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Abstract: Quality assessment in industrial applications is often carried out through visual inspection,
usually performed or supported by human domain experts. However, the manual visual inspection of
processes and products is error-prone and expensive. It is therefore not surprising that the automation
of visual inspection in manufacturing and maintenance is heavily researched and discussed. The
use of artificial intelligence as an approach to visual inspection in industrial applications has been
considered for decades. Recent successes, driven by advances in deep learning, present a possible
paradigm shift and have the potential to facilitate automated visual inspection, even under complex
environmental conditions. For this reason, we explore the question of to what extent deep learning is
already being used in the field of automated visual inspection and which potential improvements
to the state of the art could be realized utilizing concepts from academic research. By conducting
an extensive review of the openly accessible literature, we provide an overview of proposed and
in-use deep-learning models presented in recent years. Our survey consists of 196 open-access
publications, of which 31.7% are manufacturing use cases and 68.3% are maintenance use cases.
Furthermore, the survey also shows that the majority of the models currently in use are based
on convolutional neural networks, the current de facto standard for image classification, object
recognition, or object segmentation tasks. Nevertheless, we see the emergence of vision transformer
models that seem to outperform convolutional neural networks but require more resources, which
also opens up new research opportunities for the future. Another finding is that in 97% of the
publications, the authors use supervised learning techniques to train their models. However, with the
median dataset size consisting of 2500 samples, deep-learning models cannot be trained from scratch,
so it would be beneficial to use other training paradigms, such as self-supervised learning. In addition,
we identified a gap of approximately three years between approaches from deep-learning-based
computer vision being published and their introduction in industrial visual inspection applications.
Based on our findings, we additionally discuss potential future developments in the area of automated
visual inspection.

Keywords: automated visual inspection; industrial applications; deep learning; computer vision;
convolutional neural network; vision transformer

1. Introduction

Industrial production and maintenance are under constant pressure from increas-
ing quality requirements due to rising product demands, changing resources, and cost
specifications. In addition, there are constantly changing framework conditions due to
new and changing legal requirements, standards, and norms. Ultimately, the increasing
general flow of information via social media and other platforms leads to an increased
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risk of reputational damage from substandard products. These influences, combined with
the fact that quality assurance is still predominantly performed or supported by human
inspectors, have led to the need for advances in continuous quality control. Since vision is
the predominant conscious sense of humans, most inspection techniques in the past and
even today are of a visual nature [1]. However, manual visual inspection (VI) has several
drawbacks, which have been studied, for example, by Steger et al., Sheehan et al., and
Chiang et al. [2–4], specifically including high labor costs, low efficiency, and low real-time
performance in the case of fast-moving inspection objects or large surface areas. According
to Swain and Guttmann [5], minimal error rates of 10−3 can be reached for very simple
accept/reject tasks. Though highly dependent on the inspection task, Drury and Fox [6]
observed error rates of 20% to 30% in more complex VI tasks in their studies. In addition,
decreasing efficiency and accuracy occur during human inspection due to fatigue and
resulting attention deficits.

As a way to counteract these effects, automation solutions were pushed in the 1980s.
The goal was to increase efficiency and performance and reduce costs while minimizing
human error. Accordingly, computer vision (CV) methods were introduced to VI, which
was initially only relevant for the automation of simple, monotonous tasks. In the beginning,
they served more as a support for inspectors [7], but as development progressed, whole
tasks were solved without human involvement. This was the beginning of automated
visual inspection (AVI).

With deep learning (DL) becoming the technology of choice in CV since 2010, show-
ing better generalization and less sensitivity to application conditions than traditional
CV methods, new models have reached performance levels that even surpass those of
humans in complex tasks like image classification, object detection, or segmentation [8–10].
Accordingly, the development and use of such DL techniques for use in industrial AVI
are reasonable and understandable. In order to provide an overview of the current state
of research and development and to understand what the current focus is, we provide
answers to the following guiding questions in our study.

1. What are the requirements that have to be considered when applying DL-based
models to AVI?

2. Which AVI use cases are currently being addressed by deep-learning models?
3. Are there certain recurring AVI tasks that these use cases can be categorized into?
4. What is the data basis for industrial AVI, and are there common benchmark datasets?
5. How do DL models perform in these tasks, and which of them can be recommended

for certain AVI use cases?
6. Are recent state-of-the-art (SOTA) CV DL models used in AVI applications, and if not,

is there untapped potential?

From these questions, we derive key insights and challenges for AVI and give an
outlook on future research directions that we believe will have a positive impact on the
field in industry as well as research. From these questions, we further derive the structure
for our study as follows. In Section 2, we describe our literature research process and the
constraints we defined. This is followed by Section 3, where we derive requirements for
DL-based AVI and categorize the surveyed literature based on the use case as well as on
how these use cases are solved to answer questions one to three. Section 4 deals with the
evaluation of the industrial approaches and data characteristics, summarizes developments
in academic research, and identifies promising models and methods from it that are not yet
utilized in application use cases (questions 3, 4, and 5). Section 5 summarizes our survey
and gives an outlook on possible future research directions.

2. Methodology of Literature Research

In our work, we analyzed the SOTA by surveying recent papers solving AVI use
cases with DL-based approaches. Figure 1 succinctly illustrates the employed literature
research methodology for our comprehensive review. Therefore, we followed the systematic
literature research procedure proposed by Vom Brocke et al. [11] and adhered to their



Appl. Syst. Innov. 2024, 7, 11 3 of 38

recommended process, starting with the investigation of survey papers on VI with DL to
justify the necessity of our research. We used scholarly search engines like Google Scholar,
Web of Science (WOS), and Semantic Scholar and found many related survey publications
on VI with DL. However, all publications put their focus on DL-based VI in specific industry
sectors or methodologies but not on industrial VI as a whole.

Figure 1. Flow chart of the literature research process.

Zheng et al. [12], e.g., focused their survey on surface defect detection with DL tech-
niques. The same applies to the surveys by Jenssen et al. [13], Sun et al. [14], Yang et al. [15],
Nash et al. [16], Liu et al. [17], and Donato et al. [18], who concentrated on different
industry sectors, like steel production, railway applications, power lines, or manufactur-
ing in general. There are also many publications in the areas of civil engineering and
structural health monitoring. Ali et al. [19], Ali et al. [20], Hamishebahar et al. [21], and
Intisar et al. [22] studied DL-based approaches to crack detection. Chu et al. [23], Qureshi
et al. [24], and Ranyal et al. [25] reviewed the general SOTA in the AVI of pavements and
roads, while Kim et al. [26] focused more specifically on the detection of potholes. A wider
scope is covered by Zhou et al. [27] and Hassani et al. [28], as they consider structural
health monitoring as a whole, not just cracks or pavements and roads. Chew et al. [29]
highlighted the consideration of falling facade objects in their review, while Luleci et al. [30]
emphasized the application of generative adversarial networks (GANs). Mera et al. [31]
surveyed the literature on class imbalance for VI. Tao et al. [32] covered a wide range of
industrial applications but restricted their survey to unsupervised anomaly detection.

Similarly, Rippel et al. [33] reviewed the literature with a focus on anomaly detec-
tion with DL in AVI. In addition to an overview, they also discuss the advantages and
disadvantages of the reviewed anomaly detection approaches.

The only survey we found that deals with VI as a whole, i.e., not only one VI use case
or industry sector, was written in 1995 by Newmann et al. [34]. However, this work was
published over 20 years ago and did not deal with DL and, therefore, does not cover new
challenges that emerged with the era of digitization.

Given the lack of a domain-overarching perspective on VI, we gathered relevant
publications utilizing the WOS online research tool, as it is recognized as the leading
scientific citation and analytical platform and lists publications across a wide area of
knowledge domains [35]. The research field we are interested in is an intersection of two
topics: DL-based CV and AVI in industrial use cases. Thus, we gathered search terms with
the intention of covering the most important aspects of each of the two areas. Table 1 lists
all defined search terms. We formulated search queries to find publications that contain
at least one term from each of the two categories and conducted our literature search on
4 March 2023.
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Table 1. Search terms used for literature research.

