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Abstract: The erosion of igneous rocks affects the structural and spontaneous combustion character-
istics of coal. A series of tests were conducted, including programmed heating, thermogravimetric
analysis, FT-IR spectroscopy, low-temperature nitrogen adsorption, and pressed mercury experiments
on samples from primary coal and coal eroded by igneous rocks from the Tashan Mine and Xiaonan
Mine within the same coal seam. Based on these experiments, we analyzed various properties of
coal, such as the oxidation characteristics, spontaneous combustion limit, active functional group
content, chemical structure, and pore structure, from both macroscopic and microscopic perspectives.
The results indicated significant trends after the erosion of igneous rocks: (1) there were increases
in the oxygen consumption rate, as well as the CO and CO2 release rates; (2) the upper limit of air
leakage intensity increased, the minimum thickness of floating coal decreased, and the lower limit
of oxygen volume fraction decreased; (3) there was a decrease in the activation energy required for
coal ignition; (4) there was a decrease in the active functional group content while improving the
structural stability; and (5) there were the alterations in the pore structure of coal. These promoted
the oxidation reactions between oxygen and the active groups within the coal matrix, increasing the
propensity for spontaneous combustion, particularly in the igneous rocks with low oxidation activity.

Keywords: igneous rock erosion; coal spontaneous combustion; activation energy; pore structure;
functional group

1. Introduction

Coal remains a significant fossil fuel in the context of global energy development and
utilization [1]. With increasing demand, coal mining has extended to greater depths, and the
mining conditions are becoming increasingly complicated [2]. Igneous rock erosion, a com-
mon geological phenomenon, is widespread in coal-producing countries worldwide [3–7].
The erosion of igneous rocks affects the molecular structure, degree of metamorphism, pore
structure, and mineral composition of coal [8–12]. The erosion of igneous rocks can lead to
issues such as gas outbursts and the spontaneous combustion of coal [3,13]. Wang et al. [14]
observed that the igneous rock erosion promoted the coal metamorphism, increased the
coal’s reflectivity, and decreased its volatile content. Yao and Liu [15] discovered that
igneous rock erosion results in the formation of numerous pores during coal pyrolysis and
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volatilization, thereby enhancing the coal’s adsorption and desorption capacity. Addition-
ally, Wang et al. [16], Li et al. [17], and Wu et al. [18] reported that igneous rock erosion
enhanced the pore connectivity in coal, thereby elevating the risk of coal seam gas outburst
disasters. Cao et al. [19] observed alterations in the geological structure of coal seams due
to igneous rock erosion. Gao et al. [8] and Shi et al. [20] noted increased susceptibility
to spontaneous combustion in coal samples from the Daxing mine. Although numerous
studies have analyzed the impact of the changes in coal pore structure and chemical com-
position on gas outbursts after igneous rock erosion, there is a scarcity of systematic reports
on the spontaneous combustion characteristics of coal affected by igneous rock erosion.

The widely acknowledged theory regarding spontaneous coal combustion in academia
is the coal–oxygen recombination theory [21]. Ma et al. [22] assessed the severity of coal
spontaneous combustion using spontaneous combustion limit parameters. Zhao et al. [23]
categorized the coal combustion process into stages based on TG-DTG curves from thermo-
gravimetric experiments and determined coal spontaneous combustion propensity based on
fire temperature. Wang Jiren et al. [24] proposed a method for classifying coal spontaneous
combustion tendencies using fire activation energy. Pan et al. [25] and Zhang et al. [26]
utilized FTIR testing to demonstrate that higher coal metamorphic degrees correspond to
lower hydroxyl group content and increased stability of aromatic hydrocarbons. Moreover,
Zheng et al. [27] and Wang et al. [28] observed that the -CH3 and -CH2 groups exhibited the
lowest stability and were more prone to react with O2. Zhong et al. [29] determined through
infrared diffuse reflection spectroscopy that -C=O- and -COOH groups in coal exhibited
relatively high activity, while -C-O- groups remained stable. Furthermore, Li et al. [30]
reported that higher rates of infrared aryl carbon, aromatic ring polycondensation, longer
fat chains, and increased aromaticity correlated with higher coal grades and enhanced
coal stability.

To investigate the impact of igneous rock erosion on the spontaneous combustion
and structural characteristics of coal, it is essential to understand the underlying mecha-
nisms. This study analyzed the oxidation characteristics, spontaneous combustion limits,
oxidation kinetics, chemical structure, and pore characteristics of coal. The methods in-
clude temperature-programmed tests, thermogravimetric analysis, low-temperature N2
adsorption, mercury intrusion experiments, and infrared spectroscopy (FT-IR) detection,
with the primary coals from the Tashan Mine and Xiaonan Mine, as well as the coal eroded
by igneous rocks as the research objects. On this basis, the mechanism of mutagenicity in
spontaneous coal combustion, influenced by the erosion of igneous rocks, was systemati-
cally analyzed.

2. Materials and Methods
2.1. Sample Information

The coal samples from the Tashan and Xiaonan Coal mines were selected, with original
samples collected from the locations near and distant from the igneous rocks within the
same coal seam. The samples from the Tashan and Xiaonan Coal mines, both in raw
form and eroded by igneous rocks, were labeled as A1, A2, B1, and B2, respectively. The
preparation followed the GB474-2008 standard [31], and the results of the industrial analysis
are presented in Table 1.

