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Abstract: DNN-based systems have demonstrated unprecedented performance in terms of accuracy
and speed over the past decade. However, recent work has shown that such models may not
be sufficiently robust during the inference process. Furthermore, due to the data-driven learning
nature of DNNs, designing interpretable and generalizable networks is a major challenge, especially
when considering critical applications such as medical computer-aided diagnostics (CAD) and other
medical imaging tasks. Within this context, a line of approaches incorporating prior knowledge
domain information into deep learning methods has recently emerged. In particular, many of these
approaches utilize known physics-based forward imaging models, aimed at improving the stability
and generalization ability of DNNs for medical imaging applications. In this paper, we review
recent work focused on such physics-based or physics-prior-based learning for a variety of imaging
modalities and medical applications. We discuss how the inclusion of such physics priors to the
training process and/or network architecture supports their stability and generalization ability.
Moreover, we propose a new physics-based approach, in which an explicit physics prior, which
describes the relation between the input and output of the forward imaging model, is included as an
additional input into the network architecture. Furthermore, we propose a tailored training process
for this extended architecture, for which training data are generated with perturbed physical priors
that are also integrated into the network. Within the scope of this approach, we offer a problem
formulation for a regression task with a highly nonlinear forward model and highlight possible useful
applications for this task. Finally, we briefly discuss future challenges for physics-informed deep
learning in the context of medical imaging.

Keywords: deep learning; deep neural networks; robustness; stability; generalization; physics-
informed deep learning; medical imaging; computer-aided diagnostics

1. Introduction

Medical imaging plays a pivotal role in many medical diagnostic tasks. In order to
obtain an accurate diagnosis, high-quality image acquisition and interpretation are both
required [1]. Acquisition technology has significantly improved in recent decades, with
scanners that enable higher resolution and shortened acquisition times having become
available [2–5]. Furthermore, the image interpretation process has undergone major ad-
vancements over the last decade due to the development of deep learning methods and
access to high-performance computational resources. Deep learning has been shown to
yield State-of-the-Art performance in terms of accuracy and computational speed [6–10].
The combination of these technological advancements, thus, has the potential to revo-
lutionize medical imaging, playing a key role as a supporting tool in the radiological
workflow [11]. The U.S. Food and Drug Administration (FDA) has approved a few diagnos-
tic procedures utilizing deep learning and artificial intelligence (AI) technologies [12–14].
Nonetheless, three major challenges remain for deep diagnostic models, namely, (1) a lack of
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access to interpreted medical images and data, which are required for the training process;
(2) limited reliability and robustness to noise or other unknown perturbations in the data
acquisition process [15–17]; and (3) limited ability to generalize to data sets characterized
by distributions that differ from that of the training data [18,19]. These challenges create
the gap that currently exists between theory and practice in terms of incorporating such
technology into actual clinical settings.

The performance of a machine learning (ML) algorithm for a given task is typically
assessed using metrics such as accuracy, specificity, and sensitivity. However, especially
when considering the clinical applicability of such algorithms, robustness is an additional
important aspect of performance that should be considered. “Robustness” is a general
term that may be referred to in different contexts, such as robustness to deterministic
input variations (e.g., contrast) [17], out-of-distribution (OOD) inputs [18], random input
perturbations or noise [20], adversarial attacks [15,21–24], and more. The underlying
approach at the core of robustness assessment, which is common to these different contexts,
is to examine the extent of the variation that may be applied to the algorithm’s input whilst
obtaining valid predictions at the output. In any case, evaluating the robustness of a deep
learning model intended for clinical tasks should be addressed in addition to its accuracy
and specificity metrics, according to the application at hand.

One straightforward approach to increase the robustness of a deep neural network
(DNN) to unknown perturbations is data augmentation, where the network is trained on an
artificially expanded data set created by applying a modifying transform or adding noise to
the existing data [25]. However, this approach is basically focused on the desired output of
the network according to the required task; it does not introduce any new information that
may affect the learning process of the network to resemble a human perspective derived
from the specific problem or task at hand [25]. An approach to address this issue that has
been discussed in recent years is the inclusion of physics-prior information, which is related
to the forward imaging models, into the learning process and/or network design [26–29].
The assumption behind the inclusion of physics-prior information is that it may shift the
learning mechanism in order to improve the stability of the network [26]. In addition, it
has been shown that the inclusion of such priors may improve the generalization capacity
of the network. Furthermore, it has the important advantage of supporting training on
smaller data sets or in cases where the clinical ground truth (GT) is unavailable [26]. The
more general concept of the incorporation of domain knowledge into deep learning for
medical imaging analysis is thoroughly discussed in [25].

An additional important issue is the choice of network architecture, which may signif-
icantly affect the performance of the network. In [28], the problem of a neural architecture
search in the context of physics-based learning has been addressed, and a scheme for
automatically finding an optimal architecture was proposed through a general formulation
that is not limited to the medical case. However, the performance of this approach in
medical applications has yet to be validated.

A comprehensive survey of works in which the medical knowledge domain is in-
tegrated into deep learning techniques has been given in [25], categorizing the studies
according to their medical tasks, namely, disease diagnosis, lesion/organ abnormality
detection, and lesion/organ segmentation. An additional central review paper is [29],
which includes an overview of deep learning methods incorporating physics priors for
MRI reconstruction tasks. In [29], physics-based approaches were classified according to
the principal mechanisms of inclusion of the physics prior, namely, physics-based loss
functions, plug-and-play (PnP) methods, generative models, and unrolled networks.