Category Search Terms

DL-based computer vision Deep Learning, Neural Network, Convolutional Neural Network, CNN, Transformer,
Semantic segmentation, Object Detection

Automated visual inspection in
industrial use cases

Industrial Vision Inspection, Industrial Visual Inspection, Vision Inspection, Visual
Inspection, Damage Detection, Damage Segmentation, Error Detection

Furthermore, we defined additional constraints to refine the results of the query.
The considered time range started from 1 January 2010 in order to also include less high-
profile publications before the first largely successful CV model “AlexNet” was proposed
in 2012. Furthermore, we only considered open-access publications written in English
to be transparent and comprehensible in our work by only using references accessible
to the scientific community. The query with the aforementioned constraints resulted in
6583 publications. As a next refinement step, we excluded all science categories that are
not associated with an industrial context (detailed listing in Table A1). After filtering, we
obtained exactly 808 publications for further investigation. For the next research step, we
read the publications, and in that process, we defined them as relevant or not relevant
based on set constraints. The constraints for a publication being relevant to our survey
are manifold and include that the authors described their approach appropriately with
information about the task, the method, the used data, and performance. Moreover, we
also restricted ourselves to publications that use 2D image data and in which an industrial
context is clearly identifiable. The decision to exclusively consider publications that employ
AVI on 2D imagery is motivated by the widespread availability and affordability of cameras
compared to alternative devices, such as hyperspectral or 3D cameras as well as light
detection and ranging (LiDAR) devices.

For example, this excludes publications that deal with a medical context, remote
sensing, or autonomous driving. All these constraints resulted in a publication corpus of
196 publications that we investigated further.

3. Categorization of Visual Inspection (Tasks)

In this section, we first discuss the term VI in more detail, as it is used in our publication
corpus to lay the foundation for our further analysis. Next, we derive a hierarchy, which
structures all VI use cases from the gathered literature (Section 3.2). In addition to the
VI use case, we also group the publications by the AVI task, with the aim of categorizing
them by the methodology that is used to solve them. These are closely related to the
CV tasks classification, object detection, and segmentation. These AVI tasks provide the
structure for the following Sections 3.3.1 to 3.3.4. In each subsection, we review and analyze
publications that aim to automate the corresponding AVI task using DL-based methods.

In general, VI describes the visual assessment of the state of a manufacturing product
or assembly, a vehicle, a building, or infrastructure and its comparison to specified require-
ments. The publication corpus shows two application contexts in which VI is employed:
maintenance and manufacturing. In manufacturing, the inspection is executed, e.g., after
critical points during or at the end of manufacturing processes, like the final machining
step of a component responsible for key functions of the overall system or the point at
which two partial assemblies are combined into one. By doing so, it is confirmed that the
finished product meets the predefined quality standards [34,36]. In a maintenance context,
See et al. [37] define VI as the periodical monitoring of features that indicate a certain state
of the inspected object that impairs its functionality or operational safety and can lead to
additional negative impacts like injury, fatality, or the loss of expensive equipment.

3.1. Requirements for Deep-Learning Models in AVI

Several requirements have to be considered when introducing DL-based AVI to a
previously manual inspection process or even to an already automated process that uses
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classical CV methods. To answer our second question, “What are the requirements that
have to be considered when applying DL-based models to AVI?”, we analyzed our publication
corpus with regard to requirements, with either a direct textual mention or indirect mention
through evaluation procedures, as well as reported metrics. These requirements can be
grouped in two dimensions: on the one hand, between general and application- or domain-
specific requirements or, on the other hand, between hard technical and soft human factors.
The most general technical challenge is performance, as visualized in Figure 2.

Figure 2. AVI requirements grouped by their combined properties with regard to specificity and
whether they are technical-factor- or human-factor-driven.

In the case of the automation of previously manual processes, human-level perfor-
mance is usually used as a reference value, which is intended to guarantee the same level of
safety, as mentioned by Brandoli et al. for aircraft maintenance [38]. If the target process is
already automated, the DL-based solution needs to prevail against the established solution.
Performance can be measured by different metrics, as some processes are more focused
on false positives (FPs), like the one investigated by Wang et al. [39], or false negatives
(FNs). Therefore, it cannot be considered a purely general requirement, as it is affected
by the choice of metric. Real-time capability is a strictly technical challenge, as it can
be defined by the number of frames per second (FPS) a model can process but is mostly
specific, as it is mainly required when inspecting manufactured goods on a conveyor belt
or rails/streets from a fast-moving vehicle for maintenance [39–42]. Hardware constraints
are the most specific and rare technical challenge found in our publication corpus. This
usually means that the models have to run on a particular edge device, which is limited
in memory, the number of floating-point operations per second (FLOPS), or even the
possible computational operations it can perform [43]. Sparse (labeled) data are primar-
ily a technical challenge, where the emphasis is put on the fact that models with more
parameters generally perform better but require more data samples to optimize those
parameters, as well. The labeling process introduces the human factor into this requirement
because a consistent understanding of the boundary between different classes is necessary
in order to produce a coherent distribution of labels with as few non-application-related
inconsistencies or outliers as possible. This is especially true if there are few samples and
if multiple different persons create the labels. Models need to perform well with these
small labeled industrial datasets [44–48] or, even better, work without labeled data [49,50].
One of the key advantages of DL-based models compared to classic CV methods is their
generalization capability, which makes them robust against partly hidden objects, changing
lighting conditions, or new damage types. This characteristic is required for many use
cases where it is not possible to enforce controlled conditions or have full visibility, such as
rail track inspection [42,51,52], or it is an added benefit when a model is able to extrapolate
to previously unseen damages [53]. As this requirement is not easily quantifiable and
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application-specific to a certain degree, we place it centrally in both dimensions. Part of any
industrial transformation process is the people involved, whether they are directly affected
as part of the process or indirectly affected through interfaces with the process. To improve
the acceptance of change processes, it is necessary to convince domain experts that they
can trust the new DL solution. In addition, explainability can also be helpful from a model
development perspective to determine the reason for certain model confusions that lead
to errors [54].

3.2. Overview of Visual Inspection Use Cases

In order to answer our second guiding question, “Which AVI use cases are currently being
addressed by DL models?”, we examined the reviewed publications to determine whether it is
possible to summarize the solved VI tasks into specific use cases. We identified a hierarchy
of VI use cases based on the surveyed literature, that visualized in Figure 3.

Figure 3. Hierarchical structure of top-level VI use cases based on the surveyed literature.

As previously mentioned, VI is getting more challenging due to ever-increasing quality
requirements, and all use cases can be considered to be at least quality inspection. In our
literature review, quality inspection use cases are those that do not detect defects or missing
parts but the state of an object. For example, determining the state of woven fabrics or
leather quality is a use case we considered to be only quality inspection [55,56]. Damage
detection, also referred to as defect detection in the literature, summarizes all VI use
cases that classify or detect at least one type of damage. An example of damage detection
use cases is the surface defect detection of internal combustion engine parts [57] or the
segmentation of different steel surface defects [58]. Crack detection can be considered
a specialization of damage detection use cases and has its own category because of its
occurrence frequency in the surveyed literature. The crack detection use case deals solely
with crack classification, localization, or segmentation. The application context is usually
the maintenance of public buildings, for example, pavement cracks [59,60] or concrete
cracks [61,62]. In addition to detecting defects, another VI use case is to check whether a
part is missing or not. Completeness check summarizes these use cases. A completeness
check can be the determination of whether something is missing, or to the contrary, the
determination of whether something is present. O’Byrne et al. [63] proposed a method
to detect barnacles on ship hulls. Another example is provided by Chandran et al. [51],
who propose a DL approach to detect rail track fasteners for railway maintenance. The last
VI use case class we defined as other, which includes VI use cases that cannot directly be
seen through only quality inspection and are not of the damage detection or completeness
check type. Example use cases are plant disease detection [64,65] or type classification [66].
Figure 4 shows the distribution of the VI use cases over the investigated literature. Most
publications (53.57%) deal with damage detection use cases. The second most (27.55%)
researched VI use case is crack detection, followed by quality inspection (6.63%) as well
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as other use cases (6.63%), and the least occurring type is completeness check use cases
(5.61%).

Damage Detection

53.6%

Crack Detection

27.6%

Completeness Check

5.6%
Quality Inspection

6.6%
Other

6.6%

Figure 4. Distribution of reviewed publications by VI use cases.

