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Abstract: The starting rotation of a porous sphere induced by the sudden application of a continuous
torque about its diameter at the center of a spherical cavity filled with an incompressible Newtonian
fluid at low Reynolds numbers is analyzed. The unsteady Stokes and Brinkman equations governing
the fluid velocities outside and inside the porous particle, respectively, are solved via the Laplace
transform, and an explicit formula of its dynamic angular velocity as a function of the pertinent
parameters is obtained. The behavior of the start-up rotation of an isolated porous particle and the
cavity wall effect on the particle rotation are interesting. The angular velocity of the particle grows
incessantly over time from an initial zero to its final value, while the angular acceleration declines
with time continuously. In general, the transient angular velocity is an increasing function of the
porosity of the particle. A porous sphere with higher fluid permeability rotates at higher angular
velocity and acceleration relative to the reference particle at any elapsed time but lags behind the
reference particle in the percentage growth of angular velocity towards the respective terminal values.
The transient angular velocity decreases with increasing particle-to-cavity radius ratio, but it is not a
sensitive function of the radius ratio when the resistance to fluid flow inside the porous particle or
the radius ratio itself is small.

Keywords: transient rotation; porous particle; starting angular velocity; creeping flow; spherical
cavity

1. Introduction

The translation and rotation of solid particles in viscous fluids at low Reynolds num-
bers play important roles in a variety of technological and industrial processes such as
sedimentation, centrifugation, agglomeration, microfluidics, suspension rheology, aerosol
technology, and the motion of blood cells in arteries and veins. The analytical study of this
topic grew out of the classic work of Stokes [1,2] on the steady motion of an isolated hard
sphere in an incompressible Newtonian fluid.

Some small particles are porous, viz. permeable to fluids, such as macromolecules
and flocs of fine particles. The translational and rotational motions of porous particles
have been extensively studied for decades. An approach which comprises a second-order
viscous term to Darcy’s equation for fluid flow through porous media was established
by Brinkman [3]. Neale et al. [4] analyzed the translation of a porous sphere by using
the Brinkman equation for the internal flow and the Stokes equation for the external flow
with appropriate boundary conditions on the particle surface and the assumption that the
effective viscosity inside the porous sphere equals the bulk fluid viscosity. Matsumoto and
Suganuma [5] and Masliyah and Polikar [6] experimentally investigated the sedimentation
of porous particles, the results of which agree well with the analytical formula obtained by
Neale et al. [4].

The angular velocity of a porous sphere of radius a rotating under an applied torque
TA about its diameter in an unbounded fluid of viscosity η at the steady state of low
Reynolds numbers has been obtained by solving the Brinkman and Stokes equations, with
the result [7]
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Ω∞ =
TA

8πηa3ω
, (1)

ω = 1 +
3

(λa)2 − 3
λa

coth(λa), (2)

where λ−1 is the flow penetration length of the porous particle. In the limits λa = 0
(fully permeable in the porous particle) and λa → ∞ (impermeable), Equation (1) results
in Ω∞ → ∞ (ω = 0) and Ω∞ = TA/8πηa3 (ω = 1, Stokes’ result for a hard sphere),
respectively.

Particles move in bounded fluids in real situations, so it is important to know whether
the proximity of a boundary affects the rotation of particles significantly [8–13]. In the
operation of rotational viscometers and stirred vessels for high-viscosity liquids, it is neces-
sary to determine the relationship between angular velocity and torque as the confining
boundary is approached. The steady low-Reynolds-number rotation of a porous sphere
about its diameter at the center of a spherical cavity was analytically studied, with the
particle’s angular velocity given by [7,14]

Ω∞ =
TA

8πηa3ω
(1 − a3

b3 ω), (3)

where b is the radius of the cavity. When a/b = 0, the previous equation becomes
Equation (1). Recently, the rotational motions of a porous sphere about its diameter at
low Reynolds numbers within an approximate or eccentric spherical cavity [15–18] and
near other boundaries [19,20] were also analyzed.

Although the basic formulation of slow particle rotation is mainly constructed in
steady state, its transient behavior is also important for evaluating the validity of steady
supposition [21,22]. The temporal evolution of a particle’s angular velocity is pertinent to
particle dynamics in the sub-millisecond range [23,24]. The low-Reynolds-number response
of the torques exerted by the fluid on isolated hard and soft particles to unsteady rotation
has been studied to some extent [25–27]. Recently, the transient rotation of a hard parti-
cle caused by a suddenly applied torque in a confining cavity was also investigated [28].
However, the starting rotation of isolated or confined porous particles has not been exam-
ined. Knowledge of the start-up rotation in the proximity of confining boundaries may
be important, for example, in the rotational viscometers and agitated vessels for highly
viscous liquids. In this paper, the initial rotation of a porous sphere because of the sudden
application of a continuous torque about its diameter at the center of a spherical cavity
is analyzed. An explicit expression is obtained for the temporal Laplace transform of the
transient angular velocity of the porous sphere.

