introduction

Computational systems all share at least one component, the consumption of electricity
to facilitate computational tasks. When observed, this power consumption can be leveraged
to exfiltrate information, leading to a violation of the confidentiality of the victimized
system. Two distinct variants, leakage exploitation and leakage detection, serve as pillars of
this subfield, referenced as power-based Side-Channel Analysis (SCA). In the twenty-four
years since the first presentation by Kocher et al. [1], SCA has experienced a renaissance of
development. Novel strategies for power-based cryptanalysis have continued to develop
over the years, with targets focusing on both symmetric encryption [1–3] and asymmetric
encryption [4] algorithms. Through power usage, it has readily been demonstrated that
valid attack vectors may be leveraged against properly instrumented low-power embedded
systems running cryptographic algorithms. While the world ushers in the age of quantum-
resistant cryptography, low-power embedded systems, such as Internet of Things (IoT)
devices, remain an attractive and lucrative target for adversaries to potentially exploit.

In general, SCA seeks to obtain the secret key used for cryptographic operations. For
example, the Advanced Encryption Standard (AES) [5] is still widely used in the embedded
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systems space. One common method for exploring SCA is to replicate known attacks on
AES, which traditionally focus on examining what changes occur during the SubBytes step
of encryption [5,6]. This step applies a nonlinear substitution to replace the input byte with
an output byte corresponding to a set lookup table, commonly referred to as a substitution-
box (s-box). It is important to note that this style of attack vector formation is typical when
working within the realm of SCA. Valid cryptanalysis often targets a critical component of
an algorithm, otherwise known as a subprocess. While both Differential Power Analysis
(DPA) [1] and Correlation Power Analysis (CPA) [7] facilitate strong attack vectors, modern
tooling has sought to bring more powerful analytics to fruition. Currently, the state-of-the-
art techniques focus on Test Vector Leakage Assessment (TVLA), a versatile method used
to evaluate whether there is information leakage under SCA; it has been invaluable for
researchers in assessing whether power-based leakage constitutes a viable attack vector.
TVLA utilizes Welch’s t-test to determine whether there are meaningful differences in
the means between two groups of collected data. When leakage of information has been
detected, traditional side-channel attacks can then be leveraged to recover a key from the
collected power usage data associated with a cryptographic operation. This collected data
is often referred to as a power trace.

Focusing on key recovery has largely relied on statistical tests that assume power trace
data is derived from a normal distribution. This assumption is wide-spread, affecting any
work utilizing or building upon CPA or TVLA. Such an assumption not only limits the
utility of classical SCA, but to a large extent, it may also be inappropriate. This body of work
focuses on challenging the assumption of normality in power trace data by using TVLA on
nine unique s-box configurations as the guiding framework. Each of these configurations
introduce unique nonlinearity in their associated power trace data, giving a reliable, varied
dataset. Using this collected data, the assumption of normality is assessed using the
Shapiro-Wilk and Kolmogorov-Smirnov tests. From a statistical standpoint, the Wilcoxon
Signed-Rank and Kruskal-Wallis tests are presented as potentially statistical alternatives to
Welch’s t-test.

The remainder of this document is as follows; Section 2 outlines the relevant previous
work, Section 3 presents the strategies used in this study, Section 4 presents the statistical
outcomes in the same order they were discussed previously, Section 5 offers commentary
on the results, and finally, Section 6 presents the conclusion and a few possible future
directions for this research.

2. Related Works

Power-based side-channel analysis involves determining the relationships between
the power consumption of a device and its operations. The most common targets of this
analysis are cryptographic hardware devices. Randolph and Diehl [8] mention that the
“most basic power side-channel attack” is Simple Power Analysis (SPA), or the direct
observation of the power consumption of a device. Visual observation of the power traces
associated with a device executing computations can demonstrate when rounds of AES
encryption are computed, as demonstrated by Randolph and Diehl [8]. An example of
SCA is given in Figure 1a, offering a visual representation of two traces sampled from an
AES encryption. While subtle, close visual inspection illustrates small differences between
the traces. However, visualizing two collected power traces does not provide an accurate
representation of the data or underlying source algorithm. While SPA could lead to insights,
or even a possible key extraction, such an exercise would require extensive knowledge of
the underlying components of AES and the individual implementation. As a result, the
assumption made when performing SPA is that the observer can determine useful leakage
information from graphical representations of the power traces.

