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Abstract: The mathematical modeling and the associated numerical simulation of the light-matter
interaction (LMI) process are well-known to be quite complicated, particularly for media where
several electronic transitions take place under electromagnetic excitation. As a result, numerical
simulations of typical LMI processes usually require a high computational cost due to the involvement
of a large number of coupled differential equations modeling electron and photon behavior. In this
paper, we model the general LMI process involving an electromagnetic interaction medium and
optical (light) excitation in one dimension (1D) via the use of a dynamic deep learning algorithm
where the neural network coefficients can precisely adapt themselves based on the past values
of the coefficients of adjacent layers even under the availability of very limited data. Due to the
high computational cost of LMI simulations, simulation data are usually only available for short
durations. Our aim here is to implement an adaptive deep learning-based model of the LMI process
in 1D based on available temporal data so that the electromagnetic features of LMI simulations can
be quickly decrypted by the evolving network coefficients, facilitating self-learning. This enables
accurate prediction and acceleration of LMI simulations that can run for much longer durations
via the reduction in the cost of computation through the elimination of the requirement for the
simultaneous computation and discretization of a large set of coupled differential equations at each
simulation step. Our analyses show that the LMI process can be efficiently decrypted using dynamic
deep learning with less than 1% relative error (RE), enabling the extension of LMI simulations using
simple artificial neural networks.

Keywords: machine learning; deep learning; optics; photonics; lasers; neural networks

1. Introduction

Modeling the behavior of electromagnetic waves in free space and also in complex
media is well-known to be an involved procedure that requires the concurrent solution
of Maxwell’s equations with the Schrodinger wave equation in order to fully capture
the wave behavior under time-varying electron dynamics [1-4]. Various computational
methods, such as the Finite-Difference Time-Domain (FDTD) Method, Finite Element
Method, Method of Moments, Discontinuous Galerkin Method, etc., have been proposed
for solving the Maxwell equations in simple and complex media [5-7]. These methods
vary in their success in capturing electromagnetic wave behavior in spatial and temporal
domains through media that are simple and complex (bi-anisotropic, in-homogenous,
nonlinear, etc.).

Under an interaction medium with slowly varying electron dynamics, solving the
Maxwell equation is usually sufficient, in which case the electron dynamics can be modeled
using the rate equations. The most commonly used method for dealing with complex
media in microwave theory, optics, and photonics is the FDTD method. The FDTD method,
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besides being theoretically simple, is straightforward to implement computationally and
can be applied to model wave dynamics in almost all kinds of complex media [5]. However,
the FDTD method is limited in its ability to model geometrically complex media or media
with rough surfaces and significant shape irregularities. In this study, we will focus on using
the FDTD method for modeling the light-matter interaction (LMI) process in nonlinear
dispersive media, typically encountered in optics/photonics.

To model the behavior of light, we use the wave equation derived from Maxwell’s
equations by substituting the equation for Ampere’s law into the equation for Faraday’s
law [5,7]. The dynamics of the electrons are accounted for via the polarization term (also
involved in the wave equation) [8-12], which is modeled using the Lorentz dispersion
equations [5,6]. The wave equation and the Lorentz dispersion equations are coupled
to each other through the polarization term [7]. Under a particle-based treatment of the
electrons, the electron dynamics are modeled using the rate equations, helping to identify
the population of electrons at each energy level in the medium [5]. The set of all coupled
differential equations is modeled based on the FDTD discretization. Importantly, the
stability of the numerical solutions relies heavily on the preciseness of the spatial and
temporal FDTD discretization. If the discretization step size is too large in the temporal
domain, then the solutions can become unstable, meaning that the model can produce
non-physical values that jump to infinity [5-7]. Hence, for the stability of the numerical
solutions, it is very important to choose a sufficiently small temporal step size. Note that
the temporal step size must be selected in accordance with the spatial step size. This is
because one would be interested in capturing every detail of the propagating light wave
through the spatial domain of the involved medium, and for that, the spatial step size
should be selected as small (how small depends on the medium properties and the desired
resolution of the light wave). Once an adequately small spatial step size is determined, the
corresponding temporal step size must satisfy the Courant stability criterion, which states
that the temporal step size must be smaller than the spatial step size divided by the speed
of light c in free space At < Ax/c [5-7]. Given this condition, one is left with the conclusion
that in order to simulate and predict the light behavior in complex media with high spatial
resolution over a long duration, one must select the temporal and spatial step sizes to be
very small, which leads to an enormous computational cost [10-12].

