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Abstract: Introduction: Due to the lack of labeled data, applying predictive maintenance algorithms
for facility management is cumbersome. Most companies are unwilling to share data or do not
have time for annotation. In addition, most available facility management data are text data. Thus,
there is a need for an unsupervised predictive maintenance algorithm that is capable of handling
textual data. Methodology: This paper proposes applying association rule mining on maintenance
requests to identify upcoming needs in facility management. By coupling temporal association rule
mining with the concept of semantic similarity derived from large language models, the proposed
methodology can discover meaningful knowledge in the form of rules suitable for decision-making.
Results: Relying on the large German language models works best for the presented case study.
Introducing a temporal lift filter allows for reducing the created rules to the most important ones.
Conclusions: Only a few maintenance requests are sufficient to mine association rules that show
links between different infrastructural failures. Due to the unsupervised manner of the proposed
algorithm, domain experts need to evaluate the relevance of the specific rules. Nevertheless, the
algorithm enables companies to efficiently utilize their data stored in databases to create interpretable
rules supporting decision-making.

Keywords: predictive maintenance; facility management; temporal association rule mining; sentence
transformer; semantic similarity

1. Introduction

Maintenance represents a substantial share of work in various industries. Due to its
significant financial impact [1], industry and research focus on improving the effectiveness
of maintenance. Predictive Maintenance (PM) is one way to reduce costs and downtimes
by planning maintenance work based on an asset’s actual condition rather than relying
on fixed time-based maintenance cycles [2]. Multiple industries like aviation [3,4], manu-
facturing [5,6], and chemistry [7,8] vastly apply PM into their operational routine. Also,
other industries like construction and facility management can benefit from improved
maintenance methodologies. Building information modeling (BIM) and computer-aided
facility management (CAFM) generate a large amount of data that can potentially be used
for PM [9]. Such systems utilize digital twins to map the properties of physical entities like
buildings or machines into the virtual world [10]. However, research on PM for facility
management is rare. Some works in this area, such as those presented in [11] or [12], con-
centrate on the maintenance of specific infrastructure in buildings like heating, ventilation,
and air conditioning (HVAC). Other works like [13] utilize sensor information to predict an
infrastructure’s condition. However, most data are unstructured and are in text form [10,14].
This textual form is problematic since most PM algorithms require structured data, e.g., sen-
sor measurements, to transform them into information ready for decision-making. Unlike
numeric information, computers cannot interpret textual information directly. For instance,
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different textual formulations may have the same semantic meaning, while one word in a
text can drastically change its whole meaning.

Nevertheless, neglecting textual data misses the opportunity to apply PM to areas
where only textual data are available, e.g., in facility management, where facility owners
rarely install sensors or are not allowed to store sensor information to protect the inhabitants’
or employees’ privacy. Thus, it is essential to utilize the already existing textual data by
using knowledge extraction from textual databases [14]. Maintenance request analysis is
an upcoming field in this setting [9]. Maintenance requests are textual information about
specific maintenance tasks that describe defect infrastructure and add more contextual
information. Facility managers often store them in CAFM software to track status updates
and staff assignments. Utilizing this information for PM can potentially optimize processes
and reduce breakdowns. However, there is little research on this topic [15], and most work
still focuses on PM based on structured data [10].

Another problem in facility management and construction is the phenomenon of
data monopoly: most companies that manage extensive facilities cannot share their data
with others, making the datasets needed for PM challenging to access [9]. However, big
datasets containing data from several companies are a crucial prerequisite for adopting
most supervised PM models that require explicit labels. These labels rarely exist in the
facility management context since they are expensive to collect. Additionally, relying on
supervised labels is inadequate in this context since the nature of maintenance works is an
ongoing process for PM and facility management [16]. A possible solution to overcome this
limitation is using semi-supervised learning, transfer learning, and pre-trained models [9].
However, based on current understanding, there is no literature about applying such
algorithms for PM in facility management. Therefore, this paper aims to answer the
following research question: How do we utilize knowledge discovery on maintenance
requests for predictive maintenance?

This paper sheds more light on this research question by combining association rule
mining (ARM) with pre-trained large language models (LLMs) and adopting it on mainte-
nance requests. Maintenance requests are textual descriptions of damages or upcoming
work that potentially contain relevant information for PM in a facility management context.
ARM is a powerful group of algorithms suitable for PM in many industries [7]. Further-
more, LLMs based on transformer models allow a computer to understand the semantic
meanings of natural-written texts [17]. Combining these research fields allows for adding
predictive functionalities to almost every CAFM system by applying an unsupervised PM
algorithm. The benefit of this approach is that it does not rely on labeled data. Furthermore,
it allows companies to utilize the data they have already collected to better understand
the interplay between infrastructures and predict impending failures on a wide range of
infrastructures. Moreover, this paper studies the applicability of four different language
models and compares their performances when coupling them with ARM.

This paper is structured as follows to answer the abovementioned research question:
The next section introduces the theoretical background of this paper. Section three outlines
the proposed methodology by adopting Apriori, a widely used ARM algorithm, to the
setting of maintenance requests and introduces the data utilized in this paper. Section
four overviews the results of the proposed algorithm’s solution. Section five discusses
its theoretical and practical relevance. The last section concludes this work and outlines
future research.

2. Theoretical Background
2.1. Predictive Maintenance for Facilities

Traditional maintenance management techniques are run-to-failure and preventive
maintenance [2]. Run-to-failure maintenance strategies perform no maintenance work until
a specific infrastructure breaks. Preventive maintenance strategies perform a time-driven
schedule, e.g., yearly maintenance checks [2].
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However, both approaches contradict optimized decision-making strategies that mini-
mize costs and increase quality, safety, and productivity [10]. Therefore, the PM approach
relies on an infrastructure’s physical condition to predict its future condition and potential
failures [2]. To determine the physical condition, traditional PM algorithms use sensor in-
formation like the machine’s temperature, voltage, or current [18]. Typical PM approaches
detect faults, i.e., low-frequency but high-impact events [3], or calculate an infrastructure’s
lifetime and metrics like the mean time to failure [19]. However, the definition of PM is
ambiguous, but its main aim is to improve an infrastructure’s operation using data [2]. This
paper adopts the definition of Carvalho and colleagues, who define PM as a method that
“uses predictive tools to determine when maintenance actions are necessary” by monitoring
the specific infrastructure (like a machine) and utilizing historical data [20] (p. 20).

Since most PM approaches rely on sensor data, applying PM for facility management is
not trivial. Most corporate information is in the form of texts, especially in the construction
sector [10,14]. Such texts can be document files, sheets, or semi-structured forms like Exten-
sible Markup Language or Hypertext Markup Language that require Natural Language
Processing (NLP) to extract the information from human language texts [9]. Maintenance
requests are a valuable source of information to assess the condition of specific infrastruc-
ture in the context of facility management [15]. The work of [21] is among the first to
utilize these requests. In this study, the authors create a prediction model that automatically
assigns staff to specific requests containing unstructured text. Another field in this area is a
relation analysis of such maintenance requests [10]. Wu and colleagues [10], in an extensive
literature review, present that co-occurrence analysis, ARM, heuristic rules, or supervised
learning are suitable approaches for relation analysis. While staff assignment is also a form
of supervised machine learning, it requires explicit labels to learn a classification task. The
authors of this literature review outline that most papers build on a supervised problem,
while manually labeling datasets is often cumbersome and impractical.

In contrast, using unstructured text data is cheaper to collect and more accessible [10].
Only a few works use unsupervised techniques on textual data for predictive mainte-
nance. Akhbardeh and colleagues utilize clustering on maintenance logs to find similar
maintenance logs [22]. Bhardwaj and colleagues apply hand-crafted lexicographic sen-
timent analysis on maintenance reports to identify infrastructure health status [23]. A
last unsupervised PM approach utilizing maintenance logs extracts machine components
and their associated failures [24]. However, these approaches mainly help to estimate the
status quo from maintenance requests but do not predict helpful information. Other works
that integrate unsupervised machine learning for predictive maintenance, like anomaly
detection, do not rely on textual data but on sensor data [25–27]. Therefore, this paper
utilizes ARM as an unsupervised method that is easy to implement for unlabeled data, as
is mostly the case for facility management.