2. Analysis

As shown in Figure 1, we consider the start-up rotation of a porous sphere of radius
a about its diameter in a viscous fluid within a concentric spherical cavity of radius b in
the spherical coordinate system (r, θ, φ). At time t = 0, the constant torque TA in the z
direction (about the axis θ = 0) is suddenly applied to the originally motionless porous
sphere and continues thereafter. The transient angular velocity Ω(t) (also in the z direction)
of the particle, which is zero at t = 0 and equals the steady value Ω∞ given by Equation (3)
as t → ∞ , needs to be determined. The angular Reynolds number Re = Ω∞a2/ν is
vanishingly small, where ν is the kinematic viscosity of the fluid.
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Figure 1. Geometric sketch for a porous sphere of radius a rotating under the applied torque TA in
the z direction within a concentric cavity of radius b in the spherical coordinate system (r, θ, φ).

The velocity v and hydrodynamic pressure p of the fluid are governed by the transient
Stokes and Brinkman equations [29],

[1 − h(r)(1 − ε)]ρ
∂v
∂t

= −∇p + η∇2v − h(r)ηλ2(v − Ω × rer), (4)

where Ω = Ω(t)ez is the angular velocity of the porous sphere (equal to zero at t = 0) to be
determined, er and ez are unit vectors in the r and z directions, respectively, ρ and η are
the mass density and viscosity, respectively, of the fluid, ε and λ−1 are the porosity and
flow penetration length or square root of the fluid permeability, respectively, of the particle,
h(r) is a step function equal to unity if r ≤ a and zero otherwise. λ−1 is proportional
to ε3/2/(1 − ε) and the pore size according to the Blake–Kozeny equation [30]. In the
Brinkman equation [i.e., Equation (4) for r ≤ a], v is the superficial velocity averaged over
a region of space of the solid plus fluid, large with respect to the pore size, but small with
respect to the particle radius a; the last term relates to the friction force between internal
sphere flow and the rigid sphere backbone, and the viscosity η is assumed to be the bulk
phase value [4].

For the transient rotation of a porous sphere about its diameter in a viscous fluid
within a concentric spherical cavity, Equation (4) can be written as

[1 − h(r)(1 − ε)]
r2

ν

∂vϕ

∂t
=

∂

∂r
(r2 ∂vϕ

∂r
) +

∂

∂θ
[

1
sin θ

∂

∂θ
(vϕ sin θ)]− h(r)λ2r2(vϕ − Ωr sin θ

)
, (5)

where vϕ(r, θ, t) is the azimuthal (only nonzero) component of the fluid velocity satisfying
the continuity equation and the hydrodynamic pressure is a constant throughout the space
in the limit of a low Reynolds number. The initial and boundary conditions are

t = 0: vϕ = 0, (6)

r = 0: vϕ is finite, (7)

r = a: vϕ and τrϕ are continuous, (8)

r = b: vϕ = 0, (9)

where τrϕ is the only nonzero shear stress of the fluid at the particle surface. Equations (7)–
(9) express the absence of any velocity field singularity, the continuity of velocity and
hydrodynamic stress fields at the particle surface, and the stick (zero-slip) condition at the
stationary inner container surface, respectively.

Equations (5)–(9) suggest the form of the fluid velocity to be

vϕ = g(r, t) sin θ. (10)
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The Laplace transform, which is defined by an over-bar for a function of time f (t) as

f (s) =
∫ ∞

0
f (t) exp(−st)dt, (11)

f (t) =
1

2π i

∫ γ+i∞

γ−i∞
f (s) exp(st)ds, (12)

will be used to solve for the flow field and particle’ angular velocity. Then, the transform of
Equations (5) and (10) can be expressed as{

d2

dr2 +
2
r

d
dr

− 2
r2 − h(r)λ2 − [1 − h(r)(1 − ε)]

s
ν

}
g(r, s) = −h(r)λ2rΩ(s), (13)

where s is the transform variable.
The general solution of Equation (13) that satisfies the initial condition (6) is

vϕ = Ωa[C1 I3/2(Ar) + C2 I−3/2(Ar)](Ar)−1/2 sin θ if a ≤ r ≤ b, (14)

vϕ = Ωr

{
(

λ

B
)