Here a major problem occurs because the wavelength of optical waves (mid-infrared—
visible—ultraviolet-X-ray) is quite small, often less than 1 um [13,14]. However, many
optical phenomena, such as four-wave mixing and parametric amplification, produce a
noticeable effect on the macroscale, which is usually much greater than 1 mm. In addition,
some optical phenomena, such as interference and laser build-up in a cavity (Figure 1), are
only noticeable after relatively long durations (microseconds or milliseconds) [15,16]. In
such cases, modeling wave dynamics is a substantial challenge [17,18] which demands the
use of supercomputers even under the use of a simple computational algorithm such as
FDTD. Therefore, this study aims to come up with a cost-effective alternative solution that
extrapolates the solution after a small amount of simulation time.
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Figure 1. A laser beam (red) in a cavity (or resonator) under optical pumping. The interaction
medium (gray) is sandwiched between the cavity walls (gold), which have a reflectivity of R.
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To achieve this, we resort to deep learning, which can uncover all features of the
underlying problem based on a given input-output dataset [19-22]. Here, we initially
define and numerically solve a given problem using the FDTD method under an ultra-fine
grid size to ensure stability. Then, for a given input dataset, we achieve an output dataset
for a limited simulation duration. We use multilayer perceptrons to form a deep neural
network whose coefficients evolve throughout the simulation. After identifying all the
coefficients that connect the artificial neurons at each time step, we extrapolate the problem
for longer durations by predicting the future values of the network coefficients from their
temporal behavior and compare the extrapolated solution with the one that would be at-
tained by running the simulation for the same amount of time for error quantification. Our
deep learning model is based on a series of linear-time-invariant (LTI) system expansions
that are based on the segmentation of the training data (partitioning of the entire signal
data), assuming that the system response changes slowly in time with respect to the pe-
riod/frequency of the analyzed light wave (which is usually the case in practice) over each
of these segments. This is quite accurate because the mathematical model of a multilayer
perceptron reduces to multiple LTI system expansions for slowly time-varying systems
over segmented training data, where a system can also be approximated as linear [5,6].
Consequently, we use the identified LTI system coefficients at each layer and record their
values for all times to extrapolate the wave behavior for longer durations and measure
the corresponding extrapolation error by comparing the extrapolated results with the ones
obtained via simulation.

Deep learning is based on multilayer neural networks that relate the input data to
the output data through a series of coefficient values via inner-product operation [23-32].
Due to the dramatic increase in the processing power of computers, in the last few decades
machine learning has been applied extensively in the field of optics and photonics as it
has also been in many other fields [27-29]. Over the years, a huge number of papers
have focused on machine learning algorithms to uncover hidden physical models in
electromagnetics [23-29]. Notably, research papers that apply machine learning algorithms
to predict the nonlinear dynamics of optical systems have received strong attention. These
papers have successfully modeled optical systems as robust neural networks that can
imitate the behavior of the underlying system with ultimate precision [23-32]. A striking
observation in many of these papers is that the concern is to identify the originally unknown
system within the duration of the performed experiments with no extrapolation of the
system coefficients for predicting future system behavior. This is problematic because the
input signal characteristics often change, leading to a response that differs from the trained
model. This unpredictability forms the core challenge in forecasting system behavior,
highlighting a crucial battle between traditional machine learning and advanced deep
learning algorithms. Deep learning, distinguished from machine learning by its use of
multiple layers, offers a solution to this challenge. Each additional layer in a deep learning
model extracts more nuanced features of the underlying system, enhancing the model’s
predictive capabilities. Predicting the future weights of each layer enables more accurate
predictions of subsequent layers” weights and, consequently, the future samples of an
output dataset. This approach requires the adaptive identification of network coefficients
over time, segment by segment, a process we refer to as dynamic deep learning. In
this study, we will apply dynamic deep learning to both accelerate and predict complex
light-matter interaction (LMI) scenarios where conventional prediction methods fall short,
enabling accurate and cost-effective simulations in the field of optics and photonics.

2. Methods
2.1. FDTD-Based LMI Model Based on Two Energy Levels

We first investigate the case where photons and electrons interact based on two energy
levels with the corresponding frequencies vy and vp. In this case, there are only two
transitions, which are 1 — 2 and 2 — 1. Correspondingly, there is only one transition
frequency, which is wg = 27(v2 — v1). Hence, the polarization density goes into resonance
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only at this frequency. When the interaction material has a single electronic transition
frequency, upon excitation of the interaction medium via an optical beam of electric field
intensity E, the corresponding wave, polarization, and electron dynamics are modeled as
follows [5-7].

Numerical model for wave dynamics (the wave equation):
9’E oE d>p
V2E — poeco—s = = —
Ho¢ Y VOUat +]/l0 a2

Numerical model for polarization dynamics (Lorentz dispersion eq. up to the 3rd order):

1
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Numerical model for electron dynamics:
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E: Electric field, y: Free space permeability, e.: Background permittivity, t: Time,
h: Planck constant, o: Conductivity, P: Polarization density, ygr: Polarization damping
rate, wr: Angular resonance frequency, Nj: Electron density at the first level, Ny: Electron
density at the second level, Tp1: Transition lifetime (level 2 to level 1), d: Atom diameter,
me: Electron mass, e: Elementary charge, and I": Electron pump rate.

Here, Equation (1) represents the electric field wave equation for isotropic media
that can be easily derived from equations representing Ampere’s Law and Faraday’s Law
(also known as Maxwell’s First and Second Equations) [5]. Equation (2) is the famous
Lorentz dispersion equation, which governs the temporal behavior of the polarization
density of bound electrons under electric field excitation. The Lorentz dispersion equation
is analogous to the spring model, which describes the position of a mass that is attached to
a spring on which a certain amount of force is exerted. In this case, the electrons are under
damped oscillation due to the force that is exerted by the atomic nucleus and the electric
field. The damping occurs mainly due to collisions with other electrons. Equations (3) and
(4) represent the electron populations at level 1 (ground level) and level 2 (excited level).
Since the polarization density in Equation (2) is created by the electron population difference
between level 1 and level 2, and since the electric field intensity in Equation (1) depends
on the polarization density (which is the source term), Equations (1)—(4) are coupled to
each other and must be solved simultaneously. The situation is more complicated in an
interaction medium with more energy levels (see next section).