3.3. Overview on How to Solve Automated Visual Inspection with Deep-Learning Models

In the following, we aim to answer our third guiding question, “Are there certain
recurring AVI tasks that these use cases can be categorized into?”, by investigating with which
DL approach the VI use cases can be solved. For this, we determined four different
AVI tasks to categorize the approaches. Each of these tasks aims to answer one or more
questions about the inspected object. Binary classification tries to answer the question, Is
the inspected object in the desired state? This applies mainly to accept/reject tasks, like
separating correctly produced parts from scrap parts, regardless of the type of deficiency.
Multi-class classification goes one step further, trying to answer the question, In which
state is the inspected object? By additionally identifying the type of deficiency, it is possible
to, e.g., distinguish between parts that are irreparably damaged and parts that can still
be reworked to pass the requirements or determine the rework steps that are necessary.
Localization further answers the question, Where do we find this state on the inspected
object? This adds information about the locality of a state of interest, as well as enabling
the finding of more than one target. It can be utilized, e.g., to check assemblies for their
completeness. The fourth AVI task, multi-class localization, answers the question, Where do
we find which state on the inspected object? For example, the state of a bolt can be present,
missing, rusty, or cracked. Thus, the set of states is not fixed and depends, among other
things, on application-specific conditions, as well as on the object under inspection.

These four AVI tasks are closely related to the three most common CV tasks, image
classification, object detection, and segmentation, which are visualized in Figure 5.

In image classification, the goal is to assign a corresponding label to an image. Object
detection is performed by a method or model that searches for objects of interest. Usually,
the object is indicated by a rectangular bounding box, and simultaneously, object classi-
fication is performed for each object. Unlike pure classification, multiple objects can be
detected and classified. Image segmentation is the process of separating every recognizable
object into corresponding pixel segments. This means that both classification AVI tasks are
performed by image classification models, while both localization tasks are performed by
either an object detection model or a segmentation model.
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Figure 5. Visualization of the three different CV tasks—classification, object detection with two
bounding boxes, and segmentation.

Figure 6 shows the composition of our publication corpus with regard to the applica-
tion context, industry sector, and AVI task.

Figure 6. Distribution of reviewed publications by inspection context, VI task, and associated
industrial sector.

The number of papers in the maintenance context outweigh those addressing manufac-
turing by two to one, as depicted by the outer pie chart in the center. Each of those contexts
is associated with several different industrial sectors in which AVI is applied. The share of
the industry sectors in each context is plotted on the left- and right-hand sides. The biggest
shares in maintenance are held by the fields of civil engineering, railway, energy, and air-
craft. These sum up to a total of 87.89% of all maintenance publications. The manufacturing
sectors, (micro-) electronics, wrought material, agriculture, automotive, and textiles, add up
to a total of 79.46% of all manufacturing papers. In addition to the industry sectors, we also
group the applications per context by the AVI task. The distribution of VI tasks for each
industry context is visualized by the inner pie chart. For maintenance applications, 77.01%
of their total 68.3% is covered by basic and multi-class localization tasks. Only 15.7% of
the tasks can be attributed to classification tasks. In manufacturing, the VI tasks are spread
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across 16.1% classification and 15.7% localization publications. The multi-class variants are
clearly more frequent for both, with 9.6% for localization and 10.9% for classification.

In the following subsections, one for each AVI task, we investigate the collected
literature and utilized models. Only the best-performing architecture is mentioned if
multiple are utilized. Models that are derived from established base architectures like
Residual Networks (ResNet) [67] are still considered to belong to that architecture family
unless they are combined or stacked with another architecture. We also subsumed all
versions of the “you only look once” (YOLO) architecture [68] under YOLO. Models
that are custom designs of the authors and not based on any established architectures
are subsumed under the categories multi-layer perceptron (MLP), convolutional neural
network (CNN), or Transformer based on their main underlying mechanisms.

3.3.1. Visual Inspection via Binary Classification

In the surveyed literature, 21 publications describe a way to approach AVI with binary
image classification; these are summarized in Table 2. Following the general trend of
VI use cases, damage detection is addressed ten times with binary classification.

Adibhatla et al. [50] used a ResNet, Selmaier et al. [46] used an Xception architecture,
and Jian et al. [69] used a DenseNet to classify whether damage is visible or not. Crack
detection is addressed seven times with binary classification. In four publications, the
authors propose a CNN architecture for AVI crack detection. In the other two publications,
crack detection was performed with an AlexNet or a Visual geometry group model (VGG).
Ali et al. [70] proposed a sliding window vision transformer (ViT) as a binary classi-
fier for crack detection in pavement structures. Binary classification is also utilized for
completeness checks and plant disease detection (other). For plant disease detection,
Ahmad et al. [64] used an MLP, while O’Byrne et al. [63] used a custom CNN for a com-
pleteness check use case.

Table 2. Overview of VI use cases and models that solve these problems via binary classification.

VI Use Case Model Count References

Crack Detection

AlexNet 1 [71]
CNN 4 [72–75]
VGG 1 [76]
ViT 1 [70]

Damage Detection

AlexNet 1 [77]
CNN 1 [78]
DenseNet 3 [38,69,79]
Ensemble 1 [80]
MLP 1 [81]
ResNet 1 [50]
SVM 1 [82]
Xception 1 [46]

Quality Inspection AlexNet 1 [83]
MLP 1 [84]

Other MLP 1 [64]

Completeness Check CNN 1 [63]

3.3.2. Visual Inspection via Multi-Class Classification

Table 3 presents an overview of 42 publications that solve various use cases of AVI
through multi-class classification and the models that are used to solve them. The mod-
els used to solve these use cases include popular DL architectures such as AlexNet,
CNN, DenseNet, EfficientNet, GAN, MLP, MobileNet, ResNet, single-shot detector (SSD),
and VGG. Twenty-one publications describe approaches for damage detection, of which six
approaches are based on custom CNNs. The other four authors used ResNet-based architec-
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tures. Kumar et al. [85] proposed an MLP architecture to perform damage detection. Also,
an EfficientNet and a single-shot detector (SSD) were employed for multi-class damage
detection. Five publications cover crack detection use cases. For example, Alqahtani [86]
used a CNN, and Elhariri et al. [87] as well as Kim et al. [88] used a VGG. Also, DL models
like ResNet, DenseNet, and an ensemble architecture are proposed by some authors. Com-
pleteness checks were performed with the help of a ResNet by Chandran et al. [51] or an
SSD, as shown by Yang et al. [89]. In seven publications, the authors used custom CNNs,
DenseNet, ResNet, or VGG in quality inspection use cases. Also, other use cases can be
addressed by different DL-based CV models or MLPs.

Table 3. Overview of VI use cases and models that solve these use cases via multi-class classification.

VI Use Case Model Count References

Crack Detection

AlexNet 1 [90]
CNN 1 [86]
EfficientNet 1 [91]
ResNet 1 [92]
VGG 2 [87,88]

Damage Detection

AlexNet 1 [93]
CNN 6 [66,94–98]
CNN LSTM 1 [99]
EfficientNet 2 [100,101]
Ensemble 1 [56]
GAN 2 [102,103]
MLP 1 [85]
MobileNet 1 [104]
ResNet 4 [105–108]
VGG 2 [60,109]

Completeness Check ResNet 1 [51]
SSD 1 [89]

Quality Inspection

CNN 3 [110–112]
DenseNet 1 [113]
ResNet 2 [55,114]
VGG 1 [115]

Other

CNN 1 [65]
EfficientNet 1 [116]
MLP 1 [117]
MobileNet 1 [118]
ResNet 1 [54]
VGG 1 [119]

3.3.3. Visual Inspection via Localization

As previously mentioned, localization is used to detect where an object of interest
is located. Table 4 summarizes which VI use cases are addressed with localization and
the appropriate models. In a total of 50 publications, localization was employed for AVI.
Contrary to classification approaches, crack detection is the most addressed VI use case,
with a total of 26 publications investigating it. The most utilized approach for crack
detection is the CNN, which was applied in eight publications. Furthermore, in three
other publications, extended CNN architectures were used. Kang et al. [120] introduced
a CNN with an attention mechanism, and Yuan et al. [121] used a CNN with an encoder–
decoder architecture. Andrushia et al. [122] combined a CNN with a long short-term
memory cell (LSTM) to process the images recurrently for crack detection. Among custom
CNN approaches, six authors used UNet to detect cracks, mostly in public constructions.
Damage detection via localization occurred 16 times and was addressed with at least twelve
different DL-based models. Three authors decided to approach it with DL-based models
of the Transformer family. For example, Wan et al. [123] utilized a Swin-Transformer to



Appl. Syst. Innov. 2024, 7, 11 11 of 38

localize damages on rail surfaces. Completeness checks can be executed with YOLO and/or
regional convolutional neural networks (RCNNs). Furthermore, YOLO can be used for
vibration estimation, as shown by Su et al. [124]. Oishi et al. [125] proposed a Faster RCNN
to localize abnormalities on potato plants.