2.2. Association Rule Mining

ARM is a suitable method for PM tasks [7]. In their seminal work, Agrawal and
colleagues [28] introduce ARM by utilizing shopping basket data and mine rules that
present what items customers have purchased together. These rules are in the form of
A→ B, where A is the antecedent; B is the consequent, and A and B are a set of items/articles
(n ≥ 1) in the basket. To determine relevant rules and their quality, ARM algorithms use
different metrics, i.e., especially support and confidence, which the literature defines as
follows [7]:

support(A) =
|A|
m

, (1)

support(A→ B) =
|A ∪ B|

m
, (2)

con f idence(A→ B) =
support(A→ B)

support(A)
. (3)
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Support is the probability of finding a transaction containing a respective item set [7].
The expression |A| represents the number of transactions containing A; |A ∪ B| represents
the number of transactions containing both A and B, and m represents the number of
transactions. In addition, confidence is the conditional probability of finding the item set of
the consequence given the occurrence of the antecedent [7]. These definitions are consistent
with a wide range of works in the field of ARM [28–31]. Another popular metric is the
lift, which calculates whether the two item sets A and B of rule A→ B are dependent or
independent of each other [29]:

li f t(A→ B) =
support(A→ B)

support(A)*support(B)
. (4)

A lift value of one means that there is no relation between both item sets; a degree
greater than one indicates a positive dependence and makes them interesting for further
mining [29].

The most prominent algorithm for finding association rules is Apriori, which was
introduced by [32]. It was one of the first algorithms for ARM that worked efficiently
by maintaining minimum support and confidence in the association rules [32]. In their
paper, the authors also present two other algorithms, AprioriTid and Apriori Hybrid.
In [33], the authors give an overview of different ARM algorithms like the aforementioned
Apriori derivatives and newer algorithms like frequent pattern-growth (FP-growth) and
evaluate their performance regarding data support, speed, and accuracy. However, all
ARM algorithms have in common that they rely on support and confidence.

Indeed, practice vastly uses ARM algorithms. One significant advantage is their ability
to deal with large amounts of unstructured data and that they provide very interpretable
rules suitable to enhance decision-making [30]. For instance, [34] applies the FP-growth
algorithm for PM sensor data of Internet of Things hardware to extract association rules.
ARM can also be used on text data, even if one cannot apply it on raw text but on different
representations like a bag of words or term frequency [30]. Bag of words and term frequency
are typical text representations using NLP. The concept of the bag of words considers the
frequency of each word in a text while ignoring their position in the text [35]. The term
frequency originates from [36] and describes how often a specific term (e.g., a word) occurs
in a document. If one considers multiple documents, one can calculate the document
frequency, i.e., the number of documents a term occurs [35]. Word embeddings are feature
representations of a word (e.g., in the form of a vector) where each dimension aims to
capture its syntactic and semantic meaning [37]. Typical tasks using ARM on text are
summarization, topic and event detection, forecasting, and collaborative social systems [30].
For instance, the work of [38] applies Apriori to customer reviews. The work of [39] follows
the Apriori algorithm, combining text analysis with knowledge bases to form semantic
rules. In [40], the authors mine association rules from medical records by extracting medical
features like symptoms, diseases, and medicine. The work of [29] employs ARM to find
associations between words in the Azerbaijani language using a bag-of-words approach.
Finally, the authors of [7] demonstrate the suitability of ARM for industrial use cases. They
first generate association rules and then apply linear programming to select components to
repair to improve their infrastructure’s overall robustness.

However, there is one major problem when applying ARM on text using simple
representations like bag-of-words or term frequency–inverse document frequency (TF–
IDF). Unstructured free texts use heterogeneous language with little consistency, i.e., they
contain typos, acronyms, abbreviations, and jargon [41,42]. Applying ARM on large
text can result in data dispersion and binary representations that might lead to sparse
matrices [30]. Since facility management is a domain where one can expect such an
inconsistency, there is a need to extend the typical ARM definitions. Transfer learning
and large language models like BERT or GPT can overcome such limitations by capturing
contextual information [9]. Bidirectional Encoder Representations from Transformers
(BERT) is a language representation model that is already pre-trained, meaning that one
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only needs to fine-tune a model for a specific use case, making it handy to apply for various
problems [43]. A transformer is an ML model that typically uses an encoder component to
transform text into a computer-understandable format (i.e., encodes an input sequence of
symbol representations like words into a sequence of continuous representations) [44] and
adds the concept of attention. The attention mechanism allows a neural network to focus on
specific, relevant parts of the input sequence [42]. The Generative Pre-trained Transformer
(GPT) is a transformer model that can handle text and images as inputs and generates text as
output by adding an additional decoder component to recast the continuous representation
into the original symbol representation [45]. The model became famous for its application
in the software ChatGPT. However, since its current version, GPT-4, is not open-source, this
paper focuses on BERT-based open-source alternatives like RoBERTa, an optimized version
of BERT [46], and MiniLM, a compressed version of a pre-trained transformer model that
has fewer capacity constraints compared to larger models [47].

2.3. Extensions of Association Rule Mining

Most ARM research consists of applying ARM algorithms to various domains or
focuses on improving the performance of different mining techniques. However, this paper
wants to emphasize two crucial extensions to ARM that are necessary when applying it to
facility management: (1) the integration of similarity; and (2) temporal information.

The main idea of integrating similarity into ARM is that a specific term or phrase
can be very similar or even identical to another term while not being classified as such by
ARM due to its separate representation. For instance, the work of [48] gives the example
of Ceylon as the former name of Sri Lanka. Both terms reflect the same nation. However,
they have different textual representations. In their work, the authors of [48] use Apriori
to detect semantically identical but temporally different concepts and utilize Jaccard’s
coefficient as a similarity measure.

Another strain of the literature integrates the concept of similarity by mining rules
from similar texts. The work of [14] applies ARM to text previously clustered by similarity.
However, one can also integrate the concept of similarity directly after rule creation. In [49],
the authors present a way to apply cosine similarity to rules generated by Apriori to unify
similar rules. In [50], the authors present a similar approach where they create rules by
running Apriori and extend their rules based on similarity by re-calculating the support of
extended rules. They also use cosine similarity as a general-purpose metric but emphasize
that a domain-specific similarity metric could be helpful. However, their approach is only
suitable for generating rules with a unitary length of the antecedent [50]. Therefore, this
paper’s approach will integrate the concept of similarity by utilizing LLMs and integrate
the similarity measure directly into the definition of support as proposed in [50].

Another essential extension when using ARM for facility management is integrating
temporal information. In a literature review about temporal ARM performed in [31],
the authors construct a taxonomy of how to incorporate time into ARM. They suggest
integrating time as an implied component or an integral component. When integrating
time as an implied component, the time variable provides information about the order,
including temporal constraints and sequences [31]. Furthermore, the authors describe time
as an integral component in that the time variable becomes an attribute within the learning
process and that time indicates potentially periodical or time interval-based patterns. Both
approaches are helpful for ARM and PM. For instance, the work of [51] applies temporal
ARM for train maintenance. It uses time information as a criterion that ARM can predict
target events like repairs early enough to allow for logistic and maintenance actions. On
the contrary, it utilizes time information as a limit that the potential items for ARM are also
recent and relevant. This procedure allows for splitting the prediction time into warning
and monitoring times [51]. The work of [52] adds a recency weight to transactions to
limit items being temporally close to each other. In addition, it uses a time decay function
to avoid making wrong decisions with out-of-date rules and adopt the corresponding
definition of the support function.
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3. Methodology

Based on the previous literature, a research gap exists in easily integrating an unsuper-
vised PM methodology for facility management that can handle heterogeneous language.
This paper proposes using ARM on the maintenance request level. Figure 1 summarizes
this paper’s methodology. The basic idea is to find meaningful maintenance requests that
represent an early warning indicator for other repairs (in the form of further maintenance
requests) and to reveal interrelationships in the data. This knowledge in the form of associ-
ation rules helps facility management decision-making to optimize maintenance processes
and warn them of upcoming failures. Thus, this paper considers each maintenance request
as a unity. In the wording of ARM, a maintenance request corresponds to an item, and all
maintenance requests of a specific infrastructure (e.g., a power supply, as shown in the
first step of Figure 1) correspond to a transaction. The goal of the following approach is to
transfer repairs manifested through maintenance requests from one infrastructure (e.g., a
machine, an air conditioner, or a lift) to another of the same kind.