Table 1. Results of industrial analysis of experimental coal samples.

Coal Sample
Proximate Analysis/% Elemental Analysis/%

H/C
Moisture Ash Volatiles Fixed Carbon C H O N S

A1 5.13 11.36 33.71 49.80 79.92 5.22 13.26 1.26 0.34 0.78
A2 2.85 15.02 26.31 55.82 81.02 4.86 12.45 1.31 0.36 0.72
B1 3.55 9.47 36.48 49.50 79.85 5.36 13.49 1.01 0.29 0.81
B2 1.65 14.88 27.98 55.49 80.74 5.12 12.86 0.96 0.32 0.76
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2.2. Analysis Methods

The impact of igneous rock erosion on the oxidation characteristics and spontaneous
combustion parameters of coal was investigated using a programmed temperature detec-
tion device (Figure 1). The device consisted of a gas supply pipeline—1, a coal sample
tank—2, a programmed temperature control box—3, and a gas chromatograph—4. The
coal sample tank was a cylindrical steel container with dimensions of 5 cm in both inner
diameter and height, containing the coal samples ranging from 0.4 to 2.4 mm in size. During
the temperature program test, the coal sample tank containing the test samples was placed
in a programmed temperature control box, with a temperature rise rate set at 0.5 ◦C/min.
The gas supply pipeline provided a flow rate of 100 mL/min with an O2-N2 gas mixture
volume fraction of 21%. The testing temperature ranged between 30 and 180 ◦C. The gas
composition (O2, CO, and CO2) at the exhaust end was recorded every 5 ◦C during heating
to analyze the oxygen consumption, oxidation products, and spontaneous combustion limit
parameters of the coal samples. To minimize errors, each set of experiments was conducted
three times, and the average value of the three results was calculated.
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Figure 1. Temperature-programmed test equipment.

The thermogravimetric evaluation was conducted using an STA449C synchronous
thermal analyzer (NETZSCH GMBH) manufactured by Germany NETZSCH instrument
manufacturing Co., Ltd., Selbu, Germany. Each test utilized 10 mg of the coal sample
with a temperature range of 30–700 ◦C and a heating rate of 5 ◦C/min. The experi-
mental gases consisted of a mixture of N2 and O2, with flow rates of 40 mL/min and
10 mL/min, respectively.

To investigate the differences of the active groups and chemical structure characteristics
of coal resulting from the igneous rock erosion, the FT-IR spectrometer TENSOR27 by
BRUKER in Germany was employed to analyze the coal sample at 30 ◦C.

The Autosorb-IQ-MP automatic specific surface area and pore size distribution ana-
lyzer from Quantachrome, Boynton Beach, FL, USA, was utilized to conduct low-temperature
nitrogen adsorption experiments on coal at 77 K, and the micropores and mesoporous
pores with sizes less than 50 nm were detected. The high-performance automatic mercury
porosimeter (V9600, Micromeritics Corporation, Norcross, GA, USA) was applied to test
the coal samples.

3. Results and Discussion
3.1. Gas Change Rate and Spontaneous Combustion Parameters
3.1.1. Gas Change Rate

The calculation equation for the oxygen consumption rate is [32]

v1 =
Qc0

SL
ln

c1

c2
, (1)

where v1 is the oxygen consumption rate of the coal sample under the condition of standard
oxygen molar concentration, mol/(m3·s); Q is the air flow rate in the process of programmed
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temperature, m3/s; c0 is the volume fraction of standard O2, 20.10%; c1 is the molar
concentration of oxygen at the air inlet of the coal sample tank, mol/m3; c2 is the molar
concentration of oxygen at the exhaust port of the coal sample tank, mol/m3; S is the
cross-sectional area of the coal sample tank, m2; and L is the stacking height of the coal
sample, m.

The calculation equation for the CO release rate is [33]

v2 =
v1c3

c1

[
1 − exp

(
− v1V

Qc1

)] , (2)

where v2 represents the release rate of the coal sample under the condition that the oxygen
volume fraction is c1, mol/(m3·s); c3 represents the molar concentration of CO at the exhaust
port, mol/m3; and V denotes the volume of the experimental coal sample, m3.

The calculation equation for the CO2 release rate is [34]

v3 =
v1c4

c1

[
1 − exp

(
− v1V

Qc1

)] , (3)

where c4 is the molar concentration of CO2 in the exhaust port, mol/m3.
Figure 2 illustrates the results of the temperature-programmed tests for each exper-

imental coal sample. From Figure 2, the gas quantity fraction detected at the exhaust
port of the coal sample tank exhibited an approximately exponential distribution with
increasing temperature. Specifically, the oxygen quantity fraction decreased as the tem-
perature increased, whereas the quantity fractions of CO and CO2 increased. The igneous
rock erosion coal exhibited a higher consumption of oxygen volume fraction and released
greater quantities of CO and CO2 volume fractions.
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Figure 2. Distribution curve of the gas volume fraction: (a) oxygen volume fraction distribution
curve; (b) CO volume fraction distribution curve; (c) CO2 volume fraction distribution curve.

Using Equations (1)–(3), the temperature-programmed test results of the coal samples
were combined to calculate the gas change rate during coal oxidation, as shown in Figure 3.
The analysis of Figure 3 revealed that the oxygen consumption, CO release, and CO2 release
rates of the coal samples increased exponentially with increasing temperature. Notably, at
the same temperature, the rates (v1, v2, and v3) of igneous rock erosion of coal within the
same coal seam surpassed those of primary coal.