In this paper, we survey recent studies that have utilized approaches involving the
inclusion of prior knowledge into the learning process for various medical imaging modali-
ties, tasks, and applications and discuss how this improves the training mechanism and
performance of the deep neural models. We follow the classification method proposed
in [29] and discuss the common thread of the physics-prior-based mechanisms for various
imaging modalities, such as diffusion-weighted MRI, ultrasound imaging, and PET-CT,
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among others. Following this survey, we further propose to extend the approach of physics-
based learning to consist of an explicit physics prior, which describes the relation between
the input and output of the forward imaging model, such that the prior is specifically
fed into the architecture. Motivated by the applications discussed in the survey, we also
introduce a problem formulation for the proposed approach, considering the task of opti-
mal parameter estimation for a highly nonlinear forward physical model. Furthermore,
we briefly describe a possible simulated-experiment-based methodology to quantitatively
assess the performance of the proposed approach in terms of its generalization ability. To
conclude the paper, we outline current challenges and future research directions within
this context.

It is important to note that our goal in this paper is by no means to cover all the research
papers within the scope of physics-based deep learning; we mainly focus on recent studies,
the majority of which are from the previous five or six years and discuss their general
common principles within the context of the various physics-prior-based methods. We in-
corporate references from searched databases including the following publications: Medical
Image Analysis, Magnetic Resonance in Medicine, Proceedings of the International Conference on
Medical Image Computing and Computer-Assisted Intervention (MICCAI), IEEE Transactions
on Medical Imaging, IEEE Signal Processing Magazine, and other IEEE-related databases. We
also included additional cross-referenced works not listed in the above search process.

2. Physics-Based Loss Terms

The inclusion of a physics prior as part of the loss term directly affects the learning
mechanism of a network, as this means that it is used in the optimization process during
training. A straightforward way to include the physics prior as part of the loss term is to
simply insert the expression for the physical forward model that relates to the input and
output of the network into the loss calculation. (A general scheme is shown in Figure 1a.)
For example, in [30], an unsupervised physics-based DNN was proposed for the problem
of intravoxel incoherent motion (IVIM) model parameter estimation for diffusion-weighted
MRI in pancreatic imaging, where the forward model equation was incorporated into the
loss function of the network. This enabled iterative learning of the IVIM parameters, which
were the required output of the network. The training process was applied for syntheti-
cally generated data produced according to the forward model equations, which enabled
unsupervised learning without requiring either clinical data or their corresponding ground
truth (GT) parameter maps. A similar approach was applied in [26] for an ophthalmology
application, in which the bio-optical parameters of the intraocular lens were required to
be accurately evaluated for cataract surgeries. For this purpose, a DNN incorporating the
optical ray propagation model in the eye was trained on synthetically generated biometric
data. The physics-based loss term included the explicit expressions for the eye’s optical
system, and its minimization yielded the required parameters. The proposed training result
was shown to be superior to that of systems with a standard training approach, as well as
State-of-the-Art intraocular calculation on biometric datasets. Thus, it was concluded that
the inclusion of a physics prior into the network’s loss term enabled the generalization of
the network model to a wide range of eye biometric data without requiring large clinical
data sets.

For problems where explicit forward model expressions are not fully known, a different
approach is to express the loss term as an optimization problem whose solution coincides
with the model equations. In this manner, the model equations are implicitly integrated
into the loss term. For example, in [31], the problem of producing in silico, patient-
specific cardiac mechanical models was discussed. This problem, which may be solved
by computationally intensive finite element models (FEMs), was addressed through the
use of a deep neural network approach that aims to replace the FEM solution. A cost
term that included the effect of the heart microstructure and its contraction was applied in
order to avoid the need for heavy and time-consuming finite element model computations.
The minimization of this cost function coincided with the solution to the momentum
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balance equations, which model the dynamics of the heart microstructure. The inclusion of
physics priors as part of the loss function, thus, enabled the researchers to bypass heavy
computations whilst providing a network with generalization capacity for individualized
in silico models.
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A different approach to the inclusion of physics priors as part of the loss term has been
suggested in [32], in which a novel method for strain reconstruction maps in ultrasound
elastography imaging was proposed. In this study, implicit physics information that
relates to the RF data, the tissue displacement, and the predicted elastography map was
incorporated into the cost function of the network. The inclusion of the implicit tissue
displacement prior (termed “privileged information”) was enabled by applying a strategy
to generate triplets of training data, privileged information, and training labels based on
numerical biomechanics and ultrasound physics simulations. This physics-based loss term
was applied as feedback information to an intermediate layer of the network architecture,
whose output was the predicted tissue strain map. This network was demonstrated to
outperform previous State-of-the-Art methods on simulated, phantom, and clinical liver
and breast imaging data. It was observed that the inclusion of the privileged information
in the loss term enabled the researchers to correct the intermediate state of the learning
process and narrow the search region of the network parameters, thereby inducing the
learning process to converge toward the actual target map.