2
+[(C3 + C4Br) cosh(Br)− (C3Br + C4)sinh(Br)

]
(

a
r

)3
}

sin θ if r ≤ a, (15)

where A =
√

s/ν, B =
√

λ2 + εs/ν, and In are the modified Bessel functions of the first
kind. The unknown constants (functions of s actually) C1, C2, C3, and C4 are determined
from the boundary conditions (7)–(9) as

C1 =

√
π

2
(

λ

B
)

2
L1L3G, (16)

C2 =

√
π

2
(

λ

B
)

2
L2L3G, (17)

C3 = 0, (18)

C4 = (
λ

B
)

2
L4G, (19)

where
G = [L5sinh(Ba)− L6 cosh(Ba)]−1; (20)

L1 = A2a2[Absinh(Ab)− cosh(Ab)], (21)

L2 = A2a2[sinh(Ab)− Ab cosh(Ab)], (22)

L3 = (3 + B2a2)sinh(Ba)− 3Ba cosh(Ba), (23)

L4 = cosh(Aa)[N1 cosh(Ab) + N2sinh(Ab)]− sinh(Aa)[N2 cosh(Ab) + N1sinh(Ab)], (24)

L5 = cosh(Aa)[N3 cosh(Ab) + N4sinh(Ab)]− sinh(Aa)[N4 cosh(Ab) + N3sinh(Ab)], (25)

L6 = Ba[L1sinh(Aa) + L2 cosh(Aa)]; (26)

N1 = Aa(3 − A2ab)− 3Ab, (27)

N2 = 3 − A2a(3b − a), (28)

N3 = AB2a2(b − a)− A3a2b, (29)

N4 = A2a2(1 + B2ab)− B2a2. (30)

The torque exerted by the fluid on the particle (in the z direction) is negative and its
Laplace transform is given by

Th = 2πηλ2
∫ π

0

∫ a

0
(vϕ − Ωr sin θ)r3 sin2 θdrdθ, (31)
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the magnitude of which increases monotonically with the elapsed time from naught at t = 0
to TA as t → ∞ . By using Equation (5) and the Gauss divergence theorem, Equation (31)
can also be expressed as

Th = 2πa3
∫ π

0
τrϕ(r = a) sin2 θdθ − 2περs

∫ π

0

∫ a

0
vϕr3 sin2 θdrdθ. (32)

The substitution of Equations (14)–(19) into Equation (31) or (32) leads to

Th =
8

15
πηa3Ω

{
λ2a2[(

λ

B
)

2
− 1] + 5(

λ

B
)

2
L3L4G

}
, (33)

where η is the viscosity of the fluid. Note that vϕ and Th vanish in the limiting case of
λa = 0.

The sum of the applied and hydrodynamic torques on the particle equals the angular
acceleration multiplied by the moment of inertia,

Th + TA =
8

15
πa5(1 − ε)ρp

dΩ
dt

, (34)

where ρp is the mass density of the solid part of the porous sphere. The substitution of
Equation (33) into Equation (34) results in a formula for the transient angular velocity of
the porous sphere in transform,

Ω =
15TA

8πηa3s

{
A2a2(1 − ε)

ρp

ρ
− 5(

λ

B
)

4
L3L4G + λ2a2[1 − (

λ

B
)

2
]

}−1

, (35)

where ρ = η/ν is the density of the fluid. This angular velocity can be obtained numerically
using the inverse Laplace transform [31–33]. In the limiting case of λa → ∞ (the porous
sphere becomes impermeable with ε = 0), Equation (35) is identical to the corresponding
formula obtained for the transient rotation of a hard sphere inside a spherical cavity taking
the surfaces to be nonslip [28].

If the applied torque TA is suddenly taken away from a rotating porous sphere that
is already at a steady state with angular velocity Ω∞, the transient angular velocity of the
porous sphere that stops rotating will decay from Ω∞ to zero as Ω∞ − Ω decreases with
time, calculated using the inverse transform of Equation (35).

In the limit a/b = 0, L4G in Equation (35) reduces to that for the porous sphere rotating
in an unbounded fluid:

L4G = − 3 + 3Aa + A2a2

A2Ba3 cosh(Ba) + (AB2a − A2 + B2)a2sinh(Ba)
. (36)

In our linear problem, the transient translation of the porous sphere caused by an
applied force can be considered separately [29].