From Figure 3a, the oxygen consumption rates of the four coal sample groups followed
the sequence B2 > B1 > A2 > A1 at identical temperatures. Further analyses revealed that,
when influenced by igneous rock erosion within the 30–180 ◦C range, the v1 of sample A
increased by 11.52–112.75%, and that of sample B increased by 13.70–143.74%. Figure 3b
indicates that the CO release rate for sample A increased by 9.94–320.59%, and for sample
B, by 1.20–50.61%. As shown in Figure 3c, the CO2 release rate for sample A increased
from 1.76% to 21.82%, and for sample B, from 2.28% to 47.57%. A higher v1 corresponded
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to a higher self-heating reaction rate between the coal and oxygen [35]. Additionally, the
increases in the v2 and v3 characterized the enhancement of coal oxidation capacity [36].
The above test results demonstrated that igneous rock erosion can augment the oxygen
consumption capacity of coal and increase the likelihood of spontaneous combustion.
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distribution curve.

3.1.2. Analysis of Spontaneous Combustion Limit Parameters

The spontaneous combustion limit parameters typically encompassed the minimum
floating coal thickness, lower oxygen volume fraction, and higher air leakage inten-
sity [37,38]. When the coal thickness exceeded the minimum floating coal thickness, the
quantity of oxygen available to the coal surpassed the lower limit oxygen volume fraction,
and the air leakage intensity in the coal environment remained below the upper limit;
heat accumulation within the coal body occurred, potentially resulting in spontaneous
combustion [39–41].

The equation for calculating the minimal floating coal thickness is [42]

hmin =
ρgCgQ(T − Ty) +

√(
ρgCgQ

)2(T − Ty
)2

+ 8λeq(T)(T − Ty)

q(T)
, (4)

where hmin is the minimum thickness of the coal sample, m; ρg is the density of the air
exposed to the coal, kg/m3; Cg is the specific heat capacity of air, J/(kg·K); T and Ty are
the coal and rock temperatures, respectively, ◦C; λe is the thermal conductivity of coal,
J/(m·s·◦C); and q(T) is the exothermic intensity of oxidation when the coal temperature is
T, KJ/(m3·s).

The lower oxygen volume fraction is calculated as [33]

cmin =
c1

q(T)

[
8λe(T − Ty)

h2 + ρgCgQ
2 × (T − Ty)

h

]
, (5)

where cmin is the lower oxygen volume fraction, %; h is the thickness of coal, m.
The equation for calculating the upper limit of air leakage strength is [35]

Qmax =
hq(T)

2ρgCg(T − Ty)
− 4λc

hρgCg
, (6)

where Qmax is the upper limit of the air leakage intensity, m/s.
The exothermic intensity of the coal oxidation is calculated using Equation (7) [43].

q = qa(v1 − v2 − v3) + v2 △ h1 + v3 △ h2, (7)
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where qa is the chemisorption heat of oxygen on coal, KJ/mol; ∆h1 is the enthalpy of CO
formation, kJ/mol; and ∆h2 is the enthalpy of CO2 formation, kJ/mol.

By combining the v1, v2, and v3 with Equations (4)–(7), the spontaneous combustion
limit parameters during the spontaneous coal combustion process were derived, with the
results illustrated in Figure 4. As shown in Figure 4, as the temperature increased, the
distribution trends of the hmin, cmin, and Qmax curves for all the tested coal samples were
similar. Under identical temperature conditions, the igneous rock-eroded coal within the
same coal seam exhibited lower hmin and cmin values and a higher Qmax value than primary
coal. As shown in Figure 4a, during the initial stage (<60 ◦C), the hmin value of the test
sample increased with increasing temperature, decreased rapidly within the 60–130 ◦C
range, and then declined gradually within the 130–180 ◦C range. At low temperatures,
q was minimally influenced by the temperature, requiring more coal oxidation and heat
release to increase the temperature. Conversely, at high temperatures, the coal oxidation and
heat release were significantly enhanced. At this stage, even thin coal can supply sufficient
heat for coal body heating, further reducing the hmin value [44]. From Figure 4b, the cmin
presented a trend of initially increasing and then decreasing with increasing temperature
T, peaking at approximately 60 ◦C. This was because, during the low-temperature stage,
the temperature minimally affected the coal oxidation heat production capacity, whereas it
facilitated heat exchange between coal and the surrounding medium, requiring increased
oxygen consumption to elevate the body temperature of the coal. Conversely, during
the high-temperature stage, the temperature significantly influenced the oxidation heat
production capacity of coal, allowing even a low oxygen volume fraction to satisfy the
thermal balance between coal and the external environment [20]. Figure 4c illustrates that
Qmax initially decreased and then increased with the temperature. This contrary trend to
that of hmin and cmin resulted from increased Q, which did not favor coal thermal storage.
Therefore, to maintain the thermal balance between coal and its surroundings, the Qmax
initially decreased with the increasing temperature. In the high-temperature stage, the coal
oxidation heat production increased significantly, necessitating a higher Qmax value for
thermal balance [22].
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Figure 4. Distribution curve of spontaneous combustion limit parameters: (a) hmin distribution curve;
(b) cmin distribution curve; (c) Qmax distribution curve.