Table 4. Overview of VI use cases and models that solve these use cases via localization.

VI Use Case Model Count References

Crack Detection

CNN 8 [47,59,62,126–130]
CNN LSTM 1 [122]
Attention CNN 1 [120]
Custom encoder–decoder CNN 1 [121]
DeepLab 3 [131–133]
Ensemble 3 [134–136]
Fully convolutional network (FCN) 2 [137,138]
Faster RCNN 1 [139]
UNet 6 [140–145]

Damage Detection

DenseNet 1 [146]
Faster RCNN 1 [147]
GAN 1 [148]
Mask RCNN 2 [149,150]
ResNet 1 [48]
SSD 1 [151]
Swin 1 [123]
Transformer 1 [152]
UNet 3 [153–155]
VAE 1 [49]
ViT 1 [156]
YOLO 2 [157,158]

Completeness Check Mask RCNN 1 [159]
YOLO 1 [160]

Quality Inspection YOLO 1 [161]

Other
Faster RCNN 1 [125]
UNet 2 [44,162]
YOLO 2 [124,163]

3.3.4. Visual Inspection via Multi-Class Localization

The majority of the literature reviewed used multi-class localization for VI. In 83 publi-
cations, it is shown how to approach different use cases, like crack or damage detection, with
multi-class localization. Table 5 provides a detailed overview. As for the two classification
approaches, damage detection is the most investigated VI use case, with 58 publications.
Therein, YOLO and Faster RCNNs are the two most used models, with over ten publica-
tions. They are followed by CNNs and Mask RCNN models, which are utilized more than
five times. FCN, SSD, and UNet can also be used as approaches to multi-class damage
detection. Huetten et al. [164] conducted a comparative study of several CNN models
highly utilized in AVI and three vision transformer models, namely, detection transformer
(DETR), deformable detection transformer (DDETR), and Retina-Swin, on three different
damage detection use cases on freight cars. Multi-class localization was used in 15 pub-
lications for crack detection. In five publications, the authors performed crack detection
with a YOLO model. Crack detection can also be performed with AlexNet, DeepLab, FCN,
Mask RCNN, and UNet, which was shown in different publications. In three different
publications, the authors show how to conduct quality inspection with YOLO. YOLO can
be used in a tobacco use case, as well (other), as shown by Wang et al. [165].
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Table 5. Overview of VI use cases and models that solve these use cases via multi-class localization.

VI Use Case Model Count References

Crack Detection

AlexNet 1 [166]
DeepLab 2 [61,167]
FCN 1 [168]
Mask RCNN 5 [169–173]
UNet 1 [174]
YOLO 5 [175–179]

Damage Detection

CNN 7 [180–186]
DETR 1 [187]
EfficientNet 1 [188]
FCN 3 [189–191]
FCOS 1 [192]
Faster RCNN 10 [193–202]
Mask RCNN 6 [53,203–207]
MobileNet 1 [39]
RCNN 1 [45]
SSD 5 [208–212]
Swin 1 [164]
UNet 4 [58,213–215]
VGG 1 [216]
YOLO 16 [41,57,217–230]

Completeness Check

CNN 1 [231]
Ensemble 1 [232]
Faster RCNN 2 [233,234]
YOLO 2 [42,52]

Quality Inspection YOLO 3 [40,235,236]
Other YOLO 1 [165]

4. Analysis and Discussion

In this section, we focus on answering guiding questions three, “What is the data basis
for industrial AVI and are there common benchmark datasets?”; four, “How do deep learning
models perform on these tasks and which of them can be recommended for certain AVI use cases?”;
and five, “Are recent SOTA CV deep learning models used in AVI application, and if not, is there
untapped potential?”. We sought answers to these questions by analyzing the performance
of the models as well as comparing the SOTA in DL-based AVI applications and academic
CV research. First, we look into the datasets and learning paradigms that are utilized. This
is followed by an analysis of the performance of the applied DL models in the AVI tasks
they have been categorized into. This section is concluded by summarizing developments
in academic research and identifying promising models and methods from it.

4.1. Inspection Context and Industrial Sectors

There are many different industry sectors that apply AVI in maintenance and man-
ufacturing. In maintenance, the clear majority (66.88%) of publications are from the civil
engineering sector, while, in manufacturing, the distribution of a similar total share is more
even, with 26.03% from (micro-) electronics, 17.81% from wrought material production,
15.07% from agriculture, and 12.33% from automotive. This may be due to the fact that
many manufacturing applications were already targeted for automation with classic CV,
as the environmental conditions that affect image quality, as well as variance, are easier to
control, so the expected process improvements were generally lower. Most maintenance use
cases are performed outdoors in varying light, weather, and seasonal conditions. Therefore,
DL-based CV was needed to address use cases in the civil engineering or railway sector,
such as bridge, road, or building facade inspection, as well as rail surface, fastener, or cate-
nary inspection. Looking at the preferred AVI tasks, we see a clear majority of 77.01% for
localization in maintenance, while, in manufacturing, the shares of classification (50.47%)



Appl. Syst. Innov. 2024, 7, 11 13 of 38

and localization (49.53%) are evenly split. The reason for this is that, in maintenance, it
is usually necessary to assess a whole system with many different parts, so the need for
localization arises, while, in manufacturing, it is easier to limit the inspection to individual
parts, which is also possible with classification.

4.2. Datasets and Learning Paradigms

The dataset dimensions vary from 45 images [48] to more than 100,000 imag-
es [81,94,183,231], with the average number of images at 14,614 and a median of 1952.
Figure 7 visualizes the number of datasets grouped by the decimal power of their dimen-
sion, ranging from less than 100 to less than 1,000,000. The two largest groups cover the
intervals [101, 1000] and [1001, 10,000], with most of the datasets tending toward the lower
boundary of their respective group. These two groups also feature the most open-access
datasets: in total, 77/243 (31.69%) of the papers used at least one open-access dataset.

[100, 102] [102, 103] [103, 104] [104, 105] [105, 106]
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Figure 7. Distribution of dataset dimensions (number of samples) utilized by publications in our
publication corpus.

Another important factor in relation to datasets is the uniformity of the distribution
of their samples across the classes, often formulated more negatively as class imbalance.
Class imbalance should be considered in learning processes since it can result in incorrect
classification, detection, or segmentation. Therefore, imbalance in datasets has to be
quantified differently across different learning tasks. For classification, each sample is
directly associated with only one class. Object detection may feature more than one class
per image, several instances of the same class, or no annotated class at all. So, to quantify
the imbalance of an object detection dataset, the number of annotated objects, as well as the
number of images featuring no objects, is required. Dataset imbalance for segmentation
tasks can be quantified in the same way as for object detection, but the most exact measure
would be to evaluate the pixel areas covered by each class in relation to the overall pixel
area of the dataset, which is only reported by Neven et al. and Li et al. [58,121]. Given the
number of classes n, the total number of samples, and the number of samples per class,
we propose to quantify the balance in a dataset by Equation (1). The distance between
the hypothetical balanced class ratio and the actual ratio between samples of a particular
class and the total number of samples is used to quantify the imbalance for this class.
The Euclidean distance is chosen as the distance metric for numerical stability reasons.
Summing up these distances for each class yields zero for a perfectly balanced dataset
and one for a completely imbalanced dataset, so subtracting it from one achieves a metric
measuring the balance.
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Balance = 1 −
n

∑
c=1

√(
samplesc

samplestotal
− 1

n

)2

(1)

In total, our publication corpus encompasses 244 results produced on 204 unique
datasets. For 47 publications, there is no detailed information on the training data, while
54 do not specify their test data, and in 44 cases, neither training nor testing data are
sufficiently described. This means that, despite many authors providing open access to
their data bases, very few researchers in the same field make use of them. This may be
either due to available datasets being deemed insufficient in size, label precision, image
quality, or other reasons or because they are not advertised enough and therefore not
recognized by peer researchers. Overall, this makes the results less comparable and harder
to reproduce and hinders further development of existing research results by others, which
is detrimental to the progress of AVI.