2.2. FDTD-Based LMI Model Based on Three Energy Levels

If there are three energy levels involved in the electron/photon dynamics, then the
interaction medium can have six different electron transitions (1 <+ 2, 1 <+ 3, 2 <> 3) and
three electron transition frequencies (v3 > vy > vy, w1 = 27m(vy — V1), Wy = 27 (V3 — V1),
and w3 = 27(v3 — vy)). In this case, the associated LMI process is governed by modified
versions of Equations (1)-(4), which are given as follows:

Numerical model for wave dynamics:

o’E oE d*(P, + P> + P3)
2 gs gL 1 2 3
VIE ~ ot Ty = M00 5 TRy dr
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Numerical model for polarization dynamics:
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Numerical model for electron dynamics:
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Notice that in this case, the electric field wave equation (Equation (5)) is stimulated
by three different polarization terms (P;, P», P3) which are governed by Equations (6)—(8),
representing the dynamics of bound charge polarization densities as induced by each elec-
tronic transition. The electron populations at each level are modeled via Equations (9)-(11),
which are coupled to the Lorentz dispersion equations (Equations (6)—(8)) through the
source term and the nonlinear polarization terms. Hence, to solve for the electric field
intensity, one must solve all seven equations (Equations (5)-(11)).

(h/271)w2 W 31 32

2.3. Numerical Discretization

The numerical discretization is carried out in 1D space, considering the case of a
single transition based on two-level electron dynamics, using the FDTD method. The
discretization for the three-level case is similar and straightforward. Here the electric
field and the associated polarization density are discretized in space and time, whereas
the electron populations are discretized only in time as it is assumed that the interaction
medium is homogenous in density over space. The FDTD discretization of Equations (1)—(4)
is carried out as follows [5]:

x : Spatial coordinate, t : Time, E(x,t) = E(iAx, jAt) — E(i,j), i=12,...,M;, j=1,2,.. - M;
E(x+ Ax,t) —E(x,t) - E(i+1,j) —E(i,j), E(x,t+At)—E(x,t) = E(i,j+1) — E(i,})

OE __ E(i+1j)—E(i—-Lj) 9 _ E(ij+1)—E(ij—1)
ox 2Ax 7ot T 2At

2E E(i4+1,j)—2E(i,j)+E(i=1,j) 92E __ E(i,j+1)=2E(i,j)+E(ij—1)
2 2

X Ax T AP !

3]

Notice that we are using the central difference approximation for the first derivatives
in time and space and applying the standard formulation for the second derivatives.
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Discretization of the wave equation:

. s . AR o [ dpeo (i) AXE—2AF
E(l’] + 1) - E(l + 1']) { 0AX? (T At 2e00 (i) } T E(l’]) { OAOxZ(UAt+2£w(i,j)) }
{ 2082 }
QA 2((7At+2€oo ,])) (12)
(oAt =2¢e0 (i)
{ (0AtH2ee (i) }
W{P(l]"'l) 2P(i,j)+ P(i,j—1)}

Discretization of the Lorentz dispersion equation:

. . . . — ) — 1 2 2 1 7
P(ij+1) = P(i,j = ) {farg | + 2 oA C)

o woARP (i
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Discretization of the rate equations:

NG+ 1) = NG 1)+ 280 (<T (N )+ T2 ) - 2 EG)p 1) - PG - 1) 04)

Na(j)

Na(j+ 1) = NG~ 1) + 28 TGN — 2

)+ o EGHP +1) = P~ 1) (5)

These discretized equations are solved together with the initial and boundary condi-
tions of a given problem, which will be stated in the analyzed cases in Section 3. For the
stability of the numerical solutions, the time step At must be chosen to be smaller than the
spatial step divided by the speed of light in free space (At < Ax/c), which is known as the
Courant condition [5].

2.4. Multilayer-Perceptron-Based Neural Networks for Modeling 1D Light-Matter Interaction
under the Slowly Varying Envelope Approximation

The FDTD simulations generate an output dataset for each input dataset given by
the user. To process these input/output datasets for modeling the underlying system,
we consider the simplest neural network that can be mathematically expressed through
plain matrix multiplication between the network weights and the input data. In matrix
notation, the output data y of a single-layer neural network are expressed in terms of the
given input data x (we use brackets for representing network weights and parenthesis for
input/output data).

y(1) w1 - o [LK] o)
{ . ]:L1 S : [ : ] (16)
y(n) wiml] - wyn; Ky x(K1)

y = Li{wix}

y=1W1),y2),...,yn)], x=[x(1),x2),...,x(n)]

where w; is the coefficient matrix containing the weights that connect/relate the network
nodes, and the activation operator L; can be either a linear or a nonlinear operator that
transforms the elements of the result vector of the matrix multiplication to fit within a
certain range in accordance with the analyzed problem and the underlying system.