Another class of physics-based loss term techniques is related to the task of image
reconstruction from undersampled data [29]. Specifically, for undersampled MRI recon-
struction, namely, compressed sensing (CS), fast signal acquisition is enabled by subsam-
pling in the k-space (the transform domain). The goal of the network is to find an optimal
reconstruction function, which maps the subsampled k-space data into an image close to the
MR image that corresponds to the fully sampled data [29]. Several works have shown that
applying a loss term that enforces consistency in the k-space domain may yield improved
quality for higher sampling rates, such as in brain MRI [33,34]. This may be intuitively ex-
plained by interpreting the k-space as frequency domain data. In [35], a few low-frequency
terms from the k-space were included in addition to the consistency enforcement, such that
the overall image–domain structure of the MRI image was preserved, and anomaly location
uncertainty was avoided. Similarly, in [18], a transform-based consistency was applied to
generate standard-dose PET images from their low-dose counterparts and corresponding
multicontrast MRI images. For this purpose, the sinogram-based physics of the PET imag-
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ing system was incorporated into the loss function, such that the per-voxel residual in the
transform domain was penalized in a similar manner as applied in undersampled MRI
reconstruction. The experimental results on brain scans demonstrate that the inclusion of
the transform domain loss improved the robustness of the network to out-of-distribution
(OOD) data in the form of lower counts [18].

To conclude this subsection, the inclusion of physics priors as part of the loss term may
be conducted in various ways. The loss term may be explicitly expressed by the forward
model equations when they are available; in other cases, the loss term may be expressed
as an optimization problem whose solution coincides with the implicit model equations.
For the task of image reconstruction from undersampled data (CS), a forward model that
relates to the image domain data to the k-space transform domain may be utilized as a
k-space consistency term; such a term encapsulates the forward model operator and thus
the physical model of the problem. As the studies mentioned above indicate, the inclusion
of the physics prior as part of the loss term may improve the efficiency of the learning
mechanism during training, reduce the required training data, and improve the quality
of reconstructed images in CS. In the following subsection, we discuss how the forward
model equations may also be encapsulated as a prior in the network architecture design.

3. Unrolled Networks

Network unrolling (or unfolding) was originally proposed in [36], motivated by
the need to connect iterative algorithms to deep neural networks and, specifically, to
improve the computational efficiency of sparse coding. In the general context of iterative
algorithms, the core idea of network unrolling is to map each iteration of the algorithm
into a single network layer. These layers are then concatenated to form the network
architecture. (A general scheme is shown in Figure 1b.) Propagation of the input through
the network is thus equivalent to executing the algorithm’s iterations a finite number of
times, equal to the number of layers. The network may be trained using back-propagation,
and its obtained parameters transfer to the algorithm parameters, such as the model and
regularization coefficients. Thus, the unrolled network may be viewed as a parameter
optimization algorithm that is directly related to the original optimization problem. In
this manner, unrolled networks reflect the knowledge domain and improve the lack of
interpretability that is common in other architectures [19]. Unrolled networks are mostly
trained in an end-to-end manner, using a full architecture whose layers correspond to the
solver iterations.

In [37], the problem of parameter estimation for the neurite orientation dispersion and
density imaging (NODDI) model with diffusion MRI (dMRI) was addressed. The NODDI
biophysical model has been widely used for the tissue microstructure characterization of
white matter in the brain [38]. In [37], an unfolded network for the NODDI parameter
optimization was proposed, where the input to the network consists of the measured
MR signals, while the output is the estimated NODDI parameters. The architecture of
the proposed network encapsulated the unrolling of an iterative algorithm to solve the
parameter estimation task. The proposed network was compared to a multilayer perceptron
(MLP), which had been previously proposed in [39]. The results obtained on clinical brain
scans demonstrate the superior performance of the unrolled network compared to the MLP
in terms of the computational speed parameter estimation accuracy. This was attributed by
the authors in [37] to the unrolled network structure, which was derived from the iterative
update of the solver of the NODDI model equations and for which each layer was also
fed with a “short-cut” input signal that was the input of the first layer. This architecture,
which encapsulated the iterative solver as a prior knowledge domain, outperformed the
previously introduced MLP, which was a generic feed-forward network.

An additional application for network unrolling was presented in [40], where a new
method for clutter suppression in contrast-enhanced ultrasound (US) vascular imaging was
proposed. The algorithm was based on modeling the US signal as the sum of clutter (the
background tissue image) and the required signal (the blood vessel image), followed by
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unfolding an iterative solver for principal component analysis (PCA) aimed at separating
these two model components. The method was trained in a supervised manner on sets
of separated and enhanced US images (clinical and simulated). The experimental results
demonstrate the improved performance of the proposed method in terms of image quality
(i.e., high contrast-to-noise ratios) when compared to a different architecture (the ResNet
architecture). In a similar fashion, as discussed in [37], the improved performance of the
unrolled architecture was attributed to the way in which it captured the iterative process of
the solver, which was based on the physical modeling of the imaging problem.

In [41], an unrolled network architecture based on the primal-dual hybrid gradient
optimization algorithm was proposed for solving the inverse problem of computerized
tomography (CT) reconstruction. The proposed architecture consisted of CNNs in both the
reconstruction and data space. The network was trained on simulated data and accounted
for the physical modeling of the problem by incorporating a nonlinear forward operator,
which related the signal to the observed data. The results on simulated low-dose CT
and human phantoms demonstrate the superior performance of the method in terms of
reconstruction quality when compared to previous classical methods as well as previously
proposed deep learning architectures.