Figure 8 visualizes the relationship between model performance measured by the F1-
score and the balance score defined in the last section. We chose to only include publications
in this plot that report the F1-score because it is the only reported metric that deals well
with balanced as well as imbalanced datasets. The chart on the left shows a mostly linear
correlation between balance and performance in classification tasks, with a few upward
and downward outliers. These are predominantly from the multi-class versions. Binary
classification has a lot more publications based on entirely balanced datasets.
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Figure 8. Performance of models in classification (left) and localization tasks (right) plotted against
the balance score.

The first thing that stands out for the localization tasks depicted in the right graph
is the accumulation of (binary- or single-class) localization datasets with a balance score
of one. This is primarily attributable to the fact that it is seldom specified whether and
how many images without inspection targets are contained in the datasets, specifically for
segmentation. The general correlation between class balance and performance is visible as
well, but the gradient of an imaginary regression line would be slightly lower compared
to classification. This can be explained by the higher resilience of localization models to
dataset imbalance based on the property that there are generally fewer areas of interest or
foreground in an image than background, and in this task, they have to be explicitly marked.

In our literature review, we found that 14 datasets were utilized more than once.
Table 6 lists them in descending order by the number of publications in which they have
been used. Most of them are concerned with enforcing a binary differentiation between
damaged and intact or background, respectively, via the computer vision tasks classification
or segmentation (SDNET 2018, CFD, RSSDD, Deep Crack, Crack Tree, Özgenel crack
dataset, Crack 500, Crack LS 315, Aigle RN). This places them at the bottom end regarding
class-induced complexity. In many cases, framing the learning like this may be the only
way of making it manageable at 500 or fewer samples with a certain performance goal in
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mind. The cost of data acquisition and annotation certainly plays a role, as well. Lastly,
the applications all come from a maintenance context, where the basic recognition of
damages in the field can be a satisfactory first step, and a more detailed inspection will be
performed by the personnel repairing the damage.

Table 6. Characteristics of benchmark datasets in automated visual inspection in industrial applica-
tions. Pixel area percentages are based on [121].

Dataset Name # Samples Resolution Learning Task Class Distribution B-Score # Publications References

NEU Surface
Defect Database 1800 200 × 200 Classification

Rolled-in Scale 300
Patches 300
Crazing 300
Pitted Surface 300
Inclusion 300
Scratches 300

1.0 9 [237]

SDNET 2018 56,000 256 × 256 Classification Crack 8484
Intact 47,608 0.51 6 [238]

Crack Forest
Dataset (CFD) 118 480 × 320 Segmentation Crack 118 0.32 5 [239]

Road Damage
Dataset 2018 9054 600 × 600 Object

Detection

Longitudinal Crack,
Wheel Mark 2768
Longitudinal Crack,
Construction Joint 3789
Lateral Crack 742
Lateral Crack,
Construction Joint 636
Alligator Crack 2541
Rutting, Bump, Pothole 409
Cross-Walk Blur 817
White-Line Blur 3733

0.75 5 [211]

GRDDC 2020 21,041 600 × 600,
720 × 720

Object
Detection

Longitudinal Crack 8242,
Laterial Crack 5480,
Alligator Crack 10613,
Pothole 7008

0.85 4 [240]

Rail Surface
Defect Dataset
(RSDD)

195 1024 ×* Segmentation Defect 195 - 4 [241]

Severstal Dataset 87,995 256 × 256 Segmentation

Holes 1820
Scratches 14576
Rolling 2327
Intact 69,272

0.37 4 [242]

Deep Crack 537 544 × 384 Segmentation Crack 3.54%
Background 96.46% 0.34 3 [243]

Crack Tree 206/260 800 × 600 Segmentation Crack 206/1.91%
Background -/98.09% 0.32 3 [243,244]

Özgenel Crack
Dataset 40,000 227 × 227 Classification Crack 20,000

Intact 20,000 1.0 3 [245]

Crack 500 500 2560 × 1440 Segmentation Crack 4.33%
Background 95.67% 0.35 2 [246]

Crack LS 315 315 512 × 512 Segmentation Crack 1.69%
Background 98.31% 0.32 2 [243]

Aigle RN 38 311 × 462,
991 × 462 Segmentation Crack 38 - 2 [247]

Magnetic Tile
Surface Dataset 1344 196 × 245 Segmentation

Blowhole 115
Break 85
Crack 57
Fray 32
Uneven 103
Intact 952

0.40 2 [248]

* variable image height

Statements about the imbalance of the segmentation datasets are possible in different
levels of detail. Li et al. [121] report the pixel area percentages of cracks and background for
DeepCrack, CrackTree 260, Crack LS 315, and Crack 500, which are very pronounced, with
the highest balance being 0.35 for Crack 500. The balance reaches as low as 0.32 for Crack
LS 315 and CrackTree, which poses a significant challenge compared to anything deemed
feasible in classification problems. CFD, RSDD, and Aigle RN do not allow a statement
to be made, as there is no information about images without damage, the number of class
instances, or the area ratios between classes. The two classification datasets SDNET 2018
and Özgenel crack dataset are far more balanced, with scores of 0.51 and 1.0, as well as
offering significantly more data samples.
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The Severstal and Magnetic Tile Surface segmentation datasets have higher class-
induced complexity, with four and six classes compared to only two. The extracted infor-
mation about them only allows for an instance-based evaluation of balance, which leads
to balance scores that are slightly higher compared to the crack segmentation datasets,
with 0.37 and 0.40, respectively. They are also both from the production context in quality
assurance applications, where the focus may be not only on recognizing any damages but
also on categorizing them in more detail to be able to draw conclusions about process
parameters and ultimately improve the quality in the future. The NEU surface dataset is
also from the steel industry like the Severstal dataset but with a completely balanced class
distribution at six total classes, albeit with only 1800 samples at a similar resolution.

GRDDC 2020 and Road Damage Dataset 2018 offer a more nuanced view of road
damage with four and eight classes, respectively. Despite their higher number of classes,
they are a lot less imbalanced compared to the binary crack segmentation datasets, but this
is only partly due to the learning task of object detection being pursued.

A clear recommendation can be made for Crack 500 as a crack segmentation bench-
mark, as it offers a comparatively high balance score, the most data samples for this specific
CV task, and the highest-resolution images, as well. This means it is possible to increase the
number of samples even further by subdividing them, which may be necessary to reduce
the computational cost or use an efficient training batch size, depending on the used model.
For crack classification, the Özgenel crack dataset seems to be recommendable, as it is well
balanced and has a tolerable size difference from SDNET. In all other areas, a targeted
combination of datasets, such as the NEU surface defect database and Severstal dataset
for steel surface detection, to compensate for each other’s weaknesses appears to be the
best solution.

The majority of industrial AVI use cases are based on datasets that are, at most, 10%
of the size of the Microsoft common objects in context benchmark dataset (MS COCO) or
1% of the size of the ImageNet benchmark dataset. One would therefore expect that most
authors resort to methods that do not require labeled training data or strategies that reduce
the number of training samples required.