3. Results and Discussion

The nondimensionalized starting angular velocity 8πηa3Ω/TA of a porous sphere
applied by constant torque TA about a diameter in a boundless fluid (a/b = 0), calculated
from Equations (35) and (36) by means of numerical inverse transform, is plotted versus
the dimensionless passed time νt/a2, relative density ρp/ρ, shielding parameter λa, and
porosity ε of the particle in Figures 2–4. For fixed values of λa, ρp/ρ, and ε, as expected,
the particle’s angular velocity grows continuously with νt/a2 from zero at νt/a2 = 0 to
the final rate given by Equation (1) (which does not depend on ρp/ρ or ε) as νt/a2 → ∞ .
In the limits of minimum density ρp/ρ = 0 and maximum porosity ε → 1 of the particle,
as shown in Figure 2a,c, the initial value of 8πηa3Ω/TA may also be 15/λ2a2 as singular
situations at t = 0.
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Figure 2. Dimensionless angular velocity 8πηa3Ω/TA of a spherical porous particle in a boundless
fluid versus the dimensionless elapsed time νt/a2: (a) λa = 1 and ε = 0.5; (b) ρp/ρ = 1 and ε = 0.5;
(c) λa = 1 and ρp/ρ = 1.
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Figure 4. Dimensionless angular velocity 8πηa3Ω/TA of a spherical porous particle in a boundless
fluid at νt/a2 = 1 versus the density ratio ρp/ρ: (a) ε = 0.5; (b) λa = 1.

For specified values of νt/a2, ρp/ρ, and ε, as shown in Figures 2b, 3 and 4a, the
dimensionless angular velocity 8πηa3Ω/TA of the porous sphere is a monotonic decreasing
function of λa (relative resistance to fluid flow inside the porous particle) from infinity (as
νt/a2 → ∞ , or ρp/ρ = 0, or ε → 1) or a finite value at λa = 0 (fully permeable particle)
to a smaller value as λa → ∞ (impermeable particle), illustrating the reduction in the
transient angular velocity of the porous particle with an increase in its internal resistance
to fluid flow at any elapsed time. When the value of λa is small, interestingly, a porous
particle with higher fluid permeability (smaller value of λa) develops its angular velocity in
percentage slower relative to the reference particle towards the respective terminal values
(despite the greater value of its angular velocity at any elapsed time). In the limit λa = 0,
the value of 8πηa3Ω/TA equals 15(νt/a2)ρ/(1 − ε)ρp, as resulting from Equation (35).

For fixed values of νt/a2, λa, and ε, as illustrated in Figures 2a, 3a and 4, the angular
velocity 8πηa3Ω/TA is a monotonic decreasing function of the density ratio ρp/ρ from a
finite value (as λa > 0) or infinity (for the completely permeable case λa = 0) at ρp/ρ = 0,
indicating the diminution in the transient angular velocity of the particle with an increase
in its relative density. In the limit ρp/ρ → ∞ , the angular velocity vanishes except for the
steady state νt/a2 → ∞ . For the limiting case of maximum porosity ε → 1 , the angular
velocity does not depend on ρp/ρ.

For given values of νt/a2, ρp/ρ, and λa, as shown in Figures 2c, 3b and 4b, the angular
velocity 8πηa3Ω/TA of the porous sphere in general is an increasing function of the porosity
ε from a finite value as ε → 0 to a larger one as ε → 1 , illustrating that a particle with
smaller porosity lags behind that with greater porosity in the development of the angular
velocity. However, 8πηa3Ω/TA may slightly decrease with an increase in ε when the value
of ρp/ρ is relatively small.

The dimensionless angular acceleration (8πρa5/TA)dΩ/dt of a porous sphere starting
to rotate under the application of a constant torque in a boundless fluid as a function of
the dimensionless time νt/a2 is presented in Figure 5 for various values of the shielding
parameter λa, density ratio ρp/ρ, and porosity ε. This angular acceleration decreases
monotonically with an increase in νt/a2 from a maximum equal to 15ρ/(1 − ε)ρp (inde-
pendent of finite values of λa) or 15ρ/

[
(1 − ε)ρp + ερ

]
(for the singular limit λa → ∞ )