This paper proposes two extensions to apply ARM on textual maintenance requests.
The first one considers semantic similarity. Heterogeneous language makes finding dupli-
cate maintenance requests almost impossible when relying on the classical forms of text
representations used for ARM, like bag-of-words or TF–IDF, that work on a word level. The
second one integrates temporal information into the proposed algorithm. The following
subsections dive more into detail about the specific methodology.

3.1. ARM with Semantic Similarity

The literature shows that integrating semantic similarity is vital when dealing with
textual data and that various ways exist to measure the semantic similarity between words
or texts. Especially when comparing short texts, the word co-occurrence between both texts
might be very low or even nonexistent [53]. One more advanced method is to use word
embeddings that operationalize the semantic meaning of a word into a vector and allow
one to compare it with other words [9]. A widely used similarity measure that can handle
such word vectors is the cosine similarity [49,50], ranging from −1 to 1, where −1 means
that two vectors are the opposite; 0 means that they are dissimilar or orthogonally, and 1
means that they are the same. One perk of using this kind of word embedding is that a
specific word can have a different meaning depending on the context [42]. Therefore, this
work uses embeddings from large language model (LLMs) that can capture the context [9].

Furthermore, these language models are pre-trained on large text corpora, enabling
them to be applied for various applications [42]. Since this paper relies on maintenance
requests that consist of a short description, including a few words or sentences, it is
beneficial to use sentence transformers that operate on a sentence level instead of a word
level. Sentence transformers can calculate the semantic similarity between two sentences
using the cosine similarity of the vector representation and are computationally faster and
more precise compared to word-level similarity calculations [54].
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Thus, this paper proposes calculating the semantic similarity across all maintenance
requests to identify which requests are similar to each other (step II of Figure 1). This
pre-calculation allows the ARM algorithm to handle the dataset as structured information.
Instead of the textual information of the maintenance requests, the ARM algorithm inter-
prets coded items for each infrastructure where the same code equals the same semantic
meaning. Figure 2 shows this code in the form of colors (see step III). This extension to
ARM improves the creation of the candidate itemsets (e.g., via Apriori-Gen) in step IV,
on which the ARM algorithms calculate the support function to find frequent itemsets.
However, this paper proposes a different approach than [49] or [50] to integrate semantic
similarity into ARM. Instead of first applying an ARM algorithm like Apriori on the raw
data and applying the similarity measure to rules created, this paper proposes to directly
alter the support function as an input to the ARM algorithms. The work of [50] suggests
a similar approach in its outlook section without delving deeper into the topic. The pro-
posed modification utilizes the pre-calculated similarity scores from step II and allows for
identifying semantic similar maintenance requests as one unity with more occurrences.
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Figure 2. Pseudo-Code of Modified Support Function, Including Similarity.

In order to do so, the support function needs an additional parameter to account for
the minimum similarity that ARM can treat one item to be a similar maintenance request.
Therefore, Figure 2 shows a pseudo-code of a suggested implementation of a modified
version of the support function that incorporates item similarity.

The main idea is that the support function checks for each transaction whether all items
for which it should compute the support value (variable items_for_support, equivalent
to variables A and B in Equations (1) and (2) and originating from the candidate set; see
Figure 1) are part of this transaction under having a certain similarity to the original item.
If a transaction contains all items or similar versions of it, it increases the nominator of
the support by one (and repeats this check for each transaction). The function uses a
similarity function that relies on the cosine similarity of the vectors created by a sentence
transformer. Please note that this pseudo code is only an exemplary implementation and
that its computational complexity can be further decreased (but harming legibility for
this paper).

The modified version of the support function directly applies to all ARM algorithms
that rely on the support of item sets. This paper uses the support function with a default
implementation of Apriori to demonstrate its suitability and utilizes the pre-calculated
similarity scores from step II. One can also replace the support function of computationally
less complex algorithms like AprioriHybrid or FP-growth [33]. Besides including semantic
similarity in ARM, extending a temporal component into the algorithm is also beneficial
when applying ARM to facility management.
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3.2. Temporal Extension

Since ARM algorithms can integrate temporal information as implied or integrated
components [31], facility management supports both views of the time dimension. First,
all maintenance requests reach the CAFM software in a temporal order. Therefore, it is
essential to include this implied view of temporal information. In addition, for PM, it might
influence the timing of when a maintenance request arrives. PM algorithms can use this
integrated information directly in their reasoning. However, to reduce the complexity, this
paper only concentrates on the implied component view.

Therefore, this paper introduces the concept of temporal lift. While the original lift of
ARM is a metric that manifests the meaningfulness of a rule [52], the temporal lift evaluates
whether the consequent of a rule succeeds temporally after the antecedent. First, it is
necessary to define a temporal support function that counts the support for all transactions
where the consequent comes temporally after the antecedent. Figure 3 shows the pseudo-
code of the temporal support function that only increases the support of a transaction if
the consequent comes after the antecedent(s). Furthermore, it assumes that all transaction
items are in a temporal order.
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The temporal lift utilizes the temporal support function. It calculates the share of
transactions where a rule A→ B, indeed, appears in the right temporal order compared to
an unordered set of items:

Li f tTemporal(A→ B) =
SupportTemporal(A→ B)

Support(A→ B)
. (5)

Instead of the original lift definition, which ranges from 0 to ∞, the temporal lift
ranges from 0 to 1. In this case, 0 means that none of the items occurring in the rules are in
temporal order. Conversely, a value of 1 means that all items that are part of the rule occur
in a temporal order in the respective transactions.

After the ARM algorithm extracted all potential association rules using the semantic
similarity extension, this paper proposes applying the temporal lift to remove all rules
that violate the temporal logic. Thus, a minimum support and a minimum temporal lift
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parameter can be dealt with as inclusion criteria, as shown in step V of Figure 1. The CAFM
system can record the included rules for the next steps.

3.3. Expert Evaluation

Finally, a domain expert needs to evaluate the suitability of the semantic similarity
model and the quality of the created rules depending on their eligibility for the specific
context of the facility management company and its decision-making. First, a human
domain expert needs to assess the quality of the semantic similarity model, as human
judgment is the gold standard for evaluating semantic text similarity [55]. Using a human
evaluation of automated outputs is also common for other unsupervised NLP techniques,
such as topic modeling, to guarantee the appropriateness of the model outputs for a
particular setting [56]. Human domain experts can determine the semantic similarity
using an ordinal scale, e.g., a five-point scale ranging from “highly unrelated” to “highly
related” [57]. This paper adopts the semantic similarity scale from the work of Agirre
and colleagues [58], who propose a six-point Likert scale. In their definition, a label of 0
means that the two texts are entirely dissimilar. A label of 1 indicates that two texts are
not equivalent but topically related. A label of 2 indicates texts that are not equivalent but
agree on some details. A label of 3 indicates that the two texts are approximately equal,
but some important details differ. Likewise, a label of 4 indicates that the two texts are
roughly equivalent and only unimportant details differ. Last. A label of 5 indicates that the
two texts are semantically identical. This scale allows human annotators to intuitively label
sentence pairs without any training in formal semantics [58].