Despite the clear limitations associated with SPA, plotting the time-series of the power
traces can yield useful information regarding the processes on a device, noise, and coun-
termeasures such as masking or hiding [9]. Masking is the process of adding a random
“masking value” to intermediate operations on the device to remove the correlation between
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the power consumption of the cryptographic device and its secret cryptographic informa-
tion. Hiding is the process of making power traces gathered using a cryptographic device
appear to be random noise. This can be achieved by adding more noise to the operations
on the device by performing non-operations (nops) or random process delays [9]. These
countermeasures can make SPA difficult to perform, as any notable information from the
time-series plots will appear to be random. Ultimately, relying on observations rather than
statistical methods can lead to Type II errors, also known as false negatives. Drawing a false
negative conclusion commonly occurs when an incorrect assumption leads to concluding
that no information was leaked via the power usage of a computational system.

Kocher et al. proposed a new approach to power-based side-channel analysis called
Differential Power Analysis (DPA) [1], which offered a novel, powerful method for ex-
ploiting power-based leakage. This approach sought to leverage statistical power, which
measures the sensitivity or likelihood that a statistical measure detects an effect when it is
actually present, to evaluate difficult-to-observe components in traces.

A secret key used by an encryption schema could then be exfiltrated from collected
power traces. The statistical process used by Kocher et al. relies on separating the collected
power traces into two groups based on whether a target’s bit was set to 0 or 1. Within each
group, the collection of power traces are then averaged based on each trace number to
remove any collection-based noise in the time-series data, resulting in two master traces.
While taking the average can be affected by outliers and skew, there are no assumptions
made to perform the average. These refined traces lack the typically normally distributed
perturbations present in electrically generated data. The denoising of the data was more
descriptive than ever, giving a stronger power-based representation of the associated
computational behavior.

By adding an elementary element of fundamental statistical analysis by taking the
arithmetic mean, DPA allows for more concrete results in determining whether information
was leaked. This development also produced new challenges associated with mitigation
strategies against power-based side-channel attacks. As demonstrated by Clavier et al. [10],
even when random process interrupts are implemented in a device to prevent against
information leakage through power-based side-channel analysis, DPA can still be applied
to gain information about the device. As such, DPA’s usage of a statistic added resilience
against countermeasures intended for side-channel analysis. However, it was limited in
scope by its reliance on splitting the power traces based on their sensitivity of a bit at a
single point in time. For example, a properly instrumented device may have an AES-key
fully recovered using DPA. This attack-vector involves gathering an appropriate corpus
of data and then examining each of the possible key-guesses for a difference in behavior
using DPA. Once this operation is complete, the computed difference is evaluated for the
largest difference between the two trace groups. For a visual representation of this process
when applied to the AES algorithm, see Figure 1b.

Whereas DPA focuses on the significance of the presence of a single bit at a single
fixed time, the next major advancement in side-channel analysis was motivated by the
desire to exhaustively examine the contribution of each time step in a power trace. A new
form of side-channel analysis, known as Correlation Power Analysis (CPA), was coined
by Brier et al. [7]. Taking inspiration from DPA, Pearson’s Correlation Coefficient was
calculated by utilizing pairs consisting of a Hamming Weight, the number of 1’s in a binary
representation, relevant to plaintext data and a set of collected power traces. CPA diverges
from the DPA’s dependence on the mean power traces of two data groups. This marked
the first time that side-channel analysis was heading towards more statistically backed
conclusions to determine where significant differences occur, improving the exploitation
of leakage. To be more precise, Brier et al. [7] concluded that while DPA can fail without
knowledge of the underlying implementation of the cryptographic device, CPA can infer
information relevant to the implementation. It is able to do all of this while requiring less
power trace samples in comparison to DPA. However, Brier et al. also stated that CPA is
vulnerable to the same countermeasures as DPA, since both procedures depend upon “side-
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channel observability”. While CPA was to be a step towards applying statistically focused
methods to side-channel analysis, Pearson’s Correlation Coefficient should only be used
when assuming the normality of the samples, and when there exists a linear relationship
between them [11]. Although it was initially used as an attack against AES, Xia et al. [12]
demonstrate that CPA can be applied to the lightweight block cipher algorithm LiCi, but
the assumptions from utilizing Pearson’s Correlation Coefficient are still made, even on a
different encryption scheme.