Appl. Syst. Innov. 2024, 7, 4 7 of 23

For a given output sample y(n), Equation (16) can also be expressed via the following

summation term: «
1
= Ll{Zwl[n;k]x(k)} (17)
k=1

In system theory, Equation (17) represents the response of a nonlinear time-varying
(NTV) system [33,34]. For slowly (time) varying systems, an NTV system can be approxi-
mated as a linear time-invariant (LTI) system within narrow time intervals, in which case
Equation (17) can be expressed by the time shift between the input and output samples in
the form of a convolution operation [34]:

K K1
=1, { Y wy[k]x(n — k)} = L1{ Y wi[n— k]x(k)}, n > Ky (18)
k=1 k=1
which can be rewritten as a matrix equation (L; is now an identity operator):

y(Ki +1) wilK] e wfl x(1)
[ . ] =1 : : { . ] (19)
y(n) win—1] --- wy[n—Kq] x(Kq)

Equation (19) has much fewer unknowns to solve for (compared to Equation (16)), as
the weight (unknown) matrix can now be vectorized as a time shift vector. For this reason,
the LTI system approximation provides a great reduction in the computational cost for
slowly time-varying systems that are trained gradually over small data segments [35-38]
(see Section 2.5).

In this study, we extend the formulation in Equation (19) for a three-layer neural
network, which is considered as a deep learning network with two hidden layers. The use
of hidden layers provides more accuracy in determining all features of a given system. In
this case, the input-output relationship is modified as follows:

:L3 : : Lz : : Ll

y(l) T»U3[1; 1] s w3 [1;K3] wz[l; 1} cee ZUQ[l;Kﬂ w1 [1; 1} cee w1 [1;K1} x(l)
T e e e [
win; 1] - wsn; Ky wy[K3;1] -+ wy[K3;Ky] wi[Ky; 1] -+ w[Ky Ky

*(Ki)

Based on Equation (20), one can deduce that each output sample is related to the input
samples through the following mathematical relation:

{Zw3nkL2{Zw2kl {Zwllm }}} (21)

Just as in the case for a single-layer network, assuming a slowly time-varying system
and using small segments of training data, Equation (21) can be expressed in terms of the
time shift between the input and output samples over each given training segment (LTI
system approximation), which is represented as a serial convolution operation between the
network weights and the input data:

K K K

= L X b, wsln — Kuwalk — ey [ = mlx(m) (22)

=11=1m=

in which case the activation functions are identity operators. In this study, we will base
our approach on Equation (22) to train a 3-layer network for identifying the systems that
govern an LMI process.
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S(n;i) = SMx(ifl)fsMx(ifl)Jrlr--~/SM><ifl}rS(n;i+1) = {SMx(ifl)JrlfsMx(ifl)Jer-~-/S(M><i)}

2.5. Segmentation of a Given Input/Output Dataset for Neural Network Training

In order to evaluate the weights of the three-layer neural network adaptively using
many narrow time intervals, one has to divide a given signal into many small segments,
each containing M samples that can be used to train the neural network for identifying
the local behavior of the underlying system. Each segment should be small compared to
the size of the entire signal so that both the linearity and the slowly time-varying system
approximation can be made. By computing the coefficients of a 3-layer network at each
and every segment and then combining them, one can determine the temporal evolution
of the coefficients (thus the network) through the duration of the entire signal, thereby
performing dynamic deep learning that facilitates a self-learning network for precise
prediction of future output values even under very limited input data. The segmentation
can be performed in different ways, as stated below.

e Use a segment window of M samples and a segment period of N (N = M) samples:

Under this segmentation, all segments are adjacent to each other and there is no
overlap between them. If the entire signal S is divided into P segments, this is stated
as follows:

S(Tl;l) = [51,52,.. .,SM], S(H;Z) = [SM+1,SM+2,. . .,SZM],. ..,S(?’l;P) =
(23)
[SMX(P—1)+1/SM><(P—1)+2/ ey SMXP]

o  Use a segment window of M samples and a segment period of N (N # M) samples:

For this case, the segments may or may not be overlapping depending on N and M:

S(Tl,l) = [51,52, .. .,SM], S(H,Z) = [SN+1/5N+2/~ .. /SN+M]/- .. ,S(TI;P) =
(24)
{SNX (P—1)+1/5Nx(P=1)427-- -~ SN><(P71)+M]

If N <M, the overlap ratio is (M — N) /M. Whereas if N > M, then the overlap ratio is
zero. However, if N is much larger than M, then many samples remain idle, which leads to
an inefficient use of data. Hence, if no overlap is desired, one should choose N = M.

e  Use a segment window of M samples and a segment period of N (N < M) samples:

Here, the overlap ratio is (M — N)/M = 1. This means that each subsequent segment
is nearly identical to its neighbor but not completely the same. This is an efficient use of
data in cases where the underlying system is strongly time-variant. Whereas if the system
is weakly time-variant, this can cause the unnecessary creation of new segments, which
would bring little new information about the system (a slow update of the neural network
weights would be sufficient) at the cost of drastically increased computation time.

e  Use a segment window of M samples and a segment period of N = 1 sample:

In this scenario, each consecutive segment differs only through a single sample shift.
This means that subsequent segments totally overlap with each other, except for a single
sample such that

(25)
i=1,2,...P  (i:Segment number)

This form of segmentation (Figure 2) enables a very efficient use of data under fast
time-variation of the system coefficients. Despite our assumption of a slowly time-varying
system, we will make use of this segmentation for a sample-by-sample computation of the
neural network coefficients in order to see their temporal evolution in full resolution.
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Figure 2. Segmentation of a given dataset via non-overlapping adjacent segments with 5 samples per
segment (top). Segmentation of a given dataset via overlapping segments with an overlap ratio of
40% (middle). Segmentation of a given dataset via overlapping segments that only differ via a single
sample shift (bottom).