Second, this paper acknowledges that also the ARM process is not entirely automatic
and needs human intervention to adapt the association rules to fit the company’s context.
Since rules extracted by ARM are not causal per definition, an expert needs to evaluate their
causality and impact. In addition, a few rules might mistakenly obtain a high support value
because of the semantic similarity classification and a threshold that a company puts too
low. This paper proposes adding an expert evaluation step of the created rules at the end of
the ARM process by integrating a dedicated user interface into the CAFM software. Such a
user interface should allow for the viewing of the created rules and the related maintenance
requests that led to the respective rules. Experts must be able to alter the rules, remove them,
or adjust the ARM thresholds. In addition, they should be able to weigh the rules according
to their impact. This evaluation process helps the company extract the most relevant rules
and enables decision-makers to optimize maintenance processes and prevent infrastructural
breakdowns. Finally, there might be a temporal gap between two maintenance events that
a domain expert must refer to and needs to consider. Also, the expert must view contextual
information like process changes that make a rule obsolete. Although these manual steps
are necessary, the proposed approach helps extract crucial knowledge from large textual
databases that single experts cannot quickly overview without such a support tool. It
allows for finding associations that are not straightforward for a human expert, and the
result of the process should be that only meaningful rules remain. These can be rules that
help optimize maintenance processes, help identify high-impact events in a timely manner,
support decision-makers by uncovering hidden connections, or manifest associations in an
easily understandable form. The proposed approach’s ultimate goal is to support company
decision-making by enhancing its knowledge base.

3.4. Technical Case Study

This paper uses a real-world dataset that contains actual maintenance requests from a
German industrial company to evaluate the suggested ARM modifications. The company
collects maintenance requests in CAFM software. It collects information like the date,
description text, and respective infrastructure of a request. In particular, since comparing
maintenance requests within the same type of infrastructure is especially interesting, this
paper uses only maintenance requests for power distribution systems. In total, there
are 277 maintenance requests ranging over a period of 11 years for nine different power
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distribution systems. The description text is in German and has a mean and standard
deviation of 78 ± 61 characters.

While the implementation of ARM algorithms is language-independent, the semantic
similarity extension in the case of this specific dataset necessitates that the similarity
function works in the German language. Although most sentence transformer models
work only for English, there are several options for working in German. First, NLP models
work well for machine translation [38]. Therefore, one can first use an NLP translation
model to translate German texts into English. This paper uses the DeepL API in version
1.14.0 for translation and a sentence transformer for the English language, e.g., based on the
MiniLM model [59]. Second, several sentence transformers that can understand multiple
languages are available. One example is the Cross English–German RoBERTa for Sentence
Embeddings [60]. Third, a few models solely work on the German language, e.g., [61]. This
paper uses four different language models and compares their usefulness for ARM. Table 1
gives an overview of the four models.

Moreover, this paper compares the similarity score and ARM performance using four
additional similarity metrics as a baseline: BLEU; Rouge-L; METEOR; and BERTScore.
BLEU is a metric initially developed to compare the quality of machine translations versus
a corpus of human reference translations [62]. It is n-gram-based and, therefore, computa-
tionally less complex than LLMs. Similarly, Rouge-L also evaluated n-gram co-occurrence
and was developed to determine the quality of text summaries [63]. METEOR applied
unigram matching and was also developed to assess the quality of machine translations [64].
Finally, BERTScore calculates the token similarity between two texts using the word em-
beddings [65]. All four scores calculate the similarity between two (or more) texts and
are suitable to integrate them into the ARM process, like the similarity scores obtained
from the LLM sentence transformers. This paper uses BLEU, Rouge-L, and METEOR as a
baseline comparison to the LLM sentence transformer-based similarity score metrics due
to their lower computational complexity. In addition, it uses the BERTScore as a different
LLM-based approach.

Table 1. LLMs Used for Similarity Measure.

Model Identifier Type of Model Languages Huggingface Handle Publisher

German RoBERTa RoBERTa German
T-Systems-onsite/

german-roberta-sentence-
transformer-v2

T-Systems on site services GmbH, Berlin,
Germany

Cross
RoBERTa RoBERTa

German,
English

T-Systems-onsite/cross-en-de-
roberta-sentence-transformer

T-Systems on site services GmbH, Berlin,
Germany

English RoBERTa RoBERTa English sentence-transformers/
all-roberta-large-v1

Nils Reimers, Ubiquitous Knowledge
Processing (UKP) Lab, Technical

University of Darmstadt,
Darmstadt, Germany

English MimiLM MiniLM English sentence-transformers/
all-MiniLM-L6-v2

Nils Reimers, Ubiquitous Knowledge
Processing (UKP) Lab, Technical

University of Darmstadt,
Darmstadt, Germany

The following section first compares the quality of the semantic similarity extracted
via the four LLM-based sentence transformers and the four baseline models. It first creates
rules iteratively and evaluates the number of rules found and the number of hits based on a
simulation approach that considers the temporal order of the maintenance requests. Then,
it applies a human expert evaluation to validate the meaningfulness of the created rules.

This paper defines a hit as a match between the maintenance request of a specific
infrastructure and a rule created by ARM, i.e., its antecedents(s) and consequence(s). A
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hit is only present if the consequent(s) proceeds after the antecedent(s) in the data to
ensure temporal logic. A rule can have multiple hits if it matches other infrastructure. The
simulation is iterative, meaning there will be n = 5 additional maintenance requests in
sequential order in each iteration. The simulation consists of the following steps:

1. Create rules based on all maintenance requests that are available at the time of the
current iteration;

2. Check for all rules, whether they are new rules or whether they have been found in a
previous iteration (by applying a similarity measure also to identify very similar rules);

3. Optional: check for each rule whether a human domain expert estimates a contextual
connection between the antecedent and the consequence of a rule. Only keep rules
with a possible connection;

4. Calculate the hits of the new rules on the current data (i.e., the hits that the ARM
algorithm used to create the new rules);

5. Calculate the hits of the new rules on all available data (also future maintenance requests);
6. Calculate the future hits by subtracting the hits on the current data from those on all

available data;
7. Keep the new rules in the backlog for the next iteration.

The main idea behind this procedure is to ensure a realistic view of ARM that creates
association rules near the arrival of the maintenance requests. The differentiation between
steps 4 and 5 ensures that it is possible to calculate the future hits in step 6. This measure
serves as a proxy for a rule’s applicability and to measure an ARM algorithm’s accuracy.
Step 3 consists of the domain expert evaluation of the created rules. In this technical case
study, the domain expert evaluation takes place retrospectively to minimize the burden of
the domain experts. This paper first calculates all rules, excluding step 3. Then, the human
domain experts need to evaluate the eligibility of all rules. Finally, this paper repeats
the rule creation process (steps 1–7) and uses the expert evaluation as an additional filter
in step 3. This paper utilizes two domain experts, one from the practice partner who is
familiar with the facility of the dataset and one electrical expert who is familiar with the
technical background. This paper further considers a rule if an expert estimates the rule
as meaningful.

The simulation uses a minimum support threshold of 0.2, i.e., a maintenance request
must be present in at least two power distribution systems, a minimum confidence of 0.1.,
and a minimum temporal lift of 0.7. The support and confidence thresholds are relatively
low due to the nature of PM, and most defects are rare events [3]. Furthermore, similar
works like [49] also use a minimum support threshold of 0.2. Other works, like [7], do not
explicitly state their thresholds but also present rules with confidence close to 0.1. Since the
similarity of the maintenance requests heavily depends on the utilized similarity measure,
the results section gives more insights into the minimum similarity threshold.

4. Results
4.1. Semantic Similarity Comparison

This paper first calculates the semantic similarity between all maintenance requests.
This pre-calculation helps to obtain an overview of the classification performance of the
utilized sentence transformer LLMs and reduces the simulation’s complexity. In addition,
it helps execute the function similarity(item1, item2) repeatedly quickly. In addition,
pre-calculating similarity scores allows for comparing the correlation across the different
language models. Table 2 shows an excerpt of some maintenance requests and their
semantic similarity calculations using the German RoBERTa sentence transformer.
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Table 2. Examples of Semantic Similarity Using German RoBERTa.