Still, the vast majority of the surveyed literature covers supervised learning appli-
cations (97.37%), with only three publications employing unsupervised anomaly detec-
tion [48,50,125] and one using semi-supervised learning [130]. Regarding the training
processes employed, we can identify three groups. The first group, which accounts for
49.32%, utilizes transfer learning; i.e., the models are initialized with weights from one
of the major CV challenges, and in most cases, an implementation from one of the many
available open-source repositories is also used. This reduces the training time as well as
lowers the number of required samples for a sufficiently large training dataset and thus the
effort to create such a dataset. The second group, which makes up 30.59% of the publication
corpus, trains their models from scratch. This results in a much larger need for training
data and training time but is also the only way if the author creates their own architecture,
which 21.0% of the authors did. In the third group, which is made up of the remaining
20.09%, there is no indication in the publication of whether the model/s were pretrained
or not. In none of the publications using datasets with more than 50,000 samples did the
authors utilize transfer learning. This seems to be a viable approach since the datasets
are sufficiently large. At the same time, a comparison with transfer learning approaches
would be insightful since the underlying models have been pretrained on much larger
datasets. However, it is counterintuitive and incomprehensible that transfer learning from
benchmarks, or the addition of samples from an open dataset from the same domain, was
not used in 20 of the 68 cases with fewer than 1000 samples. Five of the eight classification
models in this group performed below the median compared to other models with their
respective architectures, while only five of the twelve localization models are in this per-
formance range. So, there is no clear indication of whether transfer learning would have
improved performance in these cases. In addition to transfer learning, self-supervised or
unsupervised learning could prove useful since they alleviate the effort of labeling.
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4.3. Performance Evaluation by AVI Task

The performance of the DL models utilized is not as easily comparable because of
the heterogeneity of reported metrics as well as datasets. In total, ten different metrics
were reported, namely, accuracy (Acc), precision (Pre), recall (Rec), F1-score (F1), true-
negative rate (TNR), true-positive rate (TNR), mean average precision (mAP), mean average
precision at 50% as well as 75% intersection over union (mAP50, mAP75), and mean
intersection over union (mIoU). Figure 9 shows how often a certain metric was utilized for
applications that use classification, object detection, and segmentation (from top to bottom).
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Figure 9. Distribution of metrics used in papers in our publication corpus grouped by CV task.

The first thing that stands out is the fact that accuracy is still the most common metric
for classification tasks, despite having low descriptive quality, especially with imbalanced
datasets, which are quite common, as stated in Section 4.2. The F1-score, which is the
harmonic mean of precision and recall, is the second most common metric. Precision and
recall are tied for third place. Among object detection use cases, the mean average precision
(mAP) is the most reported metric, probably because it is also the official metric of the MS
COCO object detection challenge. The F1-score and recall are also very relevant in object
detection tasks, with the second-most occurrences in the surveyed literature, while accuracy
is in third place. Segmentation tasks are predominantly evaluated by their F1-score and
mean intersection over union (mIoU) between predictions and the ground truth. Recall is
in the top three as well for the last CV task.

In the following, we will first analyze the performance of the models employed
in the application use cases to derive recommendations for each AVI task based on the
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most reported metrics. These are accuracy as well as F1-score for (binary and multi-
class) classification and mAP as well as F1-score for (binary and multi-class) localization.
If precision and recall were reported but F1-score was not, we calculated it based on them
and take it into account as well. To be able to provide recommendations for segmentation
models as well, we will also look at the mIoU, as this seems to be a metric reported
almost exclusively for this CV task. After this, we will also look at the performance on the
benchmark datasets from Table 6 and determine whether there are any differences.

Custom CNN LSTM networks show the best median accuracy, as depicted in Figure 10,
but this does not have the highest expressive value, with a sample size of four and all
results coming from the same paper [74].

Figure 10. Distribution of model accuracy for all classification models reporting it as a metric in our
publication corpus. × marks data points that have a distance of more than 1.5 times the interquartile
range to the first or third quartile.

The same applies to MLPs and ViT, which show a higher median accuracy than all
other models with two to four occurrences. Despite their good performance, no general
recommendation can be given for MLPs because all of them employ hand-engineered
input features. EfficientNet, on the contrary, is very close performance-wise but was
applied to five datasets by four different authors. ResNet and VGG are the best two
architectures, with considerable sample sizes of nine and eight, respectively. While the
accuracy distribution for VGG shows less spread, meaning more consistent performance
over different tasks, ResNet’s median performance is almost as good. Custom CNNs have
the third-worst median accuracy and a very large spread, as well. As this category contains
very different architectures, this is to be expected. So, all in all, the best-performing choice
for solving classification tasks based on accuracy as the metric from our publication corpus
is EfficientNet.

When looking at the classification F1-scores in Figure 11, we generally see similar
median values and a higher spread compared to accuracy.

This is unexpected but could be an indicator that most of the datasets do not show
strong imbalances. As for accuracy, EfficientNet has the highest median F1-score, closely
followed by ViT. MLPs have the third-highest median F1-score and the third-narrowest
interquartile range. ResNet has the fourth-highest median F1-score as well as the third-
largest interquartile range, but it is still the best model, with at least five occurrences. It is
closely followed by custom CNNs and MobileNet with very similar median F1-scores but
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also the largest spread for the former. VGG-type models show a much weaker performance
when evaluated with the F1-score compared to accuracy. Based on our publication corpus,
we would recommend using Efficient or ResNet models for classification tasks if one does
not want or does not have the experience or expertise to create their own custom CNN
model. ViT looks promising, as well, but has to be investigated more thoroughly to make a
general statement.

Figure 11. Distribution of model F1-scores for all classification models reporting it (or precision and
recall) as a metric in our publication corpus. × marks data points that have a distance of more than
1.5 times the interquartile range to the first or third quartile.

The localization performance represented by mAP is visualized in Figure 12.
Mask RCNN models show the highest median mAP and the lowest interquartile

range and spread among models with at least five occurrences. The two other models with
a high mAP performance and at least five samples are YOLO and Faster RCNN. Faster
RCNNs have a similar median mAP but a much larger interquartile range with a slightly
higher min–max spread. As YOLO has more than twice as many occurrences as Faster
RCNN, it seems reasonable to say it is the better model, especially the newest versions. It
is interesting to see that the spread and interquartile range of Mask RCNN are so much
smaller than those of Faster RCNN, as it is actually a Faster RCNN architecture with an
added segmentation head. Multi-task training seems to show a benefit regarding better
generalization. Custom CNN architectures perform much worse median-wise compared
to classification tasks, even though they have a smaller performance spread than YOLO
and Faster RCNN. SSD, UNet, DeepLab, FCN, ensemble models, AlexNet, VGG, DETR,
and the fully convolutional one-stage object detection model (FCOS) have only two or fewer
publications reporting mAP. Except for DETR and FCOS, the performance is within the
mAP range of Mask RCNN or even above it, which indicates promise. However, the data
basis is insufficient for a valid assessment.

When looking at the localization F1-scores in Figure 13, there are fewer models with
only one reported performance and also one more with a sample size of five or above
compared to mAP (Mask RCNN, YOLO, UNet, DeepLab, and CNN).
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Figure 12. Distribution of model mAP for all localization models reporting it as a metric in our
publication corpus. × marks data points that have a distance of more than 1.5 times the interquartile
range to the first or third quartile.

Figure 13. Distribution of model F1-scores for all localization models reporting it (or precision and
recall) as a metric in our publication corpus. × marks data points that have a distance of more than
1.5 times the interquartile range to the first or third quartile.

Mask RCNN has the highest median F1-score as well as the lowest spread among
those five and also the second-highest median overall. Custom CNNs show the second-
highest median F1-score, as well as a smaller interquartile range and min–max spread,
compared to the mAP metric. The next three models, UNet, DeepLab, and YOLO, are
within 5% of their median F1-score, around 78%. UNet shows the highest median of
the three, but also the largest interquartile range and min–max spread. YOLO’s median
performance is the lowest, with an interquartile range very similar to that of UNet but a
slightly smaller min–max range. So, DeepLab seems to be the best of those three models, as
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it features the second-highest median F1-score and the narrowest spread. Faster RCNN,
FCN, attention CNN, CNN LSTM, DDETR, and custom transformer models have between
1 and 3 reported performances within the range of the best-performing model, Mask
RCNN. Further investigations on those models will yield more general insight into their
promising performance.

There are mostly segmentation models found in the mIoU boxplots in Figure 14, as it
was reported as a metric for other CV tasks less than five times.

Figure 14. Distribution of model mIoU for all localization models reporting it as a metric in our
publication corpus. × marks data points that have a distance of more than 1.5 times the interquartile
range to the first or third quartile.

The reported values are generally lower than mAP and F1-score due to the higher
difficulty of the segmentation task compared to object detection. There are also only five
models with more than one sample, which are UNet, ensemble models, DeepLab, ViT,
and custom encoder–decoder-CNNs. The best of those five regarding the median mIoU
are ensemble models. DeepLab shows the second-highest median mIoU with a slightly
larger min–max spread compared to ensemble models. Custom encoder–decoder CNNs
achieve a median mIoU 5%p lower but with a slightly lower spread. The UNet model,
which occurred the most, also has the worst performance regarding the median, as well as
the interquartile range and min–max spread. Of the seven models with only one sample,
an attention-enhanced CNN, DenseNet, and a custom transformer yield a performance
that is more than 10%p better than the median of DeepLab. Further investigation of these
architectures on different datasets seems promising.