Under such sample-by-sample segmentation, to predict the upcoming samples of
the output vector y, one has to solve for the set of coefficients at each layer and for each
estimated sample. This means that to predict N future samples, the coefficient vectors
w1, wp, w3 must be solved based on Equation (22), which can be expanded as three consecu-
tive matrix multiplications:

y(M+1) wsll] - ws[K3] 2(M)
: = : : . (26)
y(M+N) w3[N] -+ w3[N—Kz+1] z(M—K;z+1)
z(M—Ks+1) wal] - wy[Ky] q(M — K3)
: = : : . (27)
Z(M) wZ[KS] . wZ[KB _ K2] q(M — K3 — Ky + 1)
q(M —Ks — Ky + 1) wl] - wK) (M~ K3 — Ky)
{ . ] = : : . (28)
q(M —K3) 0K - w K — K] (M —Ks =Ky —Ki +1)

where x is the input vector and {g, z} are intermediate outputs that ultimately yield the
output vector y. Simplified forms of Equations (26)—(29) will be referred to for carrying
out the dynamic coefficient (system) identification procedures in the next section based on
the least-squares method, using sample-by-sample segmentation under the use of linear
operators. Note that Equations (26)-(28) imply M > (K3 + K, + Kj), K3 > K, and K; > Kj.

2.6. Training of the Multilayer Perceptron over Each Data Segment Based on Output Data

The system coefficients can be evaluated solely based on past samples of the output
data y. Hence, one does not necessarily need the input data to perform a prediction. Also,
one can simply use Equation (22) over each training segment where nonlinear operators are
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not required due to the limited size of the involved segment. By re-labeling the coefficients
as a, b, and ¢, Equation (22) can be rewritten as follows (note that x[m] is replaced with
ylm] as past samples of the output data are considered input signal samples in the case

of prediction):
n—1 k-1 -1

y(n)—{ Z a[n—k]{ Z b[k—l]{ Z c[l—m}y(m)}}}, n>k (29)

k=l’l—K3 l=k—K2 m=l—K1
Using the following operational tricks, Equation (29) can be converted into Equation (36):

n—1 n—1
ym = Y aln—Kzk)= Y alkz(n—k) (30)

kI}’l*K3 k:}’lfKS

K3 nfkaz Kl
y(n) = {Za[k]{ ) b[n—k—l]{ [m}y(l—m)}}} (31)
k=1 I=n—k—1 m=1

Il n—k—1

Ks Ky K
= {k;a[k]{l;b[l]{ Z_;lc[m]y(n—k—l—m)}}} (32)

k< k—1
I14+K;3 K
von ={ 5 ae-nf Eoinf oty -} @
k=I1+1 m=1
l< 1—m
I—m+Kjz m—+Kp K
v ={ E aie-ren{ "B - m{ E oy -i-m o9
k:l—m+1 I=m+1 m=1
k< k—m

1+K3 m+Kp Ky
y(n)z{ > a[k—l]{ 3 b[z—m]{zc[m1y<n—k>}}} (35)
k=141 I=m-+1 m=1

I+K3 m+K2 1

=) X Z b[l — m]alk —I]y(n — k) (36)

k=I14+11=m+1m=

The good thing about Equation (36) is that it can be nicely decoupled into the following
three equations:

K3
y(n) =) alkly(n —k) (37)
k=1
Ka
K] =) bll]alk 1] (38)
=1
Ky
b[l] = Zlc[m}b[l — m] (39)

where the output signal can be directly expressed in terms of its past values in a single equation.
Equations (37)—(39) can be rewritten using matrix equations that describe the predic-
tion of N upcoming samples based on the past M samples (segmental training data):

y(M+1)
(40)

ﬂ[ks}

y[M] o YIM+1-K; lqu]
y(M+N) |

IM+N-1 - y[M+N—Ks
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[a[Ky +1]] a[Ks] alt] ] o) ]
. = : : . (41)

L alKs] | ks —1] a[Ks — K,] | LP[Ka]

bk, +1)] [ Pk b} e
R . (42)

b[KZ] J _b[Kz — 1] s b[Kz — Kl]_ _C[Kl]_

Using Equation (40), one can solve for the set of K3 coefficients for the first layer via
the least-squares method. The same goes for the second- and third-layer coefficients. The
coefficient matrices always depend on the past values of the coefficients of the previous
layer (K; coefficients for the second layer and K; coefficients for the first layer). Once all
the coefficients for each layer are solved, future samples of y(n) can be predicted using
sequential matrix updates and multiplication. However, Equations (40)—(42) do not yield
the time-dependent values of the coefficients, which prevents the prediction of future
values of the coefficients and hinders the adaptive prediction of future output samples.
For a self-learning or self-adaptive neural network, the coefficients must evolve with each
and every new sample so that the future values of the coefficients can also be predicted
from their time series, enabling more accurate output signal prediction under the limited
availability of input data. This enables a dynamic evolution of multilayer perceptrons
through segmental training where each segment differs only via a single sample shift so
that the coefficients are instantly adapted for an “infinitesimal” (unit sample) change. To
attain the matrices that contain the time variation (past values) of the coefficients, every
set of coefficients needs to be solved per new sample. Therefore, over each segment, the
training of the network should be carried out as follows:

yln—T — M| ym=T-M=1] - yn-T-M=Ks]] [ gy[n—T 1]
[ ' ]— : : [ : } (43)
yln =T —-1] yln—T —2] o yln—=T—K3—1] | lags[n =T —1]
[a1[n—T—1] [ag[n—T-2] - an—T—-Ky—1]] [by[n—T—1]]