(a) (b) (c)

Figure 1. Visualizations for Simple Power Analysis (SPA), Differential Power Analysis (DPA), and
Correlation Power Analysis (CPA) that accompany the methodological discussions in Section 2.
(a) Sample SPA visualization. (b) Sample DPA visualization. (c) Sample CPA visualization.

The most recent noteworthy expansion to general power-based side-channel analysis
was proposed by Goodwill et al. [13]. This development focused on detecting whether a
device has power-based leakage directly in contrast to SPA, DPA, or CPA, all of which focus
on exploiting possible side-channels. The novel methodology has since been commonly
referred to as Test Vector Leakage Assessment (TVLA). This methodology acts as a successor
to other attacks such as CPA while focusing on leakage detection rather than leakage
exploitation. Where TVLA steps into new territory is with the separation methodology.
To properly apply TVLA, two unique sets of power traces are generated, each of which
have a meaningful, data-dependent difference. For example, when assessing whether an
AES implementation exhibits power-based leakage, the two groups of data differ based
on whether the plaintext provided fits a fixed or random pattern. A NIST specification for
TVLA [13] was produced to ensure that the testing parameters are consistent, allowing
for a rigid, verifiable procedure to be produced. When collecting samples for TVLA, it is
imperative that both groups of data are sampled during a single experimental run and
not two separate experiments. Following this procedural step ensures that no selection
bias is introduced during data collection. Contrary to CPA, TVLA allows a user to test for
differences between the two data groups using a number of statistical methods, such as
Pearson’s χ2 test [14] or Welch’s t-test [15]. However, utilizing the Pearson’s χ2 test assumes
that each group is independent of each other [16], and the Welch’s t-test assumes that the
data are normally distributed [15]. To ensure that there is high confidence in detecting
leakage, Goodwill et al. [13] chose a confidence level of α = 0.0001 with its inversely related
value, C = 4.5. While Goodwill et al. uses the variable C, the traditional usage of Welch’s
t-test refers to this value as t, representing the computed t-score. A t-value of 4.5 is the
associated value with α = 0.0001, such that if a computed t-value, t̂, satisfies |t̂| > 4.5, then
there is 99.99% confidence that leakage was detected between the two groups. To extend
this to using Pearson’s χ2 test, the p-value of testing the power traces must be less than
0.0001 to have the same confidence level as using Welch’s t-test.

As outlined above, this process can be used to test implementations of AES for possible
power-based leakage. One simple method to visualize the output from TVLA is given in
Figure 2. It is important to note that the various horizontal lines illustrate a few possible
t̂-values. The overlapping elements are sourced from splitting both groups of power trace
data into two equal-sized subsets and then using Welch’s t-test to obtain a point-wise
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t̂-value. The two subsets are then plotted to generate a simplistic visual verification of
potential leakage.

Figure 2. An example TVLA output for fixed and random plaintext outputs when run through
Tiny-AES-c with the S1 s-box.

While they are tangential to this work, some alternative statistical methods have
been examined. For example, Jaysena et al. [4] demonstrate an application of using the
Kullback-Leibler test [17], which evaluates for significant divergence between two groups;
this acts as a comparison to Welch’s t-test. The assumptions of this test are that the two
data groups have the same range of values which are positive, known as the support. The
Kullback-Leibler test does not assume normality of the data, although it does have its
own assumptions on the support of the data. This application of statistical testing is with
regard to Register-Transfer Level (RTL) leakage exploitation-based attacks [18–20]. On the
contrary, this work primarily focuses on leakage detection, leading to the exploration of
alternate statistical methods.

3. Methods

To adequately address the assumption of normality in side-channel analysis strategies,
it is paramount to understand how data was collected. In Section 2, the evolution of side-
channel analysis strategies was outlined, providing commentary on how such approaches
could be applied to key recovery under AES encryption. Details of any underlying compu-
tational device were omitted to reduce the overhead of understanding SCA tooling. Going
forward, the ChipWhisperer Lite (CWLite) build system, consisting of a multi-use capture
unit and a target board [21], is utilized. An STM32F303 microcontroller occupies the target
board, commonly referred to as the device under test (DUT). This device was selected
for 10-bit precision with a sampling rate of 105 Mega samples per second (MS/s). These
ADC capture capabilities exceed the TVLA sampling requirement of an 8-bit precision on
measurements [13]. To accommodate the requirement for the number of samples, n, to be
at least greater than 5000 [13], 24,400 samples were gathered for each trace.