The technique of network unrolling is also prevalent in a significant group of studies
in the context of CS-based MRI [29]. As mentioned above, in CS, the compressibility of MR
images is utilized to obtain reconstructions from subsampled k-space measurements in a
manner that enables faster and, thus, clinically applicable image acquisition rates. In this
context, a regularized least squares problem that consists of a sparse linear transform needs
to be solved. One method to solve this problem is the iterative alternating direction method
of multipliers (ADMM) [42], which may be solved by unrolling a deep neural network as
described in [43]. In [43], each layer of the proposed ADMM-Net architecture corresponds
to an iteration of the ADMM algorithm. The results for brain and chest MR images
demonstrate the high performance of ADMM-Net in terms of reconstruction accuracy and
computational speed compared to previous State-of-the-Art non-deep-learning methods.
In [44], a more general formulation of ADMM-Net was proposed by expressing the sparse
transform penalty term as a sum of linear undetermined transforms, followed by a nonlinear
regularization function. Experiments on brain MR scans demonstrate that both the basic
ADMM-Net and its extended generalized counterpart outperformed previous State-of-
the-Art methods in terms of reconstruction accuracy. These results were attributed to
the manner in which the proposed architectures captured the CS model and its iterative
ADMM solver.

In [45], an unrolled gradient-descent scheme was proposed for accelerated MRI recon-
struction. The network embedded total variation (TV) regularization and was designed
to learn a complete reconstruction process for complex-valued multichannel MR data. It
was trained on complete clinical musculoskeletal images that had been retrospectively sub-
sampled with different acceleration rates. The proposed TV-embedding unrolled network
was shown to preserve important spatial features and presented visual similarity with
respect to the reference (i.e., fully sampled) images compared to previous State-of-the-Art
reconstruction methods.

In [46], a novel recurrent neural network architecture for the reconstruction of k-space
undersampled dynamic cardiac MR images was proposed. In addition to embedding
the iterative nature of the traditional fast MR optimization algorithms, the proposed
architecture captured the temporal dependencies of the images. This was enabled by
incorporating convolutional recurrent units that evolved over time into the architecture.
This extended architecture was able to learn the temporal dependencies and the iterative
reconstruction process with only a small number of parameters whilst producing superior
reconstruction quality compared to the previously proposed CNN architectures.

An additional unrolled network architecture for MRI reconstruction has been proposed
in [47] based on an explicit imaging forward model. The network architecture was trained
in an end-to-end manner with weight sharing across iterations. Experiments on clinical
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brain images demonstrate the improved quality of the obtained reconstructions compared
to other architectures for which no weight sharing or end-to-end training had been applied.
The obtained results imply the significance of the chosen architecture with respect to the
reconstruction image quality.

To conclude this subsection, network unfolding has been shown to be a useful tool for
encapsulating the physics prior as part of the network architecture. The architecture layers
corresponding to iterations of the specific problem’s solver may also consist of weight
sharing, which, in many cases, improves the obtained performance.

4. Generative Models

An important class of physics-based networks for image reconstruction relies on the
deep image prior (DIP) concept, originally proposed in [48,49]. The need for this approach
is clear in cases where large data sets and/or ground truths are unavailable. In the DIP
method, a generator CNN reconstructs an image from a random latent vector. Specifically,
the generator network is found by solving an optimization problem of the form:

θ∗ = Argmin
θ

E( fθ(z), x), x* = fθ∗(z), (1)

where x is a given degraded/low-resolution source image, x* is the reconstructed image,
E(·, ·) is an energy (or cost) term that is determined by the specific application or task, and
z is a tensor that consists of random latent entries (see [48] for more details). According
to this method, rather than training a CNN on a large data set of example images and
ground truths, the generator network is fitted to a single degraded image. In other words,
the CNN weights are utilized as a parametrization of the restored image. These weights
are randomly initialized and optimized to fit a given degraded image, as well as a task-
dependent observation model [48]. The application of DIP for MRI reconstruction has
been studied in [50], for which the observation model encapsulated the physics of the
problem and was determined as the k-space transform (i.e., applying a Fourier transform
followed by a sampling operator). The generator network weights were not trained based
on a training data set but, rather, were updated based on single undersampled k-space
data. The network performance was evaluated for clinical knee and brain MR images, and
its superiority in terms of reconstruction accuracy compared to previous State-of-the-Art
reconstruction methods, both classical and deep learning-based, was demonstrated.

A different group of studies is based on generative adversarial networks (GANs), in
which a generative CNN is trained in a supervised manner that consists of two subnet-
works: a generator model, which is trained to generate new examples (or images), and
a discriminator model, whose goal is to classify examples as either real (i.e., taken from
the image domain) or fake (i.e., generated) [29] (see Figure 1c). These two models are
trained together in an adversarial fashion until the discriminator model is fooled at a set
prevalence rate, meaning that the generator model is sufficiently plausible. In [51], the
GAN concept was utilized for CS in MRI. To generate high-quality MR images, a mixture of
cost functions was applied such that the generator was trained to remove aliasing artifacts
whilst preserving the texture details. The discriminator network was trained by applying
a perceptual loss and high-quality MR images. Performance evaluation of this scheme
(named GANCS) was applied on a contrast-enhanced knee and abdomen MR data set
of pediatric patients. The generated images were rated by expert radiologists and were
scored to be of higher quality in terms of the preservation of fine texture details than those
obtained from previous methods.

To conclude this subsection, in the discussed works on DIP- and GAN-based methods,
the physics prior is expressed in the imaging forward model, which is encapsulated in the
process through which the image is generated and compared to the target image (during
the updating of generator weights). The next subsection briefly reviews the plug-and-play
approach, where the problem of image reconstruction is separated into denoising and
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forward model recovery subprocesses. This decoupling into subprocesses is naturally
reflected in the network architecture.