: = : : : (44)
s =T =11 |ag[n—T—2 - ag[n—T—Ky—1]] Lo =T =1]]
(yn—T—171 [blr=T=2 - bn-T-K -] remn-T-1]]

: = : : . (45)
bk, [ — T — 1] b, [n—T—2] -+ b, n—T—K —1], Lck, [n— T — 1]

n : Sample number, M : Segment size, T : Time shift, T=1,2,3,4,...,L—-M

Using Equations (43)—(45), one can perform an adaptive prediction at every instanta-
neous sample of the output signal based on the 3-layer network. This requires the instanta-
neous solution of each set of coefficients through the least-squares method, as follows:

y= YTa, a=A"b, b=BTc, A, B, Y: Coef ficient matrices (46)
-1 -1 -1
a0 = (YTY) YTy, b= (ATA) ATa, ¢ = (BTB> BTB (47)

Therefore, once the coefficients over a certain segment are identified, the future samples
of the output signal y can be predicted via Equation (48):

y=YTATBTc = (BAY) ¢ (48)
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Note that the coefficient matrices are constructed from past samples of the coeffi-
cients themselves. Hence, once a certain coefficient vector (a, b) is solved, its coefficient
matrix (A, B) is known, which enables the prediction in Equation (48).

3. Results
3.1. Frequency Generation via Optical Wave Mixing in a Micro-Resonator
3.1.1. Difference Frequency Generation Process

The first optical process that we model using a three-layer network is the difference
frequency generation process, which is a nonlinear process that occurs when two high-
amplitude waves E; and E; are simultaneously fed into a cavity. Here, the cavity is
composed of two perfectly reflective walls and a Gallium—Arsenide interaction medium
that is inserted between the cavity walls. The excited waves are given as follows:

Ey(x =0pm,t =0s) =4 x 108 x sin(271(2.5 x 10)t) V/m  (Infrared wave at 250 THz)

Ey(x =0pm,t =0s) =3 x 10% x sin(271(1.5 x 10)t) V/m  (Infrared wave at 150 THz)

Hence, the total excitation wave at t = 0 s is given as follows:
Etota(x =0 pm, t = 05s)
=4 %108 x sin(27(2.5 x 10M)#)V/m + 3 x 10% x sin (27 (1.5 x 101)t) V/m

The simulation setting and the properties of the interaction medium are given as follows:

Spatial and temporal discretization : 0 < x <5um, 0 <t <5ps, Ax =10nm, At = 0.025 fs

Interaction medium resonance frequency : f, = 3.45 x 10 Hz, Conductivity : 6 =10"*S/m

Polarization damping rate of the interaction medium : y =1 x 101° Hz

Background permittivity : (ec) = 13eg, Atomic diameter : d = 0.3 nanometers

gq : Free space permittivity

Cavity range : 0 um < x < 5 um, Electron density : N = 1.76 x 10%° /m?

As a result of the high optical intensity and the inherent nonlinearity of Gallium—
Arsenide atoms, after a certain time, new harmonics will be generated at 100 THz (difference
harmonic, mid-infrared) and 400 THz (sum harmonic, red) due to the nonlinear (cross)
polarization terms in Equation (2). At the end of the simulation, the final spectrum of the
intracavity wave (magnitude of the Fourier transform) is as given in Figure 3.

The modeling of the wave mixing process is computationally costly, and the cost of
computation grows exponentially with increasing simulation duration. The efficiency of
our three-layer neural network is tested in this case by predicting the temporal behavior of
the electric field amplitude of the difference frequency (100 THz) from t =5 ps to t = 8.5 ps.

The formulations in Equations (43)—(45) are applied with n = 42,500, M = 25,000, K3 = 4,
Ky =4, and K; = 4 (each layer has four coefficients). Hence, the available training data
consist of M = 25,000 samples, and the number of samples to be predicted is 17,500 (n-M).
The resulting prediction is shown in Figure 4. In this case, the prediction is highly accurate,
with less than 0.08% relative error (RE). A comparison with the theoretical results is also
given in Figure 5 regarding the electric field amplitude, based on the given formulation
in [39]. The comparison is performed by considering the simulation duration as the total
number of roundtrips multiplied by two times the cavity length times the square root of
the background permittivity of the medium, divided by the speed of light.
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Figure 3. Spectrum of the output wave as measured near the cavity edge (x = 5 um) at the end of
the simulation duration (t = 5 ps). After a 5 ps mixing of the two high-amplitude waves, the sum
and the difference frequency components are generated at 400 THz and 100 THz, respectively (along
with the second harmonics of both waves at 300 THz and 500 THz). The lower-frequency wave E,
(150 THz) is amplified at the end of this mixing, a process known as parametric amplification.
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Figure 4. Prediction of the electric field amplitude for the generated difference—frequency (100 THz)
wave from t =5 ps tot=8.5ps.
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Figure 5. Electric field amplitude variation versus time for the generated difference harmonic (a).
Zoomed-in view (b).
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The time variation of the set of four coefficients (a1, ay, a3, a4) for the first layer of the
network is given in Figure 6. Notice that the coefficients are nearly constant as the change
in percentage around their mean value is quite insignificant.
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Figure 6. Temporal variation of the set of four coefficients in the first layer.