Figure 4a revealed that the coal samples eroded by the igneous rocks within the same
coal seam exhibited lower hmin values than the primary coal, and this difference decreased
with increasing temperature. The analysis further indicated that, when influenced by
the igneous rock erosion, the percentage decrease in hmin in coal sample A ranged from
11.30% to 108.10%, and in coal sample B from 14.72% to 136.83% within the 30–180 ◦C
range. This suggested that the coal eroded by igneous rocks presented better heat storage
capacity than the primary coal at equivalent temperatures. As observed in Figure 4b, the
percentage decrease in the cmin values for coal sample A ranged from 11.32% to 110.97%
and for coal sample B, from 14.77% to 139.65%. This indicated that the coal eroded by
igneous rocks exhibited a higher heat production capacity than primary coal at equivalent
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temperatures. Similarly, Figure 4c indicates that the increase in Qmax values for coal sample
A ranged from 11.30% to 108.10% and for coal sample B, from 14.72% to 136.83%. This
further demonstrated the superior heat generation and storage capacity of coal eroded by
the igneous rocks compared with the primary coal at the same temperature. The igneous
rock erosion reduced the hmin and cmin that contributed to spontaneous coal combustion
while enhancing the Qmax capacity of floating coal. This enhancement promoted greater
heat generation and accumulation within the coal body, thereby increasing the risk of
spontaneous combustion.

3.2. Kinetic Parameters of Coal Oxidation
3.2.1. Characteristic Temperature Analysis

Figure 5 illustrates the TG-DTG curves of the coal samples. At a specific tempera-
ture, certain groups within the molecular structure of coal participate in oxidation reac-
tions [45,46]. This temperature, termed the characteristic temperature, is characterized by
a noticeable change in the weight loss rate of the sample. Figure 5 illustrates five stages
delineated by quality variations in the spontaneous combustion process [47], where S1
represents the evaporative desorption stage (T0 − Ta), S2 represents the oxygen absorption
and weight gain stage (Ta − Tb), S3 represents the thermal decomposition and weight loss
stage (Tb − Tig), S4 denotes the combustion stage (Tig − Tc), and S5 denotes the burnout
stage (>Tc).
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Figure 5. Distribution curve of spontaneous combustion parameters.

Figure 6 demonstrates the TG-DTG curves of the four test coal samples, and the
characteristic temperature results are recorded in Table 2. Table 2 illustrates a 39.84%
decrease in the activation temperature (Ta) for coal A and a 14.67% decrease for coal B
owing to igneous rock erosion. This was attributed to the acceleration of structural side-
chain fractures and coal pyrolysis resulting from igneous rock erosion [47]. Furthermore, the
percentage decreases in the ignition temperature (Tig) were 1.89% and 2.10%, respectively,
indicating that the igneous rock erosion enhanced the spontaneous combustion tendency of
coal. Similarly, the percentage decreases in the rate of maximum weight loss temperature
(Tmax) were 2.30% and 1.189%, respectively, suggesting that the igneous rock erosion
promoted the formation of active groups in coal, accelerating the oxidation reaction rate and
exothermic rate [47]. Additionally, the percentage decreases in burnout temperature (Tc)
were 0.88% and 2.31%, respectively. Compared to the primary coal, the coal samples eroded
by the igneous rocks exhibited varying degrees of decrease in characteristic temperature.
This erosion enhanced the oxidation reaction and gas diffusion ability of the coal.
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Table 2. Characteristic temperatures of combustion of coal samples.

Coal Sample T0/◦C Ta/◦C Tb/◦C Tig/◦C Tmax/◦C Tc/◦C

A1 31.19 113.09 273.23 387.96 432.86 549.45
A2 31.59 68.04 260.96 380.63 422.92 544.63
B1 31.44 74.02 222.63 335.41 380.07 514.97
B2 31.27 63.16 212.23 328.36 375.55 503.06

3.2.2. Activation Energy Analysis

The most commonly used kinetic equation to describe non-isothermal and non-
homogeneous reactions is [48]

dα

dT
=

(
1
β

)
· k(T) · f (α), (8)

where α represents the conversion rate, %; T represents the thermodynamic temperature, K;
β denotes the heating rate, K/min; k(T) denotes the reaction rate constant; and f (α) denotes
a function of the reaction mechanism.

The empirical equation proposed by Arrhenius for the variation in the reaction rate
constant with temperature is commonly utilized to express the reaction rate constant k.

k = A exp
(
− E

RT

)
, (9)

where E is the reaction activation energy, kJ/mol.
By combining Equations (8) and (9), we derived the kinetic equations of heterogeneous

systems under isothermal and non-isothermal conditions, respectively.

dα

dT
= A exp

(
− E

RT

)
· f (α), (10)

dα

dT
=

(
A
β

)
exp

(
− E

RT

)
· f (α), (11)
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Equation (11) can be shifted, integrated, and applied to calculate the conversion rate
from α0 to αn, with the temperature ranging from T0 to Tn as follows:

αn∫
α0

d(α)
f (α)

=
A
β

Tn∫
T0

exp
(
− E

RT

)
dT, (12)

The left integral form of the definition Equation (12) is

G(α) =

αn∫
α0

d(α)
f (α)

, (13)

Equation (12) can be treated using the Coats–Redfern method, and the approximate
integral expression of the coal oxidation kinetic equation is obtained:

ln
[

G(α)

T2

]
= ln

(
A · R
β · E

)
− E

R · T
, (14)

Utilizing the Arrhenius formula and Equation (14), the experimental coal samples
were plotted on a coordinate axis, with 1/T as the abscissa and ln[G(α)/T2] as the ordinate.
The linear segments were then fitted to the plotted points, allowing the determination
of the reaction activation energy E. The reaction mechanism function, G(α), is defined as
G(α) = −ln(1 − α). Figure 7 and Table 3 present the fitted line segment results and the
corresponding activation energy calculations, respectively.
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Figure 7. Fitting curve of activation energy of coal samples.