Item 1 Item 2 Semantic Similarity

Room [room number]—Fire bulkhead
defective (defect from test [test number])

Room [room number]—The fire bulkhead on the
ceiling is damaged (defect from test [test number]) 0.78

Meter Reading November 2020 Meter Reading December 2020 0.91

[room number]; no electricity in the entire area No electricity in the [company name] warehouse in
the [room number] 0.76

Cable break at plug Replacement circuit breaker UV outdoor lighting
[room number] 0.19

Power failure at pillar [pillar number] [room number], the blue cover is missing on a socket,
socket still OK. 0.17

Table 3 shows Pearson’s correlation coefficient across all four sentence-transformer
LLMs used in the analysis, as well as their descriptive statistics (i.e., mean, median, and
standard deviation). The table allows the estimation of how related the LLM-based sim-
ilarity scores are when interchanging the respective LLM. A higher dissimilarity (i.e.,
lower correlation and higher difference between the descriptive statistics) would indi-
cate that association rules obtained from these dissimilar LLMs will create different rules
(ceteris paribus).

Table 3. Pearson’s Correlation Coefficient of Similarity Measures and Descriptive Statistics.

German RoBERTa Cross RoBERTa English RoBERTa English MiniLM

Pe
ar

so
n’

s
C

or
re

la
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on
C

oe
ffi

ci
en

t German RoBERTa 1

Cross RoBERTa 0.95 1

English RoBERTa 0.59 0.57 1

English MiniLM 0.62 0.60 0.80 1

Mean 0.25 0.25 0.22 0.19

Median 0.24 0.25 0.20 0.17

Standard Deviation 0.14 0.15 0.14 0.13

Table 3 shows a high positive correlation between the German RoBERTa and the Cross
RoBERTa. Both models use the original text of the maintenance requests written in German.
In contrast, English RoBERTa and English MiniLM use the translated text in English as
input. Accordingly, there is also a high correlation between the similarity scores the English
language models calculated. In addition, the similarity scores obtained from the English
texts also show a moderate correlation to the other two metrics calculated on the raw
German text. Thus, the rules from the translated English text might slightly differ from
those created from the plain German text.

Looking into the descriptive statistics of the four LLM-based similarity scores (i.e.,
German RoBERTa, Cross RoBERTa, English RoBERTa, and EnglishMiniLM) shown in
Table 3 affirms that the LLM-based similarity scores obtained from English text are slightly
different compared to the LLMs working on the German texts. While this difference is
slight, each ARM based on another LLM potentially has a different optimal threshold for
the minimum similarity.

The similarity scores from all four LLM sentence transformers have more than 99%
of their values below 0.65. Therefore, this paper tried various minimum similarity thresh-
olds (i.e., 0.65, 0.7, 0.75, 0.8, and 0.85). None of the algorithms could construct a rule
with a threshold of 0.85, except for most smaller thresholds. Additionally, all models
behave similarly.
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A human judgment serves as a quality assurance that the various semantic similarity
models are helpful in the context of the technical case study. This paper provides a subset
of maintenance request pairs to two human judges who have to rate the semantic similarity
using the six-point Likert scale proposed by Agirre and colleagues. This scale allows
human judges to label sentence pairs without any training in formal semantics [58]. One
of the human judges originates from the partnering company (domain judge), and the
other one is an independent researcher with a technical background (technical judge). This
paper draws a subset of 100 maintenance request pairs from the dataset. Since drawing
random sentence pairs would result in most pairs being semantically unrelated [66], this
paper draws the request pairs in a structured way. It utilizes one LLM-based semantic
similarity model (i.e., German RoBERTa), separates the semantic similarity pairs into ten
bins ([0,0.1), [0.1,0.2), . . .), and draws ten random pairs from each of these bins. This
paper first uses the Pearson correlation between the human judgment obtained from the
Likert score and the semantic similarity calculated from the various models to evaluate
the semantic similarity calculation. Second, since the Pearson correlation can be sensitive
to non-linear relations and outliers, this paper uses the F1-score [55]. For the F1-score
calculation, this paper again uses binning, as suggested in [55]. It defines a request pair as
semantically similar if the human judge evaluates the semantic text similarity as four or
five, meaning that, at most, only unimportant details differ between the texts [58]. Likewise,
this paper considers maintenance request pairs as similar if the semantic similarity score of
the semantic text similarity model is at least 65%. Table 4 reveals the performance metrics
between the two human judges and the eight semantic text similarity models. The table
reveals that most models show a moderate to high correlation to the human judges. Some
relatively low F1-Scores indicate that fine-tuning thresholds might increase performance.
The four LLM-based sentence transformers show the highest performance metrics among
both judges compared to the baseline models, suggesting they are better suited for the case
study. The English MiniLM model shows the most considerable difference between the
human domain judge and the technical judge. This finding might indicate that the MiniLM
model can extract semantic similarities in general but not perfectly for the respective facility
management domain.

Table 4. Performance Metrics between Semantic Text Similarity Models and Human Judges.

Semantic Text Similarity Model
Human Domain Judge Human Technical Judge

Pearson Correlation F1-Score Pearson Correlation F1-Score

German RoBERTa 0.65 0.66 0.54 1.0

Cross RoBERTa 0.64 0.66 0.56 1.0

English RoBERTa 0.63 0.5 0.69 0.67

English MiniLM 0.57 0.5 0.74 0.8

BLEU 0.34 0.0 0.39 0.0

ROUGE-L 0.50 0.5 0.65 0.8

METEOR 0.46 0.29 0.63 0.5

BERTScore 0.49 0.5 0.65 0.08

4.2. Comparison of Rules without Human Expert Evaluation

The ARM algorithm creates rules as antecedent→ consequent, while antecedent and
consequent are one or more maintenance requests. For instance, the German RoBERTa
model generates four rules using a minimum similarity threshold of 0.75 and temporal lift
filtering. Likewise, the Cross RoBERTa model generates six rules with the same parameters.
Table 5 shows these rules to understand what ARM-generated maintenance request rules
look like. As one can expect from Table 3, the rules look pretty similar when comparing
the different semantic similarity bases. However, the Cross RoBERTa model finds two
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additional rules not part of the German RoBERTa model. Section 4.3 and 5 discuss the
quality of the created rules in more detail.

Table 6 gives more insight into the interplay between the similarity threshold and the
number of rules created by the ARM, including semantic similarity, before applying the
temporal lift filtering. All ARM approaches using LLM sentence transformers produce a
reasonable number of rules on the input data and a decent number of hits on future, unseen
data. A higher similarity threshold decreases the number of rules and—associated with
this—the number of hits (please note that the number of hits can contain several hits of
the same rule but on other infrastructure. i.e., having two hits on four rules can mean that
one rule has two hits on different infrastructures). Since Table 3 shows that the similarity
score obtained from English MiniLM has, on average, the lowest cosine similarity, the ARM
algorithm cannot find matching rules with a similarity threshold higher or equal to 0.7. In
contrast, even if the mean and median for English RoBERTa are lower than the similarity
scores obtained from the German text, the ARM algorithm performed on English RoBERTa
also creates some rules for higher thresholds. However, all similarity scores fail to find
rules with a threshold higher than 0.8.

Table 5. Rules Found with Cross RoBERTa and German RoBERTa Using a Minimum Similarity
Threshold of 0.75 and a Temporal Lift Filtering.