5. Plug-and-Play Methods

In plug-and-play (PnP) algorithms, the image denoising problem is decoupled from
the forward model signal recovery [29,52] (see Figure 1d), and the image denoiser may be
chosen from a variety of State-of-the-Art denoisers. This approach may be utilized espe-
cially for problems in which the forward model may significantly change among different
scans, as is the case for CS in MRI. As CNN-based denoisers are trained independently of
the specific forward model of the problem, the use of such an approach may improve the
generalization capacity of the trained network for different data sets. Specifically, in the
case of CS in MRI, PnP algorithms may exploit diverse image structures for training. For
example, in [52], PnP methods were applied for MR knee and cardiac image reconstruction
from highly undersampled data. The CNN denoisers were tailored specifically to each
application, and the comparable performance of PnP methods with respect to previous CS
deep learning methods was shown, even with significantly reduced training data. In [53], a
PnP denoising algorithm was utilized for the problem of diffusion-weighted MRI (dMRI)
reconstruction from undersampled k-space data. Biophysical modeling of the problem was
leveraged to learn the signal manifold corresponding to the k-space, such that no in vivo
data were required. The results on human brain scans demonstrate the capacity of the
proposed scheme to accurately recover dMRI from accelerated k-space acquisitions.

In [54], it was suggested that the PnP approach could be broadened by training the de-
noiser network on pairs of fully sampled images with their generated artifact-contaminated
images. In this manner, the denoiser was provided with additional model information
regarding the resulting aliasing artifacts. In other words, the forward model was further
leveraged as a prior to improve the performance of the denoiser.

To summarize, in the PnP approach, the denoising process is separated from the
forward model recovery, and this decoupling is reflected in the network architecture.
Furthermore, the physical prior knowledge is incorporated into the recovery process
(which is directly related to the forward model).

6. Proposed Approach: Explicit Physics-Informed Learning

In the previous sections, several methods for physics-based learning were discussed,
in which the physics prior was incorporated into the learning process through various
mechanisms, namely, as part of the loss term, in the architecture design (for unrolled
networks), or by utilization of the forward model (in generative models and PnP methods).
However, it may be observed that for these methods, the forward model is implicitly
integrated into the learning process, either by applying its expression as part of the loss
term or by encapsulating it as part of the architecture design. Incorporating a physics prior
into the learning process has been shown to improve the generalization and robustness
of networks, as well as their ability to be efficiently trained on reduced data sets. For
example, as previously discussed, in [30], a DNN was proposed to estimate the parameters
of the IVIM model for diffusion MRI. The expression for the forward IVIM model was
incorporated into the learning process as part of the loss term during the training process,
which enabled unsupervised training on simulated data. However, for this study, the
explicit IVIM parameters, whose values govern the mathematical relations between the
input and output of the network, were not included as stand-alone inputs to the architecture.
While the inclusion of the biophysical IVIM model as a prior in part of the network’s loss
term enabled researchers to overcome the lack of training data, an important notion in [30]
was that the training had to be repeated for data sets with different distributions (i.e.,
with different sets of b-values or MR acquisition protocols). In other words, the proposed
network had limited generalization capability for test sets created with acquisition protocols
that differed from that of the training set.



Mach. Learn. Knowl. Extr. 2024, 6 393

Motivated by the above discussion, we pose the following question: is it possible to
further leverage the prior information that is included in the loss term by incorporating the
explicit acquisition protocol (i.e., the b-values) as part of the network architecture? Can this
explicit inclusion of prior information improve the generalization capacity of the network?
In the following, we introduce an approach for which the explicit model parameters are
utilized as an additional prior to the learning process and propose a general problem
formulation for this perspective.

6.1. Explicit Physics Priors and EPI-Learning

We propose extending the physics-based learning approach to include explicit physics
priors, which are known parameters that describe the relation between the input and
output of the forward imaging model. Specifically, we propose to include these parameters
as additional input to the network; thus, we term our method Explicit Physics-Informed
Learning (EPI-Learning). Motivated by the applications discussed in [30,37], we focus our
interest on a regression task with a highly nonlinear forward model in which optimal
parameter estimation is required, given the relatively small number of measurements,
which could be degraded by random noise. For this task, we propose a combined learning
mechanism that consists of (1) an extended architecture design that receives the explicit
forward model parameters as direct input and (2) a training process that is tailored to the
extended architecture, for which perturbations are added to the explicit model parameters
according to a predetermined probability distribution.

We propose the following general problem formulation to describe EPI-Learning in
the context of a nonlinear regression task.

6.2. EPI-Learning for Nonlinear Regression Tasks—General Problem Formulation

We define the following regression task. Let

y = f (x; I) + n, (2)

where x = {xi}N
i=1, x ∈ RN is an input vector of N entries, I = {Ii}L

i=1, I ∈ RL is a set of
explicit given physics-prior coordinates, y = {yi}M

i=1, y ∈ RM is a set of M measurements
(or observations), f : RN → RM is a known forward model, n = {ni}M

i=1, and n ∈ RM is
an additive random noise vector of length M. We assume that x, y are distributed according
to the distributions Dx, Dy, respectively (i.e., x ∼ Dx, y ∼ Dy).