The coefficients of the second layer are shown in Figure 7. Compared to the coefficients
of the first layer, the percentage of change between the minimum and maximum values
of these coefficients is much greater. However, the coefficients of the second layer tend
to converge to a certain value after 5 picoseconds, which indicates that the coefficients of
the first layer will continue to make the same tiny oscillations around their mean values,
indicating that a reliable prediction in the long term is feasible.

3 1
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0
2 N
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|
1
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Time (sec) «10712 Time (sec) x10712
0 1
05 ‘ 0.5
@ ‘ <
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15
0 1 2 3 4 5 0 1 2 3 4 5
Time (sec) %1012 Time (sec) %1072

Figure 7. Temporal variation of the set of four coefficients (b1, by, b3, bs) in the second layer. Here,
the second-layer coefficients are derived from the time variation of a1 (a; — b; ), hence the notation
{b11, b12, b13, b14 }. The same coefficients (b1, by, b3, by) can also be obtained from the time variations of

ap,as, aa.
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Finally, the coefficients of the third layer are given in Figure 8. These coefficients are
used to predict whether the convergent behavior of the coefficients of the second layer will
persist. There is also a tendency for convergence in this layer, which is easier to spot for the
second, third, and fourth coefficients, whereas for the first coefficient, convergence is not
that critical as the percentage of change is smaller. Therefore, the third-layer coefficients
indicate that the convergence behavior of the second-layer coefficients will persist, which
further indicates that the extremely small percentage of change for the first-layer coefficients
will continue, enabling one to treat them as constant variables over time and perform a
prediction for a duration that is much greater than t = 5 ps.
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Figure 8. Temporal variation of the set of four coefficients (c1, ¢y, c3, c4) in the third layer. Here, the
third-layer coefficients are derived from the time variation of b3 (a7 — b3 — ¢y ), hence the notation

{c131, €132, €133, €134 -

3.1.2. Sum Frequency Generation Process

As a result of the wave mixing process, the time evolution of the generated electric
field of the sum harmonic at 400 THz is illustrated in Figure 9 for both the available data
(0 <t <5 ps) and the predicted data (5 ps <t < 8.5 ps). Expectedly, the electric field of the
sum harmonic frequency gradually increases from 0 to 10° V/m in 8.5 ps. The available
data suggest that the field amplitude reaches 4 x 10’ V/min5 picoseconds, whereas the
predicted data show that this amplitude will reach 10° V/m in the next 3.5 picoseconds.
Due to the nonlinearity of the problem, the time it takes to complete the simulation in
8.5 ps is 3.7 times greater than the time it takes for the simulation to be completed in 5 ps.
With the aid of the computed neural network coefficients, the entire process is simulated
at a duration that is 100 times smaller. The resulting RE of the prediction is below 0.05%
(Equations (43)—(45) are used with n = 42,500, M = 25,000, K3 =4, K, =4,and K; =4). A
comparison with the theoretical results is given in Figure 10 regarding the electric field
amplitude, based on the given formulation in [39] using the same trick as discussed in
Section 3.1.1.
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Figure 9. Temporal variation of the electric field at 400 THz (sum frequency).
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Figure 10. Electric field amplitude variation versus time for the generated sum harmonic (a). Zoomed-
in view (b).

The time variation of the set of four coefficients (a1, ay, a3, a4) for the first layer of the
network is given in Figure 11. Just as in the case of difference frequency generation, the
coefficients are nearly constant in time, whereas the coefficients of the second layer (see
Figure 12) are not constant in time. However, the coefficients of the second layer converge
to a constant value over time, indicating that the coefficients of the first layer will behave
similarly in the future.
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Figure 11. Temporal variation of the set of four coefficients in the first layer.
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Figure 12. Temporal variation of the coefficients (b1, by, b, by) in the second layer.

Although it is not as evident as it is for the second-layer coefficients, the coefficients of
the third layer also display a convergent behavior (Figure 13), supporting the stability of the
second-layer coefficients around their converged value in the long term. The coefficients
of the third layer can also be used to verify the convergent behavior of the second-layer
coefficients through insertion in the expansion formula in Equation (39).
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Figure 13. Temporal variation of the set of four coefficients in the third layer.

3.2. Optical Parametric Amplification

Next, we model the optical parametric amplification (OPA) process using our three-
layer network model. Here, as opposed to the two previous cases (frequency generation),
only one of the waves has a high amplitude, while the other usually has a low amplitude.
Through the wave mixing process, over time, the low-amplitude wave draws energy from
the cavity that is energized by the high-amplitude wave and becomes amplified while
the high-amplitude wave is attenuated. In this case, we consider the amplification of an
infrared signal wave at 150 THz using a high-amplitude pump wave at 250 THz. The cavity
configuration remains the same as in the previous section. The signal and the pump waves
are given as follows (the “signal” and “pump” designations are specific to OPA):
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Ey(x=0um,t=0s) =4 x 108 x sin (271(2.5 x 101)t) V/m  (pump wave)
Ey(x =0um,t=0s) =1 xsin (27r(1.5 x 10')t) V/m (signal wave to be amplified)

Therefore, the total excitation wave at t = 0 s is given as follows:

Epprat(x = 0 pm, t = 0's) = 4 x 108 x sin (2n(2.5 x 1014)t)V/m+ 1 x sin (2n(1.5 x 1014)t) V/m

The time evolution of the electric field is given in Figure 14 for both the computed
and the predicted data. The RE in prediction accuracy was found to be 0.77% in this case.
As before, the prediction is performed from t = 5 ps to t = 8.5 ps using the computed data
from t=0s to t =5 ps. Once again, the formulations in Equations (43)—(45) are applied with
n =42,500, M = 25,000, K3 =4, K; =4, and K; = 4. The simulation time using the physical
model was 141 s, whereas the computation time is 2.2 s when the derived neural network
model is used.
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Figure 14. Temporal variation of the amplified electric field at 150 THz.