Model Antecedent Consequent
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Room X: power socket problem; voltage is only 137 V → Room Z: fire bulkhead in ceiling defect

Room Y: PEN error; voltage is only 138 V → Room Z: fire bulkhead in ceiling defect

Room Y: PEN error; voltage is only 138 V → External system labeling is missing

Room X: power socket problem; voltage is only 137 V → External system labeling is missing

C
ro

ss
R

oB
ER

Ta

Room W: no electricity → Room V: fire bulkhead in wall defect

Room W: no electricity → Room Z: fire bulkhead in ceiling defect

Room Y: PEN error; voltage is only 138 V → External system labeling is missing

Room X: power socket problem; voltage is only 137 V → External system labeling is missing

Room W: no electricity → Room T: Coffee machine not working

Room U: no electricity → Room T: Coffee machine not working

Table 7 shows the same metrics when filtering the rules with the temporal lift. While
the number of rules reduces by more than 50% for all models and thresholds, the reduction
in the number of hits is considerably lower. Thus, comparing Tables 6 and 7 suggests that
the temporal lift can potentially reduce the number of irrelevant rules.

Table 6. Number of Rules and Hits for German RoBERTa, Cross RoBERTa, English RoBERTa, and
EnglishMiniLM Using ARM with Semantic Similarity.

Minimum
Similarity
Threshold

German RoBERTa Cross RoBERTa English RoBERTa English MiniLM

Rules Hits Rules Hits Rules Hits Rules Hits

0.65 104 46 120 48 228 80 54 23

0.7 38 13 22 9 46 21 0 0

0.75 14 5 16 4 4 2 0 0

0.8 0 0 0 0 4 2 0 0
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Table 7. Number of Rules and Hits for German RoBERTa, Cross RoBERTa, English RoBERTa, and
English MiniLM using ARM with Semantic Similarity and Temporal Lift.

Minimum
Similarity
Threshold

German RoBERTa Cross RoBERTa English RoBERTa English MiniLM

Rules Hits Rules Hits Rules Hits Rules Hits

0.65 42 31 44 24 113 67 19 17

0.7 15 11 9 7 13 12 0 0

0.75 4 4 6 4 0 0 0 0

The two diagrams in Figure 4a,b shed more light on the interplay between the iteration
time (i.e., iteration = the number of maintenance requests divided by n = 5) and the number
of rules and hits until this iteration. All rules shown have a minimum similarity of 0.65.
Figure 4a shows that almost all ARM runs create their first rules after a few iterations.
There is one exception, namely, English MiniLM, which creates its first rule in iteration 17.
Figure 4b shows the future hits of a newly created rule in the respective iteration. Since
both diagrams run nearly parallel and the right diagram shows the first hits after iteration 3,
it seems that the proposed ARM extension can find relevant rules already with little data.
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two percentage points). In addition, it uses a minimum similarity threshold of 0.65 to iden-
tify a similar written rule as an overlap. Table 8 confirms that the German RoBERTa and 
the Cross RoBERTa lead to similar results, as there is a high overlap between both rule 
sets. Table 5, showing exemplary rules created from both LLMs, already suggested this 
high overlap. Contrarily, the English RoBERTa produces mostly wholly different rules. 
The English MiniLM is a mixture of all rules created with the RoBERTa-based LLMs. 
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Besides creating rules with the LLM-based sentence transformer similarity scores, 
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As a last analysis considering the rules created using the four LLM sentence transformer-
based similarity scores, Table 8 gives an overview of the overlap of rules conducted using
the similarity score of the four different LLMs. A rule is an overlap if it is present in both
rule sets of two different sentence transformers. Overlaps between the same transformer
models are omitted (marked with a dash) and overlaps with empty rule sets are marked as
not available (N/A). The comparison utilizes the German RoBERTa similarity score since
the wording of the two rules might be similar but not identical (using another LLM for the
similarity score results in similar values that differ slightly, mostly± two percentage points).
In addition, it uses a minimum similarity threshold of 0.65 to identify a similar written
rule as an overlap. Table 8 confirms that the German RoBERTa and the Cross RoBERTa
lead to similar results, as there is a high overlap between both rule sets. Table 5, showing
exemplary rules created from both LLMs, already suggested this high overlap. Contrarily,
the English RoBERTa produces mostly wholly different rules. The English MiniLM is a
mixture of all rules created with the RoBERTa-based LLMs.
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Table 8. Overlap of Rules.

LLM Minimum
Similarity

German
RoBERTa

Cross
RoBERTa

English
RoBERTa

English
MiniLM

German RoBERTa 0.65 - 0.77 0.05 0.52

Cross RoBERTa 0.65 0.79 - 0.04 0.48

English RoBERTa 0.65 0.13 0.07 - 0.56

English MiniLM 0.65 0.21 0.12 0.13 -

German RoBERTa 0.7 - 1.0 0.04 N/A

Cross RoBERTa 0.7 0.68 - 0.04 N/A

English RoBERTa 0.7 0.16 0.09 - N/A

English MiniLM 0.7 0.0 0.0 0.0 N/A

German RoBERTa 0.75 - 0.5 0.0 N/A

Cross RoBERTa 0.75 0.57 - 0.0 N/A

English RoBERTa 0.75 0.0 0.0 - N/A

English MiniLM 0.75 0.0 0.0 0.0 N/A

Besides creating rules with the LLM-based sentence transformer similarity scores, this
paper also applies the ARM process with the other four baseline similarity scores obtained
from BLEU, METEOR, Rouge-L, and BERTScore. Starting with BLEU, the correlation
between the similarity scores obtained from the first baseline model and the LLM-based
similarity scores is positive but low (between 30% and 40%). Furthermore, the absolute
BLEU values are lower than the other similarity scores. Since setting the minimum similarity
threshold of the ARM to a value higher or equal to 0.4 results in no association rules, it
necessitates setting it to a lower value (e.g., 0.3 or 0.35). However, this change would put
maintenance requests that do not belong together semantically on the same level. For
instance, a threshold of 0.35 would mark similarly worded maintenance requests like
“Deficiency item [item number] from [external company] report: [maintenance request
description]—continuation of maintenance order [order number]” (where only the middle
part marked as “[maintenance request description]” changes) as identical. Therefore, basing
ARM on BLEU does not seem to produce reliable association rules with high support as
intended. Table 4 already indicates the inappropriateness of BLEU for the context of this
case study.

Furthermore, the similarity scores obtained from Rouge-L and METEOR are very
similar, manifesting in a correlation coefficient of 93% between both. In addition, their
correlation with the LLM-based similarity scores is also higher than the ones with BLEU,
ranging between 45% and 55%. Since the similarity values have a higher absolute value
than BLEU, the ARM results in association rules with a minimum similarity score of up
to 60%. However, it seems that the similarity measurement is still problematic for shorter
texts. For instance, both mark the maintenance requests “Area [Room X] Defective socket”
and “Area [Room Y] socket loose” as similar, while the LLM-based similarity scores marked
them as dissimilar. Last, utilizing the BERTScore similarity measure allows the comparison
between the previous four LLM sentence transformer-based similarity scores with a second
type of LLM-based similarity scores. Indeed, the correlations between both groups are
highest compared to the other baseline models, ranging between 50% and 60%. However,
one can still observe similar problems of a high similarity score between maintenance
requests with similar wording but different meanings. It did not show such flaws when
manually screening all similar maintenance requests marked by the four LLM-based
sentence transformers. Thus, the sentence-based consideration of the four selected LLM-
based sentence transformers fits better in the case study context than a word/tensor-based
semantics consideration, ARM using BERTScore with a minimum similarity threshold of
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0.85, ARM using Rouge-L and METEOR with a minimum similarity threshold of 0.6, and
ARM using German RoBERTa with a minimum similarity threshold of 0.75 results in the
same four rules when using the temporal lift filter.

4.3. Comparison of Rules with Human Expert Evaluation

Finally, two human domain experts evaluate the quality of the rules. In this use case, a
rule is meaningful if a domain expert estimates a connection between the antecedent and the
consequence in a technical manner. The domain experts evaluated 200 pairs of maintenance
requests that originate from the different association rules generated by the four LLM-based
sentence transformers and a minimum similarity threshold of 65%. This selection allows a
retrospective evaluation of all rules created using the sentence transformers.