Our goal is to find an optimal estimate x̂ of the input x, given the measurements y and
the prior physics coordinates I. We propose a solution based on a deep learning network
architecture g, whose weights are denoted by the parametrization Θ. The solution to this
problem may be, thus, expressed as:

x̂ = gI
Θ(y), (3)

where
Θ = Argmin

Θ
∥x − x̂∥ = Argmin

Θ

∥∥∥x − gI
Θ(y)

∥∥∥, (4)

and where the index I in gI
Θ denotes the dependence of the solution (with parametrization

Θ ) on the physics-prior coordinates, and ∥·∥ is a well-defined norm.
The network weights Θ may be obtained by direct unsupervised training on the

forward model, using the following loss function (a similar approach has been proposed
in [26]):

L(y; I) = ∥y − f (x̂; I)∥ (5)

As described earlier for the proposed EPI-Learning, we extend the architecture g
according to the following steps:

Step (1): We extend the network architecture g by explicitly incorporating the physics-
prior coordinates I as input, and denote this new architecture as gIE , where the index E
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stands for “explicit”. The solution to the regression problem based on this architecture may
be written as:

x̂ = gIE
ΘIE

(y; I), (6)

where
ΘIE = Argmin

ΘIE

∥x − x̂∥ = Argmin
ΘIE

∥∥∥x − gIE
ΘIE

(y; I)
∥∥∥ (7)

Step (2): We propose the following modified data set for training the extended net-
work architecture gIE . For each input x, we provide the network with the explicit prior
information of the forward model IE, to which we add a (known) perturbation δIE. The
perturbation is chosen from a set of perturbations that are distributed according to a preset
probability distribution law: δIE ∼ DδIE . Therefore, the data set for training the extended

network is
(

x, yIE+δIE

)
, where:

yIE+δIE
= f (x, IE + δIE) + n (8)

Thus, the loss term for the extended network is given by:

L
DδIE
IE

=
∥∥yIE+δIE − f (x̂, IE + δIE)

∥∥ (9)

It is important to note that the training of the extended network gIE
ΘIE

consists of the

new data set
(

x, yIE+δIE

)
, and, in addition, the input to the extended network consists of

both yIE+δIE
and its associated perturbed explicit prior information IE + δIE. This is the

main novelty of the EPI-Learning method gIE
ΘIE

compared to the original network gI
Θ. This

idea is summarized in the scheme shown in Figure 2.

Mach. Learn. Knowl. Extr. 2024, 6, FOR PEER REVIEW  10 
 

and where the index 𝐼 in 𝑔  denotes the dependence of the solution (with parametriza-
tion Θ) on the physics-prior coordinates, and ‖∙‖ is a well-defined norm.  

The network weights Θ may be obtained by direct unsupervised training on the forward 
model, using the following loss function (a similar approach has been proposed in [26]): ℒ(𝑦; 𝐼) = ‖𝑦 − 𝑓(𝑥; 𝐼)‖ (5) 

As described earlier for the proposed EPI-Learning, we extend the architecture 𝑔 ac-
cording to the following steps: 

Step (1): We extend the network architecture 𝑔 by explicitly incorporating the phys-
ics-prior coordinates 𝐼 as input, and denote this new architecture as 𝑔 , where the index 𝐸 stands for “explicit”. The solution to the regression problem based on this architecture 
may be written as: 𝒙 = 𝑔 (𝒚; 𝐼), (6) 

where Θ = 𝐴𝑟𝑔𝑚𝑖𝑛‖𝑥 − 𝑥‖ = 𝐴𝑟𝑔𝑚𝑖𝑛 𝑥 − 𝑔 (𝑦; 𝐼)  (7) 

Step (2): We propose the following modified data set for training the extended net-
work architecture 𝑔 . For each input 𝒙, we provide the network with the explicit prior 
information of the forward model 𝐼 , to which we add a (known) perturbation 𝛿𝐼 . The 
perturbation is chosen from a set of perturbations that are distributed according to a preset 
probability distribution law: 𝛿𝐼 ~𝒟 . Therefore, the data set for training the extended 
network is 𝒙, 𝒚 , where: 𝒚 = 𝑓(𝒙, 𝐼 + 𝛿𝐼 ) + 𝒏  (8) 

Thus, the loss term for the extended network is given by: ℒ𝒟 = 𝑦 − 𝑓(𝑥, 𝐼 + 𝛿𝐼 )  (9) 

It is important to note that the training of the extended network 𝑔  consists of the 
new data set 𝒙, 𝒚 , and, in addition, the input to the extended network consists of 
both 𝒚  and its associated perturbed explicit prior information 𝐼 + 𝛿𝐼 . This is the 
main novelty of the EPI-Learning method 𝑔  compared to the original network 𝑔 . 
This idea is summarized in the scheme shown in Figure 2.  

 
Figure 2. Extending a basic network architecture with the explicit prior information coordinates 
(EPI-Learning): (a) the original network and (b) the proposed EPI-Learning architecture. 

6.3. EPI-Learning for a Model of the Form of a Sum of Exponentials—Case Example 
As an example, we show how the EPI-Learning approach may be translated to the 

case of a nonlinear regression model in the form of a sum of exponentials: 𝑓 (𝑎 , 𝑎 , … , 𝑎 , 𝑐 , 𝑐 , … , 𝑐 ) = ∑ 𝑎 𝑒𝑥𝑝(−𝑏 𝑐 ) + 𝑛, 𝑚 = 1, … . , 𝑀,  𝑀 ∈ ℕ (10) 

where 𝑎 , 𝑐  is a set of parameters to be estimated from samples 𝑓 (𝑎 , 𝑎 , … , 𝑎 , 𝑐 , 𝑐 , … , 𝑐 ) ; 𝑎 ∈ ℝ  and 0 < 𝑎 < 1, ∑ 𝑎 = 1 ; and 𝑐 ∈ ℝ  such that 

Figure 2. Extending a basic network architecture with the explicit prior information coordinates
(EPI-Learning): (a) the original network and (b) the proposed EPI-Learning architecture.