Based on our surveyed literature, we would recommend using Mask RCNN or YOLO
models for localization tasks solved with object detection models and DeepLab, Mask
RCNN, or UNet for segmentation. Despite a higher time expenditure for implementation
and training, the use of customized CNN models can be justified and yield similar perfor-
mance to the aforementioned models. However, it should be noted that, on the one hand,
the necessary expertise must be available and, on the other hand, the amount of data must
be sufficient. CNN LSTM, DDETR, custom transformer, and FCN look promising, as well,
but have to be investigated more thoroughly to make a more informed statement.

4.4. Comparison with Academic Development in Deep Learning Computer Vision Models

Figure 15 illustrates how often a certain DL model was applied to VI each year be-
tween 2012 and 2023 based on our publication corpus. In addition, we highlight the
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progress of SOTA DL CV models by marking in which year the models were first pro-
posed. There were very few publications from 2012 to 2017, but 2018 onward, there
has been a strong increase every following year, reaching a maximum to date of almost
100 publications in 2022.
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Figure 15. Timeline showing the number of occurrences of models in a certain year in our publication
corpus from 2012 to 2023. Only models that occurred at least two times in total were included. Vertical
dashed lines mark the proposal of models considered to be research milestones.

In 2012, a CNN received significant attention for its classification ability. This CNN
is called AlexNet and took first place at the ImageNet Large Scale Visual Recognition
Challenge 2012 (ILSVRC 2012) with an error rate 10.9%p lower than the second-place
model [249]. Thereafter, the field of CV was dominated by CNN architectures. In the
following years, the models became deeper and more complex. In 2014, VGG [250] and
FCN [251] were introduced, but with deeper models, the vanishing gradient problem
occurs more intensively. One solution was introduced in 2015 with Microsoft’s ResNet,
which uses residual connections [67]. Due to the residual connections, the gradient does
not decrease arbitrarily. This year also marks the proposal of the one-stage object detection
architectures YOLO [68] and SSD [252], which are optimized for inference speed; the third
iteration of the two-stage detector (Faster) RCNN [253]; and the segmentation architecture
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UNet [254]. In 2016, DenseNet was published, and it uses a similar approach to ResNet’s
residual connections, called dense connections [255]. In the same year, the second version
of YOLO [256] was published, adopting the concept of anchor boxes from SDD and using
a new backbone network, called Darknet-19, specifically designed for object detection.
In 2017, an RCNN version for semantic segmentation, called Mask RCNN [257], as well as
the first transformer model in natural language processing [258], was proposed. The third
version of YOLO [259],proposed in 2018, adds multi-scale detection in addition to a deeper
backbone network to further improve the detection of small objects. In 2019, Google
proposed EfficientNets [260], a series of models, where architectural scaling parameters
like width, depth, and resolution were not chosen by the authors but determined by a
learning-based approach called neural architecture search. YOLO v4 [261] and v5 [262]
were published in very short succession by different authors implementing many similar
improvements, like a new data augmentation strategy called mosaic augmentation, where
different images are combined for training, the mish activation function [263], and cross-
stage partial connections (CSP) [264], to name a few.

Recently, the impressive results of transformer models in natural language process-
ing (NLP) have attracted the attention of CV researchers to adapt them to their domain.
Two different approaches have been established: either they are utilized as backbone
networks, such as the vision transformer (ViT) [265] or the shifted windows transformer
(Swin) [266], or they function as detection heads, such as the detection transformer
(DETR) [267] and the dynamic head transformer (DyHead) [268], which work on features
extracted by an upstream (CNN) backbone. Nowadays, transformer models outperform
convolution-based models on CV benchmark datasets like MS COCO [269] or Pascal visual
object classes (VOC) by up to 7.5% in mAP [270].

Another advantage of transformers is that they do not require a lot of labeled data,
since they can be pretrained for object detection in a self-supervised manner before being
fine-tuned on small labeled datasets. Chen et al. proposed a pretraining task specifically
for the DETR model that improves on its supervised performance, while Bar et al. even
achieved highly accurate zero-shot with the same model [271,272]. Xu et al. developed
a student–teacher-based training procedure for object detection that is independent of
the model architecture, but transformers show very good performance when trained
with it [273]. These aforementioned methods are limited to the task of object detection,
but transformers are also able to learn more general representations from self-supervised
training that can be adapted to different CV tasks, such as classification, object detection,
segmentation, key point detection, or pose estimation. These methods can be grouped into
three different categories: masked image modeling (MIM), contrastive learning, and hybrids
of those two. In masked image modeling, parts of the input images are masked out, usually
with the average color values of the image, and the task is to reconstruct these masked-out
sections [274,275]. Contrastive learning tries to achieve similar representations for similar
input images. This is achieved by augmenting the input in two different ways and forcing
the model to represent both views close to each other, while augmented views of other
images are pushed away in the representation space [276–281]. Fang et al. combined both
paradigms, conditioning their model to reconstruct the masked-out features of a contrastive
image language pretraining (CLIP) model [282] to achieve even better results. In AVI,
properties like strong generalization and data efficiency are highly desirable, since labeled
data are scarce. Especially in tasks where errors or damages need to be detected, there is a
lack of examples for training. When looking at the timeline in Figure 15, it is noticeable
that there is a time gap of two to three years between the invention of a model and its
transfer to an AVI application. Consequently, we can argue that the performance in AVI
can be improved by the increased application of newer CNN models, such as Efficient
v1/2 [260,283], FCOS [284], or attention-enhanced CNN models, which showed promise
in localization tasks with regard to their F1-score and mIoU. The introduction of vision
transformer models such as DETR, Swin v1, or the Retina-Swin [266,267,285] started in
2022, which is already faster than what we observed with most CNN models in the past.
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Most of these publications yielded results within the top range of their AVI use case, as
has been shown in Section 4 [70,123,152,164,187]; therefore, we expect and recommend the
acceleration of the application of vision transformers to the domain of AVI, especially even
newer, very parameter-efficient models like Dino and its variants [286–289]. All publications
utilizing transformer models applied them via supervised transfer learning, disregarding
their excellent semi-supervised learning capabilities with regard to generalization and
data efficiency. This could potentially reduce the amount of labeled data required to
train them, which ultimately leads to a lower investment of time for labeling and thus
cost. Nevertheless, it must be noted that transformers need more memory than CNNs;
therefore, the benefits may be limited on edge devices. Further research into the model
miniaturization of vision transformers may lead to an improvement on this front.

5. Conclusions

In this review, we provide a comprehensive overview of 196 scientific publications
published between 2012 and March 2023 dealing with the application of DL-based models
for AVI in manufacturing and maintenance.

The publications were categorized and critically evaluated based on six guiding
questions, which helped us throughout the literature review. By answering these questions,
we can report several findings.

Based on the literature, we derived key requirements for AVI use cases. These re-
quirements were subsequently organized into two distinct dimensions, namely, general
versus specific requirements and hard technical versus soft human factors. As a result, we
identified several essential aspects that transcend particular use cases and are of broad
significance. These encompass performance, explainability, robustness/generalization, the
ability to handle sparse data, real-time capability, and adherence to hardware constraints.

The use cases in which DL-based AVI is applied can be structured hierarchically. All
of them fall under quality inspection, but they can be subdivided into damage detection,
completeness check, and others, where the latest contains use cases like plant disease detec-
tion, food contamination detection, and indirect wear and vibration estimation. The damage
detection category features one additional sub-use-case that occurs frequently: crack detection.

We analyzed the datasets utilized in AVI regarding size distributions as well as the
uniformity of their class distributions. This is measured by a balance metric that we
propose. In many cases, the dataset parameters required to compute it are incompletely or
imprecisely reported. On the one hand, this limited our analysis, but on the other hand,
it also makes the results less comparable between publications and harder to reproduce
and hinders further development of existing research results by others, which is detrimental
to the progress of AVI overall. In addition, we could identify 14 datasets that were utilized
more than once to benchmark tasks, out of the wide selection of 77 open datasets provided
by authors. So, we want to encourage AVI researchers to give more detailed dataset
descriptions to improve comparability and use and improve open datasets to advance the
field as a whole.