The coefficients of the first layer of the neural network are given in Figure 15. Despite
persistent fluctuations, the values of the coefficients are nearly constant over time. The
coefficients of the second layer (Figure 16) indicate a convergent behavior, hinting that
the temporal behavior of the process is stabilized. The third-layer coefficients (Figure 17)
are observed to fluctuate within a narrow range and are stable in their temporal behavior,
which hints for a lasting convergence of the second-layer coefficients, implying that the
first-layer coefficients will continue to remain (nearly) constant over time.

4.001 -5.996
4.0005
-5.998
4
(ﬂ‘_ NN
3.9995 %
3.999
3.9985 -6.002
0 2 4 0 2 4
Time (sec) %1012 Time (sec) 10712
-0.999
4.002 -0.9995
-1
< 4 o
-1.0005
3.998 -1.001
-1.0015
0 2 4 0 2 4
Time (sec) «10712 Time (sec) 10712

Figure 15. Temporal variation of the set of four coefficients in the first layer.
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Figure 16. Temporal variation of the set of four coefficients in the second layer.
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Figure 17. Temporal variation of the set of four coefficients in the third layer.

3.3. Time Evolution of Optical Wave Amplitude in Lossy Micro-Resonators

Optical micro-resonators (or micro-cavities) are often used to confine light waves for
sufficiently long durations in order to enable the effective occurrence of certain processes
such as parametric amplification, supercontinuum generation, etc. For this reason, the
degree of loss in a micro-resonator is of concern as it leads to a decrease in the photon
lifetime. In this part, we investigate a lossy optical micro-resonator with an increased
interaction medium conductivity and a greater polarization damping rate and predict the
overall decay rate for the electric field amplitude within the micro-resonator, for which
an analytical expression is not available in the presence of nonlinearity. Here, the total
excitation wave at t = 0 s is given as follows:

Eporat(x = 0 um, t = 0s) = 1 x 10° x sin (27r(2.5 x 1014)t)V/m (Infrared wave at 250 THz)

The simulation setting and the properties of the interaction medium are given as follows:
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Spatial and temporal discretization: 0 < x <5pum, 0 <t <5ps, Ax =10nm, At =0.025fs
Interaction medium resonance frequency : f, = 3.45 x 1014 Hz
Polarization damping rate of the interaction medium : T =1 x 1011 Hz
Interaction medium conductivity : ¢ =10"2S/m
Background permittivity : (eco) = 13eg, Atomic diameter : d = 0.3 nanometers

Cavity range : 0 pum < x < 5 um, Electron density : N = 1.76 x 10 /m?

For the sake of simplicity, the walls of the micro-cavity are assumed to be perfectly
reflective, so the cavity loss is solely due to the dielectric and conduction losses in the inter-
action medium. The resulting computed and predicted data are shown in Figure 18. Using
a three-layer neural network (Equations (43)—(45) are used with n = 65,000, M = 25,000,
Kz =16, Ko = 16, and K; = 16) with 16 coefficients at each layer, it is successfully (RE:
0.94%) predicted that the electric field amplitude in the micro-cavity will decrease by 12%
within 13 picoseconds, which enables an estimation of the total decay rate in the cavity.
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Figure 18. Temporal variation of the electric field at 250 THz.
The time variation of the first-, second-, and third-layer coefficients are given in

Figures 19-21, respectively. Compared to the previously analyzed cases, the coefficients for
each layer are more fluctuating due to the dominance of the interference effect in the cavity.
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Figure 19. Time variation of the 4th, 8th, 12th, and 16th coefficients for the 1st layer.
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Figure 20. Time variation of the 4th, 8th, 12th, and 16th coefficients for the 2nd layer.
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Figure 21. Time variation of the 4th, 8th, 12th, and 16th coefficients for the 3rd layer.

4. Conclusions

The light-matter interaction (LMI) process can be accurately decrypted using a three-
layer neural network that can be trained during the simulation of a given LMI process that
is based on the actual physical model. The network coefficients are dynamically evaluated
over many consecutive segments of the available simulation data (each consecutive segment
differs only by a sample shift), and their corresponding time evolution can be attained
by recording their values for each segment. Based on the time evolution of the network
coefficients of the second and third layers, the upcoming values of the first layer can be
predicted, which can be used to extrapolate the future values of the output signal. The
extrapolation can be made simply through a convolution operation between the network
weights and the past values of the output data since the training of the network is performed
in a piecewise manner through segmentation, where a linearization approximation can be
made. Our computations show that the extrapolation error is quite low for the predicted
part of the electric field (light) amplitude, which suggests that the use of a well-trained
adaptive neural network can drastically reduce the computation time for the optical electric



Appl. Syst. Innov. 2024, 7, 4 22 of 23

field and can be used to accelerate long simulations in optics and photonics for modeling
scenarios where ultra-fine spatial and/or temporal grid-size is required.
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