6.3. EPI-Learning for a Model of the Form of a Sum of Exponentials—Case Example

As an example, we show how the EPI-Learning approach may be translated to the
case of a nonlinear regression model in the form of a sum of exponentials:

fm(a1, a2, . . . , aL, c1, c2, . . . , cL) = ∑L
l=1 alexp(−bmcl) + n, m = 1, . . . , M, M ∈ N (10)

where {al , cl}L
l=1 is a set of parameters to be estimated from samples fm(a1, a2, . . . , aL, c1,

c2, . . . , cL); al ∈ R and 0 < al < 1, ∑L
l=1 al = 1; and cl ∈ R such that 0 < cl . In addition,

bm ∈ R, bm > 0 are known constant parameters at which the samples fm(a1, a2, . . . , aL, c1,
c2, . . . , cL) are evaluated.

We note that the model in Equation (10) is the general form of biophysical models
typically applied in DW-MRI, such as the two-compartment IVIM model ( L = 2).

For such models, the goal is to train, implement, and test a DNN that receives as
input the forward model samples fm(a1, a2, . . . , aL, c1, c2, . . . , cL) and returns as output
the optimal estimates for the set of parameters {al , cl}L

l=1. We propose extending the
architecture, as described in [30], by explicitly incorporating the presumably known prior
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information coordinates (analogous to the b-values in the IVIM model [30]) as additional
input to the network. This idea is depicted in Figure 3, where the addition of the explicit
information coordinates is shown when transitioning from the basic architecture (left) to
the EPI-Learning network (right). Due to the highly nonlinear nature of the model, we
expect that by adding the prior information coordinates (i.e., the explicit physics prior) as
input, the training process of the network may be better “tuned” to the learning task of the
model. Furthermore, by introducing the network with the perturbed prior information
coordinates along with their associated forward model outputs, we hypothesize that the
resulting trained network will have improved generalization ability.
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Figure 3. Extending a basic network architecture with the explicit prior information coordinates
(EPI-Learning).

We note that Figure 3 shows a general scheme and is not restricted to the specific
choice of the number of model compartments L. In [55], the preliminary results regarding
this approach for the IVIM model (L = 2) are presented, demonstrating its improved
performance in terms of accuracy and generalization when compared to a previously
proposed architecture. In the next subsection, we propose a simulated experimental
setup in order to assess the performance of the EPI-Learning approach for the model of
Equation (10) in terms of its generalization ability.

To conclude this subsection, we note that the proposed EPI-Learning approach may
be utilized for additional applications, tasks, and models not necessarily restricted to a sum
of exponentials for DW-MRI. Such research should be pursued in future studies.

6.4. Proposed Simulated Experiments for the Sum-of-Exponentials Model

We propose to train two networks: (a) a basic network (as depicted on the left part
of Figure 3) and (b) an “EPI-Learning” network (Figure 3, on the right). The training data
for network (a) will be synthetic (as in [20,30]) and will be obtained by setting the number
of model compartments (e.g., L = 2 or L = 3) and a set of prior information coordinates
{bm}M

m=1 and by utilizing the forward model over a set of randomly generated model
parameters {al , cl}L

l=1, chosen from a uniform distribution over their plausible physical
range of values [20,30]. The training data for network (b) will be obtained in a similar
manner, with the modification of adding perturbations {δbm}M

m=1 to the prior information
coordinates and feeding the network’s input with the corresponding perturbed forward
model signals concatenated with the modified information coordinates {bm + δbm}M

m=1.
The scheme for generating the training data for the two networks is summarized in Figure 4.
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The network weights Θ may be obtained by direct training on the simulated data
generated according to the forward model and by defining the following loss function:

L =

√
∑M

m=1

(
fm − f̂m

)2
, where f̂m = ∑L

l=1 âlexp(−bm ĉl). (11)

The loss function L encapsulates the EPI-Learning architecture of Figure 3 in the sense
that the estimated model parameters {âl , ĉl}L

l=1 (obtained at the network’s output) are
utilized to evaluate f̂m, and these estimators are obtained at the output of the EPI-Learning
network, which consists of the perturbed information coordinates {bm + δbm}M

m=1.
For the evaluation process, the goal of the experiment will be to quantitatively compare

the generalization ability of the EPI-Learning network with the original network.
Ground truth (GT) parameter maps for each model (L = 2 or L = 3) will be generated,

from which the input signals will be computed by the forward model equations for different
perturbations on the information coordinates, namely, {bm + δbm}M

m=1. The perturbations
will be chosen from a similar range of values as applied in the training process of the EPI-
Learning network gIE

ΘIE
. For each set of chosen perturbations {δbm}M

m=1, the corresponding

input signals will be determined for the two compared networks, gIE
ΘIE

and gI
Θ, and the

networks’ outputs, namely, the estimated model parameters {âl , ĉl}L
l=1, will be obtained.

The normalized root-mean-square errors (NRMSEs) for each of the estimated parameters
will be calculated with respect to their GT maps:

NRMSEal =

√∣∣∣∣∑|al − âl |
al

∣∣∣∣, NRMSEcl =

√∣∣∣∣∑|cl − ĉl |
cl

∣∣∣∣. (12)

where the summation will be held over all the entries of the parameters’ maps, and al , cl
denote the average value of the GT parameter maps al , cl .

By comparing the NRMSEs (as in Equation (12)) for the EPI-Learning network and the
original network, a measure of the generalization ability of the networks may be obtained.