Table 3. Calculation results of ignition activation energy of coal samples.

Coal Sample E/KJ·mol−1 R2 Coal Sample E/KJ·mol−1 R2

A1 66.1213 0.9767 A2 57.6178 0.9790
B1 52.0858 0.9740 B2 35.9615 0.9831



Fire 2024, 7, 159 10 of 19

Figure 7 and Table 3 depict the linear relationships of each experimental coal sam-
ple, using G(α) = −ln(1 − α) as the reaction mechanism function, revealing correla-
tion coefficients (R2) exceeding 0.97. The ignition activation energy for sample A1 was
66.1213 kJ mol−1, while for the A2, it was 57.6178 kJ mol−1, representing a 12.86% de-
crease. Sample B1 exhibited an activation energy of 52.0858 kJ mol−1, while for B2,
it was 35.9615 kJ mol−1, reflecting a 30.96% decrease. Compared with primary coal, the
coal eroded by the igneous rocks presented a heightened propensity for exothermic
oxidation reactions.

3.3. FT-IR Analysis of Coal Samples
3.3.1. Functional Group Content Analysis

The infrared spectrum curves of the four groups of experimental coal samples are
shown in Figure 8.
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Figure 8. FTIR spectral of coal samples.

To examine the influence of igneous rock erosion on the surface functional group
content of coal, the infrared spectral curves of the four coal sample groups (Figure 8) were
analyzed using peak fitting software. The peak areas corresponding to the main functional
groups of each coal sample were calculated, and the resulting peak-fitting curves are shown
in Figure 9. The detailed fitting results are listed in Table 4.

Table 4 revealed notable changes in the functional group contents of coal samples A
and B affected by igneous rock erosion. The aromatic hydrocarbon content increased by
54.72% and 471.65% in the coals A and B, respectively. The oxygen-containing functional
group content increased by 50.15% and 16.83%, and the aliphatic hydrocarbon content
increased by 54.22% and 30.01%, respectively. Conversely, the hydroxyl content decreased
by 19.41% and 15.29%, respectively. The infrared spectral analysis suggested that the
thermal erosion from the igneous rocks decomposed organic matter and released volatile
compounds, resulting in changes in the composition of the active functional groups of
coal [8,49]. Specifically, the aromatic hydrocarbons, oxygen-containing functional groups,
and aliphatic hydrocarbon contents increased while the hydroxyl group content decreased.
However, the extremely low -COOH content detected was not evident in the infrared
spectrum and was therefore not analyzed. A comparison of the relative content of -C=O-
within the oxygen-containing functional groups across different coal samples revealed
significant changes. In coal A, the relative content of C=O decreased from 16.20% to 5.82%,
indicating a substantial decrease of 64.07%. Similarly, in the coal B, it decreased from 5.41%
to 5.23%, representing a decrease of 3.33%. This reduction weakened the oxidizing activity
of coal owing to the igneous rock erosion. The aliphatic hydrocarbons in coal, primarily
comprising -CH3 and -CH2, reacted with oxygen during coal oxidation, producing highly
active -OH groups that were easily oxidized [50]. Table 4 demonstrated that the coal
eroded by the igneous rocks within the same seam exhibited a higher aliphatic hydrocarbon
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content and lower hydroxyl content than primary coal. This phenomenon may result
from thermal metamorphism induced by igneous intrusions, which reduced the ability of
aliphatic hydrocarbons to generate -OH groups [49,51]. Consequently, the reduced -OH
content in coal weakened its oxidation activity.
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Figure 9. Peak fitting diagram of infrared spectra of coal samples: (a) aromatic hydrocarbon;
(b) oxygen-containing functional group; (c) aliphatic hydrocarbon; (d) hydroxyl.

Table 4. Infrared absorption peak area proportions of main functional groups in coal samples.

Coal Sample Aromatic
Hydrocarbon/%

Oxygen-Containing
Functional Group/%

Aliphatic
Hydrocarbon/% Hydroxyl/%

A1 0.44 14.62 0.91 84.04
A2 0.97 29.33 1.98 67.73
B1 0.71 34.97 1.56 62.77
B2 0.97 42.39 2.05 54.60

3.3.2. Chemical Structure Analysis of Coal

The infrared aromatic carbon rate (fa), condensation degree (DOC) of the aromatic
ring, aromatic chain length (CH2/CH3), and aromaticity (I) of coal can be calculated by
integrating the peak fitting results using the following equations [30].