A suitable AES implementation is the next requirement that must be satisfied. Tiny
AES in C (Tiny-AES-c) is a well-known, widely used implementation of AES in C [22],
with full CWLite integration across many DUTs, including the STM23F303. A suite of
ChipWhisperer tools, such as the DPA ChipWhisperer tutorial [23], in tandem with Tiny-
AES-c provides a framework for data collection. To add variability to this study, nine s-box
configurations were utilized. The first of these s-boxes is included in Tiny-AES-C and will
be referred to as the Default s-box. The remaining eight s-boxes, referenced as S1 through S8,
were sourced from Siddiqui et al. [24] and were selected due to their consistent measure of
nonlinearity, defined by Hua et al. [25], which is identical to the Default s-box. Maintaining
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the same level of nonlinearity reduces the risk of SCA’s more powerful statistical methods
producing biased results relating to different levels of information-theoretic entropy [26].

For each s-box, an instance of Tiny-AES-C was created. This instance was then used to
generate power consumption data based on the NIST TVLA guidelines, with approximately
500 traces being gathered for each of the two groups of data, with a total of 1000 traces being
collected. The variance in group sizes originates from the fact that the plaintext generation
is pseudorandom. From experimental testing, the number of traces in a group varied by at
most 2.5%. Two groups of data are required for TVLA; one with a known plaintext, with
the associated power traces being referred to hereafter as the fixed data, and the other group
consisting of power traces associated with random plaintexts, which will be addressed as
random data. It is important to note here that the key used with both groups remains fixed
throughout the data collection process. Using the CWLite system, twenty sets of fixed and
random data were collected for each of the nine s-boxes. Before any further analysis was
performed, master traces were computed for each pair of data and compared against their
corresponding counterpart. No discernible outliers were detected within each of the twenty
collections for a given s-box, signifying no issues with the data collection process. For the
remainder of this analysis and without the loss of generality, the thirteenth collection of
data for each of the nine s-boxes was used. Unless otherwise noted, all tests were run on
the full sets of traces and not their corresponding master traces.

As outlined in Section 2, the first step is establishing a baseline analysis using tradi-
tional TVLA. This analysis focuses on applying Welch’s t-test, a statistical measure used in
the seminal TVLA paper [13]. Welch’s t-test evaluates the difference between two groups’
means while also assuming that the two groups are observation-independent, contain
no significant outliers, and that each group’s data are normally distributed [15]. Welch’s
t-test is applied to the data rather than Student’s t-test, since each group of power traces’
variances are not assumed to be equal. The null hypothesis for Welch’s t-test states that
the two groups’ difference in means is 0, while the two-tailed alternative hypothesis is
that the difference between the means is not 0. A significance level, α, is selected before
performing the test and is used to determine whether there is any statistically significant
difference between the two groups’ means. To follow Goodwill et al.’s chosen significance
level, α is chosen to be 0.0001, which has an associated t-statistic of 4.5. The calculation of
the samples’ t-statistic, t̂, is defined as:

t̂ =
X̄1 − X̄2√

s2
1

N1
+

s2
2

N2

,

where X̄i is the ith sample mean, si is the sample standard deviation, and Ni is the sample
size. Under Welch’s t-test, values satisfying |t̂| > 4.5 provide sufficient evidence, with
a 99.99% confidence interval, that there is a significant difference between the two data
groups. This is consistent with the past experimental testing of AES under TVLA. In order
to make critical comparisons to later evaluations, a separate Welch’s t-test was run to have
a base-line p-value for each of the nine datasets.

Whether a dataset was sampled from a normal distribution can be assessed using the
Shapiro-Wilk test [27]. This test was developed by S. Shapiro and M. Wilk to determine the
normality of a sample using analysis of variance. If the p-value returned from this test is
less than the desired confidence level α, then there is significant evidence to support the
claim that the data is not normal at a (α ∗ 100)% significance level. The Shapiro-Wilk test for
normality has an implementation in R, shapiro.test(x) [28]. However, shapiro.test(x)
from the base R package only functions for between 3 and 5000 input variables. To accom-
modate this restriction, each dataset was separated into sequential subsets consisting of
approximately 2400 data points. Approximation is used to slightly vary the number of
traces present in the fixed and random groups for each s-box configuration. By splitting the
data, there is no need to conduct sufficient random sampling across the entire dataset at
one time. The Shapiro-Wilk test calculates a W-statistic as follows:
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W =

(
∑n

i=1 aix(i)
)2

∑n
i=1
(
xi x̄
)2 ,

where x(i) is the ith order statistic, x̄ = (x1 + · · · ,+xn), and the coefficient ai are given by

(a1, · · · , an) =
mTV−1

C , where C is a vector norm C =|| V−1m ||= (mTV−1V−1m)1/2 for a
vector m = (m1, · · · , mn)T .