Table 9 looks into the accepted rate of the created rules after the human domain
expert evaluation. This paper defines the acceptance rate as the number of rules the
domain experts evaluate as meaningful divided by the number of rules generated using
the described ARM process and the four LLM-based sentence transformers. Please refer to
Tables 6 and 7 to compare the number of rules per LLM and similarity threshold.

Table 9 reveals that a higher minimum similarity threshold generally increases the
acceptance rate. There are only two exceptions where the acceptance rate is 0 with a higher
minimum similarity threshold. Both acceptance rates rely on a subset of only four rules to
evaluate from (see Tables 6 and 7). This finding indicates that a higher minimum similarity
threshold can help generate more meaningful rules. Moreover, the English RoBERTa model
obtains the highest acceptance rates for the minimum similarity thresholds of 0.65 and 0.7.

Table 9. Acceptance Rate of Rules after Human Expert Evaluation.

Minimum
Similarity
Threshold

German RoBERTa Cross RoBERTa English RoBERTa English MiniLM

Temporal
Lift Filter No Yes No Yes No Yes No Yes

0.65 0.15 0.15 0.12 0.14 0.17 0.18 0.04 0.05

0.7 0.26 0.20 0.27 0.33 0.26 0.38

0.75 0.29 0.00 0.50 0.33 0.00

Contrary to intuition, the temporal lift filter does not significantly increase the ac-
ceptance rate of the rules. However, the temporal lift filter does not negatively harm
the number of hits when only considering rules with a positive human domain expert
evaluation. Table 10 shows the number of rules and hits for all four LLM-based sentence
transformers using a minimum similarity threshold of 0.65.

Table 10. Number of Rules and Hits after Human Expert Evaluation.

German RoBERTa Cross RoBERTa English RoBERTa English MiniLM

Temporal
Lift Filter No Yes No Yes No Yes No Yes

Rules 18 7 18 7 40 20 2 1

Hits 7 6 10 8 11 9 1 1

As in Table 6, the number of hits is comparable between association rules obtained
with and without a temporal filter. However, the temporal lift filter results in only half
the number of rules compared to the same ARM process without that filter. Hence, the
temporal lift filter further benefits from the human domain expert evaluation and mainly
provides rules useful for future maintenance works. This filter minimizes the burden on
human domain experts since they need to evaluate fewer rules manually.
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5. Discussion

The proposed ARM extension utilizing semantic similarity and temporal lift demon-
strates that it is possible to apply ARM on maintenance requests for facility management.
One benefit of this approach is that companies can quickly adopt the algorithm on their use
cases and facility management software without needing labeled data or sharing business
secrets. In addition, relying on pre-trained LLMs helps to overcome the data availability
problem in specific sectors like construction [9]. This paper utilizes four different sentence
transformer LLMs to quantify the semantic similarity between maintenance requests. The
results demonstrate that all LLMs are suitable for ARM. However, even if the similarity
function that compares the similarity between two maintenance requests utilizes the co-
sine similarity metric between two sentence vectors, the different LLMs require different
thresholds for the minimum similarity. Furthermore, they also produce partly different
rules. Therefore, decision-makers should test which model works well for their use case by
manually evaluating a subset of rules.

Since all maintenance requests of this paper’s dataset are in German, it serves as a good
use case to evaluate the applicability of LLMs to languages other than English. While most
LLMs work well in the English language, only a few models support the German language.
Conversely, the results show that LLMs considered in this paper (i.e., German RoBERTa and
Cross RoBERTa) are suitable for similarity measures. In addition, it is possible to use NLP
for machine translation first, i.e., from German to English, as [38] suggests. However, not all
similarity models work well in this context. An early test with another language model (i.e.,
symanto/xlm-roberta-base-snli-mnli-anli-xnli) applied to the English translation produced
high similarity scores between most maintenance requests. While increasing the minimum
similarity threshold is one possibility to counteract an excessive number of rules, it is
questionable whether it is helpful to apply an unsupervised algorithm where changing
a threshold to an extreme value like 0.95. However, comparing the four selected LLMs
suggests that using the proposed methodology also applies to other languages.

Another finding when comparing the number of rules and hit rates of the four models
is that the English MiniLM model only finds rules with a minimum similarity threshold
of 0.65, while the two models working on the German language still find rules with a
minimum similarity of 0.75. One explanation can be that the MiniLM model cannot
quantify the similarity as well as the other models due to its smaller size. The human
domain judgment has the lowest correlation to the semantic similarity scores obtained from
the MiniLM model, too, suggesting that it is less suitable for this case study than the other
models. However, since the presented approach does not fine-tune the LLM, one can easily
use larger language models in this context without having performance problems.

Comparing the four sentence transformer LLMs with four other baseline models
that operate on a word, i.e., token or n-gram, level shows that the sentence transformers
produce more reliable similarity scores. While the sentence transformer models have a
higher computational complexity than the n-gram-based scores, their complexity helps
outperform the simpler models. In addition, applying the sentence transformers on this
paper’s dataset did not require excessive computational resources as the transformer
models were already pre-trained.

One peculiarity of this paper’s dataset is the relatively short text length. Some main-
tenance requests contain less than five words (see Tables 2 and 5). The short length is
a particular challenge for semantic similarity algorithms since short texts are frequently
grammatically incorrect [67]. A transformer model assuming two grammatically correct
sentences might struggle to extract the suitable domain-specific similarity. Furthermore, a
slight variation in the sentence can significantly impact the metric. The second example of
Table 2 (“Meter Reading November 2020” and “Meter Reading December 2020”) shows that
a slight variation (changing “November” to “December”) impacts the semantic similarity.
In the context of maintenance works, the activity of a meter reading should be similar,
independent of the time of the reading. While the transformer model considers complete
sentences, the semantic similarity is still high (0.91). The baseline models would mainly
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detect that three out of four words are similar, resulting in a similarity of 0.75. Even if the
transformer model can handle this example quite well, it might struggle with shorter texts
that differ in unimportant details (e.g., room numbers in the same building, abbreviations,
names). A reason for this behavior is that comparing the semantic similarity using sentence
transformers and cosine similarity treats all dimensions of the sentence vector equally [54],
resulting in a higher impact of a slight change. Replacing such named entities or dates
with placeholders might work well for particular use cases. However, numbers can have
a specific meaning depending on the context, and LLMs might need help to utilize them
effectively as features [68]. Since the transformer model is not pre-trained on the respective
use case, it cannot always distinguish between important and unimportant details. Thus,
companies should carefully monitor the semantic similarity calculation when applying
the proposed approach to short texts. Creating explicit features via information extrac-
tion and adding them into a decision algorithm, as shown in [68], can be beneficial in
particular domains.

This paper’s second extension includes a temporal lift as a rule filter. While the original
ARM idea is to work on basket data as a transaction where all items belong to one entity,
this paper considers a transaction as all maintenance requests from one infrastructure. In
contrast to the original setting, in this paper, all requests arrive in a temporal order and
not within a short time. The consequent must come temporally after the antecedent to find
suitable rules for PM. Otherwise, a rule in the form of A→ B would be valid even if B
breaks before A, as long as it breaks in the same infrastructure. The temporal lift ensures
that this temporal logic is the case for all rules to a certain extent. Indeed, the results suggest
that the temporal lift helps to filter out irrelevant rules with low hit rates. Fine-tuning the
minimum temporal lift threshold might further increase the rules’ appropriateness. One
concern when considering the temporal nature of maintenance requests is that it might
take time between the antecedent(s) and the consequent(s). This time gap might make rules
less relevant, especially when some processes change in the meantime. One might use a
temporal decay factor for this problem, as we further detail in the future work section of
this paper’s conclusion.

Nonetheless, to decide the quality of the resulting association rules, one should not
simply rely on the hit rate of a rule but present the rule to a domain expert, who can judge
whether a rule makes sense in the context of the predictive maintenance company. For
example, one rule the algorithm found on the dataset was “No electricity in X’ warehouse”
→ “Power sockets in office Y do not work”. This rule might be helpful if there is a
connection between the warehouse’s electricity and the office’s electricity (which one might
assume since the maintenance request originate from the same power distribution system).
However, if both infrastructures are not connected, e.g., in a different city, decision-makers
should neglect such a rule by reviewing the rules by a domain expert.