The infrared aromatic carbon content of the coal samples was calculated using the
following equation:

fa = 1 − Cal
C

, (15)

Cal
C

=

(
Hal
H

× H
C

)
/

Hal
Cal

, (16)

Hal
H

=
Hal

Hal + Har
=

A3000—2800

A3000—2800 + A900—700
, (17)

where Cal is the fatty carbon content in coal, %; C is the total carbon content in coal, %; Hal
is the fatty hydrogen content in coal, and H is the total hydrogen content in coal, %; Hal
is the hydrogen atom content in aliphatic hydrocarbons in coal, %; Cal is the carbonogen
content in aliphatic hydrocarbon in coal, %; Hal/Cal usually takes the empirical value of
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1.8; Hal is the relative content of aliphatic hydrogen substances in coal samples; Har is
the relative content of aromatic hydrogen substances in coal samples; and A3000—2800 and
A900—700 are the peak areas of the aliphatic and aromatic ring substitution zones in the
fitting results, respectively.

The degree of aromatic ring condensation in coal samples can be quantified by the ratio
of the vibration intensity of the aromatic ring substitution zone to the aromatic hydrocarbon
C=C near 1600 cm−1, as computed using the formula [52]:

DOC =
A900¯700

A1600
, (18)

The value of CH2/CH3 serves as an indicator of the aromatic chain length in coal
samples, with a higher value indicating a longer fatty chain. This calculation was performed
using the following equation [53].

CH2

CH3
=

A(CH2)

A(CH3)
=

A2850—2835

A2876—2858
, (19)

The aromaticity (I) reflects the abundance of aromatic compounds relative to aliphatic
compounds in coal. This calculation was performed using the following equation [54]:

I =
A900—700

A3000—2800
(20)

The peak areas of the main functional groups in the experimental coal samples were
determined based on the peak fitting results (Table 5). The structural parameters of the
FTIR spectra for the coal samples were derived by combining the data from Table 5 with
Equations (15)–(20), with the corresponding calculations provided in Table 6.

Table 5. Peak area distribution of main functional groups in coal.

Coal Sample A900—700 A(C=C) A(C=O) A(CH2) A(CH3) A3000—2800

A1 61.5798 822.7195 333.6664 80.9893 14.2851 127.8715
A2 145.94258 1167.4645 258.1762 182.4507 31.0385 299.6164
B1 58.1469 470.3174 155.2843 77.6118 13.8259 128.1153
B2 77.0079 574.4442 177.0478 96.6709 17.1441 163.3034

Table 6. Structural parameters from FTIR calculation.

Coal Sample fa DOC CH2/CH3 I

A1 0.7061 0.0748 5.6695 0.4816
a2 0.7311 0.1250 5.8782 0.48714
B1 0.6922 0.1236 5.6135 0.45390
B2 0.7127 0.1341 5.6387 0.47156

Owing to igneous rock erosion, the fa values of samples A and B increased by 3.54%
and 2.96%, respectively, indicating an increase in the aromatic carbon content and en-
hancement of coal aromaticity. Moreover, the DOC values increased by 67.11% and 8.50%,
respectively, and the degree of aromatic ring polycondensation increased [55]. Additionally,
the increase in CH2/CH3 values by 3.68% and 0.45%, respectively, suggested a higher de-
gree of coal branching, with unstable components transforming into stable components [56].
Furthermore, the increase in aromaticity (I) by 1.15% and 3.89%, respectively, due to igneous
rock erosion, implies an elevation in the rank of coal [30].

The results of the infrared spectrum test revealed that the thermal metamorphism
induced by the igneous intrusions led to several notable changes in the coal composition.
These included an increase in the contents of aromatic hydrocarbons, oxygen-containing
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functional groups, and aliphatic hydrocarbons, along with a decrease in the hydroxyl group
content and the relative content of active groups such as -C=O-. These alterations resulted
in reduced coal oxidation activity. Additionally, an enhancement was observed in the coal
aromaticity, degree of condensation, and degree of branched-chaining, contributing to
an increased content of the aromatic structure within the coal and an enhancement of its
structural stability.

3.4. Specific Surface Area and Pore Distribution of Coal

The microporous and mesoporous pore size distributions of the coal samples are
shown in Figure 10. From Figure 10, both igneous eroded coal and primary coal exhibited
similar distribution trends in micropores and mesopores. Specifically, in Figure 10a,b, the
distribution curves of micropores and mesopores for both types of coal within the same
seam presented a multi-peak distribution, with the primary peak centered approximately
0.6 nm. Notably, the main peak in the distribution curve of the igneous eroded coal was
notably lower than that of the primary coal. Furthermore, Figure 10c,d illustrate that the
distribution curve of the mesopore diameter for both types of coal within the same seam
followed a single-peak distribution pattern, with pore diameters primarily concentrated
in the 2–10 nm range. However, for pore sizes larger than 19 nm, the distribution curve
of the mesoporous pore size for igneous eroded coal exceeded that of primary coal. This
discrepancy may stem from the thermal effects on the coal during igneous rock erosion,
potentially leading to the disruption of bottleneck holes within the coal samples and
resulting in a reduction in bottleneck holes [12,57].
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Figure 10. Pore size distribution characteristics of coal samples: (a) micropores in coal sample A;
(b) micropores in coal sample B; (c) mesopores in coal sample A; (d) mesopores in coal sample B.