We found that AVI can be addressed with classification and localization tasks, of
which both come in two forms: binary and multi-class. These four AVI tasks are closely
related to the three most common CV tasks, which means that classification AVI tasks
are performed by image classification models, while localization tasks are performed by
either object detection or segmentation models. In the domain of maintenance-oriented AVI
use cases, we observed that localization methodologies are prevalent, as they are utilized
approximately 77.2% of the time, while classification methods are employed in about 22.8%
of instances. In contrast, within the manufacturing-focused AVI applications, the distribu-
tion of localization and classification strategies is more evenly balanced, with localization
accounting for 49.2% and classification accounting for 50.8% of use cases. These discernible
discrepancies in the adoption of localization and classification approaches can be attributed
to various environmental factors that govern the distinct operational requirements and
objectives of maintenance and manufacturing scenarios. Especially for maintenance, we
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recommend prioritizing localization-capable methodologies such as YOLO and Mask RC-
NNs. The inherent capability of these methods to precisely localize and delineate objects of
interest is deemed crucial to enhancing the effectiveness of AVI for maintenance purposes.
If the task can be performed through classification, ResNet and EfficientNet are the models
we recommend using.

We also compared the SOTA in AVI applications with the advance in academic CV
research. We identified a time gap of two to three years between the first proposal of a
model and its transfer to an industrial AVI application. The first publications utilizing
vision transformer models occurred at the lower bound of this gap in the first quarter
of 2022, while more followed over the course of the year. Since their results are in the
upper performance range of their respective AVI use cases, and much effort is being put
into reducing their hardware requirements, we expect them to become the standard in
the future. A more thorough investigation of vision transformers for classification and
attention-enhanced CNNs, DDETR, and custom transformer models for localization in
more different use cases could yield insights if these models live up to the potential they
have shown in their low number of applications.

This review paper is not without limitations, which should be acknowledged in order
to fully assess its scope and implications. The first limitation concerns the use of exclusively
2D image data. While this choice was motivated by broad applicability, it inadvertently lim-
its the integration of more sophisticated imaging technologies. Nevertheless, it is important
to emphasize that input signals other than traditional RGB images limit the effectiveness of
domain adaptation techniques, e.g., transfer learning, due to a more pronounced domain
gap. Another limitation of our literature review is the concise treatment of the models and
training methods used in the reviewed publications. Given the extensive nature of the
publication corpus considered, it could distort the research scope that we wanted to address
by providing a detailed exposition of each model and training methodology. It should be
noted that all of the included literature sources are open-access, allowing interested readers
unrestricted access to the publications themselves, where more detailed descriptions of
these aspects can be found.

These limitations provide avenues for future research to delve deeper into the topics
addressed herein and extend the knowledge base in the field. Therefore, a future addition
to our work will be looking at other input sensors for AVI. For example, an interesting
research question to investigate is, To what extent can approaches used for 2D images be
transferred to 3D images, containing depth information, or other sensor outputs, such as
point clouds?

Another direction for future research is to investigate the time gap between academic
research and industrial applications, which we assume is not limited to AVI. The reasons
are probably manifold, but is it possible to reduce the identified gap of two to three years?
And what is necessary to reduce the gap?

We expect vision transformers to become the models of choice for AVI applications.
However, most publications focused on fine-tuning pretrained models in a supervised
manner, ignoring their strong self-supervised learning capabilities. These have been demon-
strated on benchmark datasets for specific tasks, such as object detection, as well as for
learning more general representations transferable to a multitude of tasks. From our point
of view, the transfer of self-supervised learning to AVI applications seems to be a research
path worth spending more attention on in the future, especially because the available
datasets for industrial applications are much smaller than the benchmark datasets.
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Abbreviations
The following abbreviations are used in this manuscript:

AVI Automated visual inspection
DL Deep learning
CNN Convolutional neural network
MS COCO Microsoft common objects in context (object detection) dataset
CV Computer vision
DETR Detection transformer [267]
DDETR Deformable detection transformer [290]
FCN Fully convolutional neural network (semantic segmentation model) [251]
FCOS Fully convolutional one-stage object detection (model) [284]
FLOPS Floating-point operations per second
FN(R) False-negative rate
FP(R) False-positive rate
FPS Frames per second
GAN Generative adversarial network
ILSVRC 2012/Im-
ageNet

ImageNet Large Scale Visual Recognition Challenge 2012

LiDAR Light detection and ranging, 3D laser scanning method
LSTM Long short-term memory cell (recurrent neural network variant)
mAP Mean average precision (common object detection performance metric)
MIM Masked image modeling
MLP Multi-layer perceptron (network)
NLP Natural language processing
Pascal VOC Pascal visual object classes (object detection dataset)
ResNet Residual Network [67]
RCNN Regional convolutional neural network [253]
SOTA State of the art
SSD Single-shot detector [252]
SVM Support vector machine
Swin Shifted windows transformer [266]
TN(R) True-negative rate
TP(R) True-positive rate
VI Visual inspection
ViT Specific architecture of a vision transformer model published in [265]
VGG Visual geometry group (model) [250]
WoS Web of Science
YOLO You only look once (object detection model) [68]
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Appendix A

Table A1. Detailed listing of included and excluded Web of science categories.

Web of Science Category Exc. Web of Science Category Exc.

Engineering Electrical Electronic Food Science Technology
Instruments Instrumentation Mathematics Applied
Computer Science Information Systems Medical Informatics x
Engineering Multidisciplinary Nanoscience Nanotechnology
Materials Science Multidisciplinary Nuclear Science Technology x
Chemistry Analytical Oceanography x
Telecommunications Operations Research Management Science x
Physics Applied Psychology Experimental x
Engineering Civil Thermodynamics x
Chemistry Multidisciplinary Agricultural Engineering
Imaging Science Photographic Technology Agriculture Dairy Animal Science x
Remote Sensing x Audiology Speech Language Pathology x
Environmental Sciences Behavioral Sciences x
Computer Science Interdisciplinary Applications Biochemistry Molecular Biology x
Geosciences Multidisciplinary x Ecology x
Construction Building Technology Engineering Industrial
Engineering Mechanical Health Care Sciences Services x
Multidisciplinary Sciences Materials Science Textiles
Radiology Nuclear Medicine Medical Imaging x Medicine Research Experimental x
Engineering Biomedical x Pathology x
Astronomy Astrophysics x Physics Mathematical x
Computer Science Artificial Intelligence Physics Multidisciplinary
Mechanics Physics Particles Fields x
Transportation Science Technology Physiology x
Neurosciences x Quantum Science Technology x
Energy Fuels Respiratory System x
Acoustics x Robotics
Oncology x Surgery x
Engineering Manufacturing Architecture
Mathematical Computational Biology x Chemistry Medicinal x
Mathematics Interdisciplinary Applications Dentistry Oral Surgery Medicine x
Metallurgy Metallurgical Engineering Dermatology x
Optics x Developmental Biology x
Green Sustainable Science Technology Engineering Environmental
Biochemical Research Methods x Fisheries x
Computer Science Software Engineering Forestry x
Automation Control Systems Gastroenterology Hepatology x
Computer Science Theory Methods x Genetics Heredity x
Computer Science Hardware Architecture x Geriatrics Gerontology x
Geography Physical x Immunology x
Agriculture Multidisciplinary Infectious Diseases x
Chemistry Physical x Marine Freshwater Biology x
Engineering Aerospace Materials Science Biomaterials
Environmental Studies x Medical Laboratory Technology x
Materials Science Composites Obstetrics Gynecology x
Medicine General Internal x Otorhinolaryngology x
Physics Condensed Matter x Paleontology x
Rehabilitation x Parasitology x
Biotechnology Applied Microbiology x Peripheral Vascular Disease x
Clinical Neurology x Pharmacology Pharmacy x
Engineering Ocean Physics Fluids Plasmas x
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Table A1. Cont.

Web of Science Category Exc. Web of Science Category Exc.

Materials Science Characterization Testing Physics Nuclear x
Meteorology Atmospheric Sciences x Plant Sciences x
Water Resources x Psychiatry x
Geochemistry Geophysics x Public Environmental Occupational Health x
Mathematics Sport Sciences x
Neuroimaging x Transportation
Agronomy Tropical Medicine x
Cell Biology x Veterinary Sciences x
Engineering Marine
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