Even though the maximum acceptance rate of the domain expert evaluation in this
paper’s use case is only 50%, meaning that at least half of the generated rules are mean-
ingless, the practice partner ensured that a few meaningful rules already help optimize
the maintenance process and are valuable support. Although some rules sound trivial
in the first place, double arrivals by maintenance workers are an essential problem and
a substantial cost driver. According to our practice partner, every rule with a hit saves
additionally at least 10 to 15 min per request due to the manual need to create a new
maintenance request. The CAFM tool can support this and automatically provide helpful
information, e.g., the infrastructure manufacturer, possible warranties, service contracts, or
available repair parts.

To support decision-makers, an ARM solution embedded in a CAFM tool might not
only present the rule and potential further upcoming maintenance requests but also link
to recent other, similar maintenance requests. This functionality would also increase the
algorithm’s transparency to the end users. Even though the algorithm does not entirely
automate the maintenance decision-making process, it can help optimize the maintenance
processes. In addition, when dealing with a higher number of infrastructures, a company
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creates thousands of maintenance requests that a single decision-maker cannot review
manually. The presented tool helps to extract the most common associations.

Another concern of applying ARM on maintenance requests is that specific mainte-
nance events are rare. This paper uses a minimum support value of 0.2, meaning that
a maintenance event has to occur in at least two power supply systems. However, for
even more rare events, one might set the threshold to 0.1 in this paper’s technical case
study. This lower threshold allows finding all associations independent of whether they
occur multiple times. While this low threshold would create an increased number of rules,
adding a weighting term considering the respective impact of such a rare event might help
only integrate the rules with the highest impact. The limitation section in this paper’s
conclusions sheds more light on such a weighting term.

One advantage of the ARM approach presented is that it only alters the definition
of the support function and adds the semantic similarity logic. While this paper uses a
default Apriori implementation to evaluate the approach, researchers and practitioners can
easily change the ARM algorithm by simply replacing the default support calculation. This
flexibility is an advantage compared to other works that utilize ARM. For instance, [50]
presents an approach that integrates semantic similarity into ARM and relies on Apriori
to mine association rules. However, their modification only creates rules where the an-
tecedents have a unitary length. In the results presented, this paper mined several rules
with multiple maintenance requests in the antecedent and consequent.

Similarly, calculating the temporal lift is also independently possible from the actual
ARM methodology, as it solely consists of the modified support function and a candidate
list of rules.

An alternative to ARM can be topic modeling, a class of unsupervised algorithms
capable of identifying similar maintenance requests belonging to the same topic. Since topic
modeling can output a vector for each maintenance request representing a distribution of
different topics [56], one can use it as an input for clustering, nearest neighbor analysis, or
an alternative for semantic similarity search for rule mining [69]. However, classical topic
modeling algorithms do not work well for short texts due to a lack of word co-occurrence
within short texts and its neglect of a word’s context [70]. There are less prominent topic
modeling algorithms that can handle short texts; some use word embeddings, but their
performance is dataset-dependent [70]. Topic modeling further requires specifying the
number of topics in a corpus beforehand [69], which can be tricky for maintenance decision-
makers due to the dynamic nature of maintenance requests. Interpretation of topics is
also non-trivial, even for researchers [69]. Finally, the proposed rule-based approach
allows finding coherent maintenance requests even if they are topically not connected
(antecedent and consequent do not have to be semantically similar or from the same
topic). Thus, the proposed ARM method is less restricted and more accessible to apply in a
maintenance setting.

6. Conclusions

While more and more data become available for facility management, the sector
does not yet exploit all opportunities that data serve. For example, PM is a field that
facility management companies rarely consider here [15]. Potential reasons are the lack of
structured data and explicit labels. Most PM algorithms are supervised ML and require
such input data. However, most corporate data’s available information is mainly in text
form [9]. Therefore, this paper investigated the opportunity of applying association rule
mining as an unsupervised ML method on textual data from maintenance requests. By
integrating temporal constraints and the concept of semantic similarity obtained from
LLMs into the process of ARM, this paper demonstrated that it is possible to create handy
association rules suitable for facility management decision-making.

This paper has several theoretical and practical implications. First, on a theoretical
side, this paper contributes to integrating semantic similarity into ARM. Former research
on integrating semantic similarity is scarce. While there are a few works, for instance, [50]
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and [49], this paper’s approach differs in integrating the semantic similarity to be inde-
pendent of the concrete ARM algorithm. Second, this paper is one of the first works that
apply ARM on maintenance requests for facility management and proposes an easy-to-
use approach that one can adopt according to individual needs. Third, managers and
decision-makers can rely on PM even if no specific labels are available in a corporate
context. Leveraging their existing data can be beneficial. This paper’s results suggest that
a couple of maintenance requests can already help to mine the first meaningful rules. In
case structured information becomes available (e.g., cost estimates or priorities), these
data can be either used to sharpen the rules (e.g., via priority weighting) or might allow
running (semi) supervised ML. Finally, this paper’s approach enables facility managers to
understand the interdependencies between their infrastructure better. This support helps
especially for complex facilities or facility managers who are new to a specific facility. The
rules created by ARM are easily interpretable and vivid due to the possibility of comparing
similarity scores between maintenance requests.

One limitation of this work is that it demonstrates the methodology only with the
default Apriori algorithm. While the literature shows that a range of algorithms outper-
forms Apriori, e.g., in turn of performance or computation time [33], future work can study
the computational performance of this paper’s approach, especially on large databases.
Another limitation is the focus on only one type of infrastructure on a limited number of
maintenance requests. However, future works can apply the proposed approach to different
data, e.g., another type of infrastructure. An interesting extension is the transferability of
rules from one type of infrastructure to another.

Additionally, this paper only integrates the temporal concept as a temporal lift that
can filter out rules that do not match a specific temporal pattern. It does not incorporate
longer temporal gaps between the antecedent and the consequences of rules or structural
changes that make rules obsolete over time. Future work can improve the mining process
so that it might only mine temporal rules or handle out-of-date rules, e.g., by using time
decay functions, as in [52]. Finally, this paper only integrates the concept of time as an
implied component and not as an integral part [31]. Thus, future research might shed more
light on this research stream for ARM in PM.

In addition, even if ARM produces a variety of reasonable rules, facility management
cannot proactively maintain every infrastructure that might break according to the con-
structed rules. Since what can be maintained depends on the available time and repair
costs [7], prioritizing what should be maintained might be helpful. The work of [7] proposes
a two-stage process. It first mines association rules from the data and then formulates a
mathematical optimization problem to create a constraint maintenance policy. Another
approach used in the literature is to weigh the association rules, either manually by experts
or automatically [51]. In the case of facility management and maintenance requests, such a
weight might be potential repair costs or the severity of a failure. However, this informa-
tion was unavailable for the data used in the simulation. Thus, this paper omits the rule
weighting and leaves it open for further research. Consistent with the work of [41], the
data for this future evaluation might also originate from manual inputs or automatically.
Manual inputs might stem from real-time estimates when writing a maintenance request.
Automatic inputs, for instance, can arise from an NLP algorithm that estimates the costs
based on the maintenance text and previous repair work where the cost information is
available. In addition, this paper conducted the expert evaluation of the rules only retro-
spectively, i.e., on a complete dataset of maintenance requests. Future work can analyze
the entire ARM process iteratively to evaluate it in actual facility maintenance processes.
This iterative approach might help find the optimal values for the ARM parameters (i.e.,
minimum support and temporal lift). Future work might also apply the approach for
various use cases as the value might change depending on the respective data.

The proposed ARM approach serves as an input for a range of applications for facility
management. Due to its adaptability, future research can utilize the concepts from the
presented approach and adapt them according to the specific needs.
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