The pore structure parameters of the coal samples obtained via N2 adsorption are listed
in Table 7. These parameters included the specific surface area and average pore diameter,
determined using the BET calculation model; the micropore pore volume obtained via the
HK calculation model; and the mesopore pore volume, calculated using the BJH model.
As a consequence of the igneous rock erosion, the specific surface area (Sp) of samples
A and B decreased by 68.47% and 46.35%, respectively, while the average pore diameter
increased by 30.94% and 50.51%, respectively. Moreover, the micropore pore volume (Vmic)
decreased by 62.06% and 54.39%, and the mesopore pore volume decreased by 26.35% and
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32.11%, respectively. Previous research by Shi [21] and Jiang [58] highlighted the dominance
of micropores and mesopores in determining the specific surface area of coal, and their
evolution significantly influenced this parameter. Consequently, igneous rock erosion led
to a reduction in the specific surface area and pore volume of micropores and mesopores in
coal, accompanied by an increase in the average pore diameter, thereby altering the original
pore structure characteristics of the micropores and mesopores in coal.

Table 7. Pore structure parameters of coal samples obtained by N2 adsorption.

Coal Sample

BET Pore Volume

Specific Surface
Area/(m2·g−1)

Average Pore
Diameter/nm

HK Micropore
Volume/×10−3(cm3·g−1)

BJH Mesopore
Volume/×10−3(cm3·g−1)

A1 14.43 5.67 4.27 18.29
A2 4.55 8.21 1.62 13.47
B1 17.39 5.34 6.38 19.40
B2 9.33 10.79 2.91 13.17

To investigate the impact of igneous rock erosion on the macroscopic pore structure
of coal, the coal samples were tested using a mercury intrusion meter. The relationship
between the pore size distribution and mercury intake at various stages is illustrated
in Figure 11. The analysis in Figure 11 revealed a decline in the mercury intake curve
for both the igneous eroded coal and primary coal samples as the pore size increased.
However, when the pore size exceeded 20 nm, the mercury intake curve for igneous erosion
coal notably surpassed that of the primary coal, which was consistent with previous
findings reported in the literature [20]. This suggested that hydrocarbon gases, such as
CH4, generated through the thermal erosion of coal during igneous rock erosion, contribute
to the formation of larger pores within the coal structure [51,59].
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The specific surface area (Sp) and pore volume distribution for mesopores and macro-
pores in the coal samples are presented in Table 8. The analysis of the mercury injection
experimental results revealed that, when influenced by the igneous rock erosion, the Sp
of mesopores decreased by 21.37% for both samples A and B. Conversely, the specific
surface areas of the macropores increased by 73.13% and 57.57%, respectively. Further-
more, the pore volume of the mesopores decreased by 3.96% and 7.41% for samples A
and B, respectively, whereas the pore volume of the macropores increased by 66.46% and
66.04%, respectively. These findings indicated that while igneous rock erosion led to a
reduction in the specific surface area and pore volume of mesopores in coal, there is a
noticeable increase in pore volume, average pore size, and specific surface area for pores
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with diameters > 20 nm, resulting in a significant enhancement in the average pore size,
macropore volume, and macropore Sp of coal.

Table 8. Results of pore structure parameters of coal samples.

Coal Sample
Specific Surface Area/(m2·g−1) Pores Volume/(cm3·g−1)

Mesoporous Macropores Mesoporous Macropores

A1 22.1051 0.2780 0.0606 0.0109
A2 17.3817 1.0347 0.0582 0.0325
B1 17.9801 0.2377 0.0499 0.0072
B2 14.1379 0.5602 0.0462 0.0212

Based on the results of low-temperature nitrogen adsorption and mercury intrusion
experiments, the igneous rock erosion disrupted and collapsed the original micro-and
mesopores within coal, creating larger pore pathways. The thermal erosion of coal gener-
ated hydrocarbon gases that increased the proportion of pores exceeding 20 nm in diameter,
augmenting the specific surface area and pore volume of macropores and facilitating gas
diffusion within the pore structure [60–62]. This alteration in the pore structure due to
igneous erosion promoted greater oxygen infiltration and interaction with active sites
on the coal pore surfaces, thereby accelerating coal oxidation and self-heating reactions,
consequently increasing the risk of coal oxidation and spontaneous combustion.

3.5. Difference Analysis of Spontaneous Combustion of Igneous Eroded Coal

The oxidation and spontaneous combustion of coal can be influenced by both internal
and external factors. Internally, certain factors such as the coal rank, weathering, inherent
moisture, sulfur content, composition, particle size, pore structure, and gas content can play
crucial roles. Geological conditions, mining techniques, temperature, oxygen availability,
atmospheric humidity, and ventilation management are significant external factors. In
this study, four coal sample groups were prepared and tested under uniform conditions
to minimize differences in particle size and external factors. Specifically, the igneous rock
erosion enhanced the coal body’s oxygen consumption capacity, reduced the hmin and
cmin values, increased the Qmax values, and lowered the characteristic temperature and
ignition activation energy, ultimately rendering the coal more susceptible to spontaneous
combustion at a macroscopic level. However, the coal samples eroded by igneous rocks
exhibit a decrease in the content of highly reactive functional groups, such as -C=O- and
-OH, coupled with an increase in aromatic carbon content, polycondensation, and branch-
ing, thus enhancing the structural stability of coal. At the microscopic chemical structure
level, the igneous rock erosion reduced the coal oxidation activity, impeding its exother-
mic reaction. The macro-level findings from programmed temperature experiments and
thermogravimetric analysis regarding the impact of igneous rock erosion on coal oxidation
and spontaneous combustion were inconsistent with the micro-chemical structure results
obtained from the FT-IR analysis. As depicted in Figure 12, the thermal metamorphism
induced by igneous intrusions decomposes and transforms organic matter in coal, thereby
reducing its oxidation activity. Additionally, these intrusions alter the pore structure of coal.
The decomposition and collapse of the micropores and mesopores in coal, along with the
creation of larger pore pathways, enhanced the surface area of coal. This facilitated the entry
of oxygen into the coal mass, replacing the original gases, such as CH4 adsorbed within the
coal. Consequently, oxygen interacted with active coal groups, leading to combustion with
reduced oxidation activity.