To ensure that there was no biasing in the subset samplings while testing for normality,
the Kolmogorov–Smirnov test [29] from the base R package [28], was utilized. This test
accommodates input data regardless of size, and so leveraging this removes the need for
processing subsets of the power traces to test for normality. Both the one-sample and
two-sample variants of the Kolmogorov-Smirnov test are utilized in this analysis. The
two-sample version tests whether a given pair of traces from the fixed and random data
originate from the same distribution. The one-sample version tests if a group of trace
data comes from the normal distribution. To accommodate the one-sample test, both the
fixed and random data are stored in separate columns of a shared R DataFrame, while the
two-sample test accepts two separate DataFrames, with each containing either fixed or
random data. While both the one-sample and two-sample variants are utilized in this paper,
only the one-sample variant is defined due to its relevance in examining the normality of
data. The one-sample Kolmogorov-Smirnov test is defined as follows:

Fn(x) =
(number of elements in the sample ≤ x)

n
=

1
n

n

∑
i=1

1(−∞,x](Xi),

where 1(−∞,x](Xi) is the indicator function, equal to 1 if Xi ≤ x and equal to 0 otherwise.
The Kolmogorov-Smirnov statistic for a given cumulative distribution function F(x) is
given by:

Dn = sup
x
|Fn(x)− F(x)|

where supx is the supremum of the set of distances.
To test if two traces are from a distribution that is symmetric about a mean of µ = 0,

the Wilcoxon Signed-Rank Test [30] was performed using the base R package’s function
wilcox.test() with a parameter paired = TRUE [28]. The paired parameter specifies
that the time-series components of each power trace are considered when calculating
differences. This test determines whether two samples have a statistically different mean
and whether there is a pairing between the two sets of data. The Wilcoxon Signed-Rank
Test is performed on pairs of power traces from each of the two groups. The results from
this test are interpreted to determine whether the mean of each group of power traces is
statistically significant from each other.

To round out the data analysis, Kruskal-Wallis [31] was utilized. This test offers a gen-
eralization of the Wilcoxon Signed-Rank test by allowing for testing between n samples [32].
An implementation of Kruskal-Wallis is available in the base R stats package [28] via the
kruskal.test() function. This test offers a measure of how much variance there is in two
populations. Due to the large number of measurements in the power traces, two instances
of Kruskal-Wallis were run. The first focused on the full power traces for each group,
while the second computed the H-statistic for each ten-quantile of each group in a pairwise
fashion. The Kruskal-Wallis test was applied to both the full trace data and the master trace
data for each s-box.

4. Results

When applying traditional TVLA, significant data leakage was detected in all nine s-
box configurations. From Welch’s t-test applied in R, the computed values are summarized
in Figure 3. A t-value having a magnitude greater than 4.5 is equivalent to a p-value of less
than 0.0001.
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Figure 3. An example t-test output showing the t̂-values based on the magnitudes of their values.

To test for normality, the Shapiro-Wilk test was run on each of the nine data groups.
Across all nine configurations, the largest p-value reported across all traces was 1.443× 10−31.
The one-sample Kolmogorov-Smirnov test produced a maximal p-value of 2× 10−16 for
each point in each power trace, indicating that the null hypothesis should be rejected,
meaning that the data is not normally distributed. The two-sample variant of the test
reported high p-values of at least 0.9, so that it cannot be said that the two data sources
originate from different distributions. The approximation of p-values is due to a limitation
in the implementation of these tests in base R.

In order to evaluate the dataset for variance, the Wilcoxon Signed-Rank test was
utilized, with the results summarized in Figure 4. The results of the Wilcoxon Signed-Rank
test results in a W-statistic. The W-statistic behaves similarly to the t-statistic in that it
is inversely related to a p-value calculation based on the statistic. That is, a higher W-
statistic is associated with a lower p-value, inviting the conclusion that there are significant
differences when our p-value is less than the chosen α = 0.0001 significance level.