at νt/a2 = 0 and disappears as νt/a2 → ∞ . For given values of λa and ε, the angular
acceleration (8πρa5/TA)dΩ/dt decreases as ρp/ρ increases at the early stage, is not a
monotonic function of ρp/ρ at the medium stage, and then increases with an increase in
ρp/ρ at the late stage, but always vanishes in the limit ρp/ρ → ∞ (where 8πηa3Ω/TA = 0).
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This consequence reproduces the fact that a particle of higher relative density grows its
angular velocity slower but has a terminal value independent of the relative density. In the
limiting case of ρp/ρ → ∞ , the angular acceleration of the particle vanishes (so does its
angular velocity) regardless of the elapsed time. For any fixed values of νt/a2, ρp/ρ, and
ε, the quantity (8πρa5/TA)dΩ/dt decreases as λa increases from 15ρ/(1 − ε)ρp at λa = 0
[where the angular acceleration of the porous sphere does not depend on the elapsed time
and 8πηa3Ω/TA = 15(νt/a2)ρ/(1 − ε)ρp] to a smaller constant as λa → ∞ . This outcome
reflects again the behavior that a porous sphere with higher fluid permeability develops its
angular velocity in percentage slower toward the terminal value. For specified values of
ρp/ρ and λa, (8πρa5/TA)dΩ/dt increases with an increase in ε at the early stage (reflecting
that a particle with greater porosity develops its angular velocity faster), is not a monotonic
function of ε at the medium stage, and then decreases with an increase in ε at the late
stage (since the particle with greater porosity has already developed most of its terminal
angular velocity).
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Figure 5. Dimensionless angular acceleration (8πρa5/TA)dΩ/dt of a spherical porous particle in a
boundless fluid versus the dimensionless elapsed time νt/a2: (a) λa = 1 and ε = 0.5; (b) ρp/ρ = 1
and ε = 0.5; (c) λa = 1 and ρp/ρ = 1.

The dimensionless starting angular velocity 8πηa3Ω/TA of a porous sphere applied
by a constant torque TA about a diameter at the center of a spherical cavity, calculated from
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Equation (35) by means of numerical inverse transform, is plotted versus the dimensionless
passed time νt/a2, ratio of the particle radius to the permeation length λa, particle-to-fluid
density ratio ρp/ρ, and particle porosity ε in Figures 6–9, respectively, for several values
of the particle-to-cavity radius ratio a/b. Again, 8πηa3Ω/TA grows continuously from
zero at νt/a2 = 0 to the final value (which does not depend on ρp/ρ) given by Equation (3)
as νt/a2 → ∞ , diminishes monotonically with increasing λa from a constant at λa = 0
to a smaller one as λa → ∞ , is a monotonic decreasing function of ρp/ρ from a constant
at ρp/ρ = 0 to zero as ρp/ρ → ∞ , and in general is an increasing function of ε, keeping
the other parameters unchanged. For fixed values of νt/a2, λa, ρp/ρ, and ε, the angular
velocity 8πηa3Ω/TA decreases monotonically with an increase in a/b (the wall retardation
effect on the particle rotation is an increasing function of the relative particle radius) but in
general is not a sensitive function of a/b when νt/a2 is small (say, less than 1), λa is small
(say, less than 1), ρp/ρ is large (say, greater than 1), or a/b is small (say, less than 0.5). For a
nonzero value of νt/a2 and finite value of ρp/ρ, the quantity 8πηa3Ω/TA remains finite in
the limit a/b = 1 (the cavity is filled up by the particle), except for the case of λa → ∞ .
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Figure 9. Dimensionless angular velocity 8πηa3Ω/TA of a spherical porous particle in a cavity versus
the porosity ε with νt/a2 = 1, λa = 1, and ρp/ρ = 1.

4. Conclusions

This work analyzes the start-up rotation of a porous sphere caused by a suddenly
applied torque about its diameter in a concentric spherical cavity filled with a viscous
fluid at low Reynolds numbers. The transient Stokes and Brinkman equations governing
the fluid velocities outside and inside the porous particle, respectively, are solved by
using Laplace transformation, and an explicit formula of its dynamic angular velocity as a
function of the related parameters is obtained in Equation (35). The behavior of the starting
rotation of an isolated porous particle and the effect of the confining cavity wall on the
particle rotation are interesting. The angular velocity continuously increases over time from
an initial zero to a terminal value and the angular acceleration continuously decays over
time. A porous sphere with higher fluid permeability rotates at higher angular velocity



Colloids Interfaces 2024, 8, 20 11 of 12

and acceleration relative to the reference particle at any elapsed time, but it lags behind
it in the percentage increase in angular velocity towards the respective final values. A
particle with a higher relative density or smaller porosity rotates at a lower angular velocity
in any elapsed time, and the angular velocity grows slower towards the terminal value.
The transient angular velocity decreases with the increase in the particle-to-cavity radius
ratio but is not a sensitive function of the radius ratio when the fluid flow resistance inside
the porous particle is small, the particle-to-fluid density ratio is large, or the radius ratio
itself is small. The insights gained from this theoretical research on the transient rotational
motion of a porous particle at low Reynolds Numbers may hold significance in the design
of micro/nanorobots [34,35].
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