In actual mining operations, the coal near igneous rocks within the same seam is
more prone to spontaneous combustion [20]. The igneous rock erosion not only enhances
the intrinsic oxidation and heat release capabilities of coal but also correlates significantly
with external factors such as geological conditions, mining techniques, and air leakage
intensity. The igneous rock erosion complicates coal extraction, decelerates the working face
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advancement, and prolongs coal–oxygen contact near igneous formations. The weakened
integrity of the coal eroded by the igneous rocks leads to increased fragmentation during
mining, resulting in more coal remnants in the goaf. These remnants act as reactants
for coal oxidation and spontaneous combustion. Additionally, the hardness of igneous
rocks prevents easy collapse in the goaf, reducing compaction and increasing goaf porosity.
This facilitates the airflow penetration from the working face into the deeper goaf regions.
Furthermore, the coal seams affected by igneous intrusion typically exhibit a higher gas
content than ordinary seams [63,64]. When igneous rocks erode coal and cause fractures,
the gas previously stored in the coal is displaced by oxygen, thereby facilitating coal
oxidation upon contact [15]. Several strategies are commonly employed to mitigate the risk
of gas-related incidents during mining in coal seams. These include drilling and pumping
holes, establishing pumping roadways, and augmenting the airflow to the working face
to lower gas concentrations. However, these measures inadvertently introduce significant
airflow into the goaf, which can exacerbate spontaneous coal combustion [65]. Apart
from the chemical composition, microcrystalline structure, and pore characteristics of coal,
other factors that influence its susceptibility to spontaneous combustion include moisture
levels, particle size, geological conditions, mining techniques, and ventilation strategies.
Consequently, further investigations should utilize alternative methodologies to assess
how these factors contribute to the risk of spontaneous coal combustion.
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4. Conclusions

This study examined the impact of igneous intrusions on the spontaneous combustion
characteristics and structure of coal. Through temperature-programmed tests, thermogravi-
metric analysis experiments, FT-IR tests, low-temperature nitrogen adsorption experiments,
and mercury injection experiments, the following conclusions were drawn:

(1) Igneous rock erosion heightened the oxygen consumption capacity of coal, di-
minished hmin and cmin, and amplified Qmax, thereby elevating the risk of spontaneous
combustion. After the igneous rock erosion, samples A and B exhibited increases in
v1 by 11.52–112.75% and 13.70–143.74%, respectively, across the temperature range of
30–180 ◦C. Similarly, v2 increased by 9.94–320.59% and 1.20–50.61%, and v3 increased by
1.76–21.82% and 2.28–47.57%, respectively. Furthermore, hmin decreased by 11.30–108.10%
and 14.72–136.83%, cmin decreased by 11.32–110.97% and 14.77–139.65%, and Qmax in-
creased by 11.30–108.10% and 14.72–136.83%, respectively.

(2) The igneous rock erosion lowered the characteristic temperature for spontaneous
coal combustion, decreased the coal ignition activation energy, and heightened its sponta-
neous combustion propensity. Following the igneous rock erosion, the activation temper-
atures Ta of samples A and B decreased by 39.84% and 14.67%, respectively. In addition,
the maximum mass temperature Tb decreased by 4.49% and 4.67%, Tig decreased by 1.89%
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and 2.10%, and Tmax decreased by 2.30% and 1.189%, respectively. Moreover, the activation
energy of samples A and B decreased by 12.86% and 30.96%, respectively.

(3) The igneous thermal erosion decreased the -C=O- and -OH contents in the coals,
enhancing their structural stability and reducing their oxidizing activity. Under igneous
rock erosion, the relative content of -C=O- decreased by 64.07% and 3.33%, and the decreases
in relative -OH content were 19.41% and 15.29%, respectively, in samples A and B, leading
to weakened coal oxidizing activity. Additionally, the fa value increased by 3.54% and
2.96%, and the DOC value increased by 67.11% and 8.50% in samples A and B, respectively.
The CH2/CH3 value increased by 3.68% and 0.45%, and the I value increased by 1.15% and
3.89%, respectively, enhancing the structural stability of the coal.

(4) The igneous rock erosion altered the pore structure characteristics of coal, enhancing
its exothermic oxidation reaction and exacerbating its spontaneous combustion tendency
despite its low oxidation activity. As a result of the igneous rock erosion, the Sp of the
mesopores decreased by 21.37% for samples A and B, respectively, while the specific
surface area of macropores increased by 73.13% and 57.57%, respectively. The pore volume
of the mesopores decreased by 3.96% and 7.41%, respectively, and the pore volume of
the macropores increased by 66.46% and 66.04%, respectively. Furthermore, there was a
notable increase in the proportion of pore structures larger than 20 nm, facilitating oxygen
penetration into the coal body and enhancing the reaction with active groups, thereby
amplifying the spontaneous combustion tendency of low-oxidation igneous rocks.
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