Figure 4. Boxplot describing the W-values calculated by the Wilcoxon Signed-Rank test.

Finally, the results of applying the Kruskal-Wallis test, focusing on the variance within
the data, is provided in Table 1.
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Table 1. The p-values calculated using the Kruskal-Wallis test, associated with each of the nine
s-boxes. Values that are in bold are statistically significant for α = 0.0001.

Data K-W p-Value

(a) Default s-box

Full Default 0.9178411

Quantile 1 0.7973211
Quantile 2 0.9492303
Quantile 3 0.4865965
Quantile 4 0.003551987
Quantile 5 0.4060664
Quantile 6 0.2482653
Quantile 7 0.03989401
Quantile 8 4.704231× 10−5

Quantile 9 1.787921× 10−28

Quantile 10 0.0002557376

(b) S1 s-box

Full S1 0.8889263

Quantile 1 0.9047302
Quantile 2 0.9721271
Quantile 3 0.5588611
Quantile 4 0.01427206
Quantile 5 0.5762426
Quantile 6 0.1448012
Quantile 7 0.1547279
Quantile 8 1.198919× 10−7

Quantile 9 6.674018× 10−24

Quantile 10 6.324433× 10−6

(c) S2 s-box

Full S2 0.915456

Quantile 1 0.8438535
Quantile 2 0.9775268
Quantile 3 0.5287456
Quantile 4 0.01392253
Quantile 5 0.5347051
Quantile 6 0.1436789
Quantile 7 0.1304291
Quantile 8 1.721812× 10−7

Quantile 9 3.478914× 10−25

Quantile 10 5.773031× 10−6

(d) S3 s-box

Full S3 0.9500724

Quantile 1 0.9117693
Quantile 2 0.9705669
Quantile 3 0.7504782
Quantile 4 0.04621217
Quantile 5 0.9294591
Quantile 6 0.03665044
Quantile 7 0.8746878
Quantile 8 1.247497× 10−10

Quantile 9 3.693989× 10−11

Quantile 10 2.67089× 10−11
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Table 1. Cont.

Data K-W p-Value

(e) S4 s-box

Full S4 0.6587587

Quantile 1 0.8206295
Quantile 2 0.9661761
Quantile 3 0.6459478
Quantile 4 0.01331219
Quantile 5 0.6543537
Quantile 6 0.140855
Quantile 7 0.1583064
Quantile 8 1.341678× 10−7

Quantile 9 1.222115× 10−23

Quantile 10 7.782813× 10−6

(f) S5 s-box

Full S5 0.8426999

Quantile 1 0.8273909
Quantile 2 0.9961258
Quantile 3 0.6122431
Quantile 4 0.01023039
Quantile 5 0.7160496
Quantile 6 0.1471896
Quantile 7 0.1200313
Quantile 8 1.044246× 10−7

Quantile 9 3.630053× 10−24

Quantile 10 5.205475× 10−6

(g) S6 s-box

Full S6 0.7960942

Quantile 1 0.8861468
Quantile 2 0.9273349
Quantile 3 0.5546987
Quantile 4 0.00573446
Quantile 5 0.3858158
Quantile 6 0.1886492
Quantile 7 0.03089781
Quantile 8 3.049533× 10−5

Quantile 9 3.701519× 10−27

Quantile 10 0.0003635786

(h) S7 s-box

Full S7 0.7562423

Quantile 1 0.836804
Quantile 2 0.8870617
Quantile 3 0.671789
Quantile 4 0.05251282
Quantile 5 0.923315
Quantile 6 0.05537985
Quantile 7 0.8434102
Quantile 8 1.351392× 10−10

Quantile 9 3.106407× 10−11

Quantile 10 4.581774× 10−11
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Table 1. Cont.

Data K-W p-Value

(i) S8 s-box

Full S8 0.629495

Quantile 1 0.838456
Quantile 2 0.9678031
Quantile 3 0.6064738
Quantile 4 0.010838
Quantile 5 0.7013192
Quantile 6 0.158997
Quantile 7 0.1423515
Quantile 8 7.853093× 10−8

Quantile 9 4.059782× 10−24

Quantile 10 3.801423× 10−6

5. Discussion

With regard to traditional TVLA testing, it is clear that the application of Welch’s t-test
is intended as a method for establishing differences between two groups of data with some
amount of statistical certainty. Cases where the magnitude of a t̂-value is greater than 4.5,
represented by the blue line in Figure 3, have traditionally formed the basis of measuring
leakage in power-based side-channel analysis. For all nine s-box configurations, significant
power-based leakage is measured, forming the basis of a known, readily verifiable result.
This result will serve as a baseline for comparison later in this section.