7. Summary and Future Challenges

The unprecedented performance of DNN-based systems has been demonstrated over
a wide range of medical imaging tasks and applications. Nonetheless, major challenges,
in terms of limited robustness, stability, and generalization ability, as well as small or
unavailable training data sets, still exist, impeding the incorporation of such systems into
daily clinical use. In this paper, we surveyed recent works aimed at addressing these issues.
The underlying common thread of the reviewed works is the inclusion of prior, specific-
domain knowledge or information into either the DNN architecture, learning process,
or both. We classified these works into four main categories, namely, (1) physics-based
loss term networks; (2) unrolled networks; (3) generative models; and (4) plug-and-play
methods. The list of reviewed works is summarized in Table 1. For all of the discussed
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categories, some sort of known (or partially known) forward model for the problem is
typically utilized in the training or learning process. Specifically, in unrolled networks, an
iterative solver of an optimization problem directly translates to the network architecture,
as concatenated layers correspond to iterations of the solver. Additional examples in which
the physics prior is encapsulated into the architecture were discussed for the PnP category,
where the image reconstruction task is decoupled into denoising and recovery processes,
which are implemented as separate parts of the architecture.

Table 1. Summary of surveyed works categorized into their corresponding physics-based methods,
imaging modality, and application domain.

Physics-Based Method Task/Imaging Modality Application Domain Reference Year

1. Physics-based loss
term

Generating simulated images Cardiac modeling Buoso et al. [31] 2018

Parmeter estimation for diffusion MRI (dMRI) Pancreatic imaging Kaandorp et al. [30] 2021

Parmeter estimation for optical
coherence tomography Ophthalmology Burwinkel et al. [26] 2022

Tissue elasticity map prediction for ultrasound
elastography imaging Liver and breast imaging Gao et al. [32] 2019

Magnetic resonance (MR) image reconstruction
for undersampled data (compressed sensing) Brain imaging Yang et al. [34] 2017

MRI reconstruction—compressed sensing Brain imaging Hyun et al. [35] 2018

Positron emission tomography (PET) Brain imaging Sudarshan et al. [18] 2021

2. Unrolled networks

Parameter estimation for dMRI Brain imaging Ye [37] 2017

MRI reconstruction—compressed sensing Brain imaging
Chest imaging Sun et al. [43] 2016

MRI reconstruction—compressed sensing Brain imaging Yang et al. [44] 2018

MRI reconstruction—compressed sensing Musculoskeletal imaging Hammernik et al. [45] 2018

MRI reconstruction—compressed sensing Cardiac imaging Qin et al. [46] 2018

MRI reconstruction—compressed sensing Brain imaging Aggarwal et al. [47] 2018

Clutter suppression in ultrasound imaging Vascular imaging Solomon et al. [40] 2019

Computer tomography (CT) reconstruction Demonstrated for human
phantoms Adler and Öktem [41] 2018

3. Generative models
(GANs)

MRI reconstruction—compressed sensing Brain imaging
Knee imaging Yazdanpanah et al. [50] 2019

MRI reconstruction—compressed sensing Pediatric imaging (abdomen
and knee scans) Mardani et al. [51] 2018

4. Plug-and-play (PnP)
methods

MRI reconstruction—compressed sensing Cardiac imaging
Knee imaging Ahmad et al. [52] 2020

Image reconstruction for undersampled dMRI Brain imaging Mani et al. [53] 2021

MRI reconstruction—compressed sensing Liver imaging Liu et al. [54] 2020

The surveyed works spanned a wide range of imaging modalities (e.g., MRI, US, X-ray,
CT, PET-CT, OCT, ultrasound elastography), medical imaging tasks (e.g., classification,
regression, and image reconstruction), and applications in different clinical domains, such
as ophthalmology, cardiology, neuroimaging, digestive system imaging, chest imaging,
and so on. For the various discussed applications, the added value obtained through the
inclusion of the physics prior in terms of improved robustness, generalization, and/or the
ability to train the networks over limited data sets has been demonstrated in simulated and
clinical settings.

Physics-based neural networks within the context of medical imaging represent an
important and exciting research field that is expanding. Additional future research is
required to address major existing challenges, such as the generalization ability of network
models and improved traceability, interpretability, and explainability [56]. Physics-based
deep learning methods, by harnessing physics priors in the training process and network
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architecture, have the potential to help humans better perceive the mechanism of deep
networks and thus contribute to explainable AI, rather than treating such systems as
unexplainable “black-boxes” [56]. In addition, methods to quantitatively assess robustness
and generalization capacities are yet to be developed and tested in order to obtain clinically
applicable deep learning-based systems.

An additional interesting research direction is the design of optimal network archi-
tectures. Within this context, we introduced a new approach termed EPI-Learning, in
which physics-based learning was extended to include explicit prior information as input
to the network architecture. In addition, we presented a problem formulation of this con-
cept for the task of optimal parameter estimation from a nonlinear forward model and
demonstrated how it may be translated into a regression model in the form of a sum of
decaying exponentials. We briefly discussed the possible applications of the proposed
approach, which is related to a more general future challenge, namely, designing improved
architectures that better integrate the engineering knowledge of the problem and harness
it for more regularized learning mechanisms [27]. Such an approach, where the physi-
cal prior is explicitly interlaced into the network architecture, may be either applied as
a stand-alone model or in combination with previously introduced methods [25–29], as
depicted in Figure 5. Furthermore, this would yield the potential to produce more robust
and generalizable models and, hence, advance their applicability to clinical practice.
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