The primary focus of this body of work has been to establish an experimental set-up
with sufficient complexity to determine whether the assumption of normality of power
trace data associated with AES is well-founded. Due to how Shapiro-Wilk was applied to
each dataset, the subsetting could lead to a biased outcome. To combat potential issues
from random sampling, the Kolmogorov-Smirnov test was utilized as a secondary test for
normality. Examining the results of both the Shapiro-Wilk and the one-sample Kolmogorov-
Smirnov tests, there was sufficient evidence to reject the null hypothesis with a 99.99%
level of confidence. This indicates that each of the nine datasets are unlikely to be normally
distributed. The null hypothesis for a two-sample Kolmogorov-Smirnov states that the
two given sets of data come from the same distribution. The results of the two-sample tests
indicate that there is no significant evidence to reject the null hypothesis for each of the nine
AES datasets. Therefore, the two groups of experimental data for each s-box are sourced
from the same distribution with a 99.99% confidence. Under the TVLA specifications, this
conclusion is reasonable; it is expected that data samples collected from a single device
with an identical firmware share similarities.

It is important to examine different statistical tools that do not require assumptions
about the distribution of the data, referred to as non-parametric methods. A non-parametric
alternative to Welch’s t-test is the Wilcoxon Signed-Rank test. Examining Figure 4, there are
similar trends to those in Figure 3. Despite Welch’s t-test and the Wilcoxon Signed-Rank test
computing a t̂-statistic and W-statistic respectively, both give an equivalent, comparable
p-value. Thus, if a p-value associated with a calculated W-statistic is less than α = 0.0001,
the significance between the means is equivalent to having the magnitude of a t̂-statistic
as greater than or equal to 4.5. This evenly balanced range of values is reminiscent of the
sinusoidal nature of power trace data, and warrants further study in power-based SCA.

Additional exploration was conducted using the Kruskal-Wallis test, a non-parametric
method for examining the variance between two populations. Two variants were tested,
the first of which focused on examining each group of traces for an s-box configuration
as a whole. The results here are neither surprising nor particularly interesting. It is
expected there is little variance when two traces are compared as singular entities; there
are components of AES that operate independently of the s-box configuration. The overall
power trace should reflect such a property. This variant of applying Kruskal-Wallis confirms



J. Cybersecur. Priv. 2023, 3 855

that there is no statistically significant difference between traces from the two data groups
for a given s-box configuration when examined as a whole. However, the second test, which
focused on comparing pairs of ten-quantiles, had a different result. As seen in Table 1,
quantiles 8, 9, and 10, except for the Default and S6 s-box configurations, show statistically
significant differences with respect to the variance between the fixed and random data.
The differing behavior in the Default and S6 s-box configurations could be attributed to
noise in either the fixed or random data samples, or it could indicate a possible issue with
the underlying data sampling process. Further testing is required to verify which, if any,
of these are the cause.This suggests that when the plaintext is randomly varied, there is a
measurable effect within subsets of the data, which is consistent with previous applications
of parametric statistics in SCA.

6. Conclusions

Under the lens of examining data sampled using traditional TVLA, power trace data
associated with AES s-box configurations most likely do not originate from a normal
distribution. Classical SCA strategies rely on an assumption of normality, as has been
made evident by the use of parametric statistical tests (i.e., Welch’s t-test). This assumption,
based on this study, may be a severe limitation to power-based side-channel analysis.
While non-parametric statistical methods have been widely available, they have remained
untapped and underused in SCA to this point. As the field continues to evolve and move
towards more complex and varied analysis, equivalent non-parametric approaches should
be examined for viability in both leakage exploitation and leakage detection related to
power-based side-channel analysis. One natural extension of this work lies in applying
parametric and non-parametric statistical methods to a larger set of s-box configurations
with varying nonlinearity measures to establish a baseline of performance for each class
of tests. Another possible direction would encompass an analysis centered on different
microprocessor architectures.
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