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Abstract: While new production areas (greenfields) have state-of-the-art technologies for implement-
ing digitalization, existing production areas (brownfields) and devices must first be upgraded with
technologies before digitalization can be implemented. The aim of this research work is to use a
case study to identify the differences in the implementation of machine learning (ML) projects in
brownfields and greenfields. For this purpose, an ML application for the detection of changeover
times on milling machines is implemented and analyzed in the brownfield and greenfield scenarios as
well as a combined scenario. Particular attention is paid to the selection of sensors and features. It was
found that the abundant availability of features in the greenfield scenario poses pitfalls when creating
ML projects if the underlying sensors cannot be checked for their suitability. For the changeover
detector use case, the best model quality was achieved for the combined scenario, followed by the
greenfield scenario.

Keywords: manufacturing; milling; changeover; setup; machine learning; sensor selection; feature
selection

1. Introduction

Digitization can support manufacturing companies in their efforts to improve effi-
ciency in their processes. The research project Optimization of Processes and Machine Tools
through Provision, Analysis and Target/Actual Comparison of Production Data (OBerA)
was founded with the aim of supporting companies from Bavaria in the application of digi-
tization techniques and investigating the possibilities and challenges of the approaches. The
OBerA project consortium consisted of five production-oriented companies from the small
and medium-sized enterprise (SME) sector [1], Siemens as the technology partner, and the
Technical University of Applied Sciences Würzburg-Schweinfurt as the research partner.

Throughout the research project, digitization techniques were implemented in collabo-
ration with the project partners. Based on these techniques, various optimization projects
were carried out, employing machine learning (ML) concepts in machine changeover, pro-
duction planning, tool management, and factory automation. Significant variations in the
results were noted between older machine environments (brownfield) and areas featuring
modern infrastructure (greenfield). Therefore, the question arose as to whether different
procedures are required for optimization projects with ML or whether existing procedures
need to be adapted.

In Section 1.1, first, the terms greenfield and brownfield are clarified and characterized
in the field of ML projects based on current research articles. The importance of data acqui-
sition and, in particular, sensor and feature selection is then emphasized. The differences
between a greenfield and a brownfield approach are elaborated, which have not yet been
addressed in current research work. A research gap and research questions are derived
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from these findings. In Section 1.2, the research approach based on a use case evaluation is
described. In Section 1.3, the structure of the article is presented.

1.1. Problem Statement

In the transition to a smart factory, the integration of sensors and data processing
becomes crucial for both logistical and production processes. Usually, the planning of
factories or production lines involves incorporating current technology from the ground up.
This approach is called the greenfield approach. According to [2], greenfield planning can
be conducted on “a new production site or a new production system within an existing site”.

While greenfield sites are emerging from a stable economic situation, brownfield
environments are often economically regarded as marginally viable or even non-viable
sites. Economically, these sites cannot compete with greenfield sites [3].

A legacy system, as part of a brownfield environment, contains machines from dif-
ferent manufacturing dates with different technology levels. Process control is conducted
manually, including “observing, sensing, estimating, and adjusting the machine parame-
ters” [4].

In terms of digitization, several challenges exist for upgrading brownfield environ-
ments to the comparable capabilities of greenfield environments. The term retrofitting is
often used to describe the upgrade of brownfield environments with Industry 4.0 capa-
bilities [5], including “the hardware of machinery and the production method, operator,
and management” [4]. In particular, machines from brownfield sites need to be equipped
with sensors and connectivity [6]. For up-to-date machines in greenfield sites, machine
states are made available for ML applications via software architectures that are typically
manufacturer-dependent. In this context, selecting features from the machine’s almost
inexhaustible choice of features presents a challenge in creating ML models. But, despite
the advantages of greenfield sites, it is technically or economically not always possible to
replace brownfield machinery [5].

Brownfield machines, on the other hand, lack sensors and connectivity. Here, the selec-
tion, application, and connection of sensors are challenges. The number of features is more
limited in comparison to the greenfield case. Often, sensors are specifically chosen accord-
ing to operational needs or the technical optimization target related to process or quality
parameters [4]. Integrating many different sensor types also depends on the available
budget for sensors and the efforts to integrate them into a common data platform [7].

The different availability of features in brownfield and greenfield scenarios has conse-
quences for the creation of ML models. In the case of the brownfield scenario, the quality of
the model created depends on selecting a suitable set of sensors. In the case of the greenfield
scenario, the quality of the created model depends on a so-called feature selection process.

While feature selection is a common task in ML [8], selecting suitable sensors should
also be supported methodically. In [9], from expert interviews, the authors state that feature
selection in ML software projects is focused on “accessibility, accuracy, authoritativeness,
freshness, latency, structuredness, ontological typing, connectedness, and semantic joinabil-
ity”. The selection of sensors, which has to be conducted before the accessibility of data can
be considered, was not mentioned by the respondents. Conclusively, the authors declare
that “engineers have to find . . . data for use in model training and tuning”, though they
do not provide specific directions on how this search shall be conducted. The lack of a
methodological approach for practitioners of ML projects can be considered a research gap.
In [10], the authors point out that approaches for the development of technical systems
for greenfield and brownfield situations have different characteristics. A methodological
approach, therefore, should take greenfield and brownfield characteristics into account.
The corresponding first research question for this article is “Which methods are suitable
for brownfields (and, subsequently, greenfields) to support the sensor selection process for
ML projects?”

In their article about data science projects on industrial data in brownfields [11],
the authors point out the importance of thorough planning of data acquisition. They also
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emphasize that findings from greenfield approaches need to be checked for generalizability
before applying them to brownfield approaches, and vice versa. Overall, if the initial data
acquisition approach between greenfield and brownfield optimization approaches differs,
the following question arises: what will be the impact on the result of the optimization?
The second research question, therefore, examines the effect of a methodically supported
sensor selection process on the quality of the ML model created: “What differences can be
seen between the performance metrics of ML models from a brownfield, greenfield, and a
combined approach?”

1.2. Research Approach

The first research question aims to identify existing methods for sensor selection
and analyze these methods for their suitability for use in ML projects in brownfield and
greenfield environments. Existing methods are often used as part of procedures. Overall,
the research question has an exploratory objective. The available data describe the methods
and procedures and can, therefore, be described as qualitative. Due to the exploratory objec-
tive and the qualitative data, case study research is used as a research strategy ([12], p. 15).

In order to broaden this empirical research approach, information from three different
scenarios is considered (data source triangulation, [12], p. 16). The three scenarios are
related to a greenfield, brownfield, and mixed environment (here: combined). For all these
scenarios, the exemplary use case of changeover detection based on manufacturing data is
used to create ML models. On the one hand, this seems to be a specific application, but on
the other hand, many different production machines are usually set up to change from one
variant to another (changeover); previous research work has shown that the detection of
changeovers requires many different uses of data sources [13]. This specific use case of
changeover is implemented for the three scenarios for five-axis milling, which is a general
and widely used manufacturing technology.

Sensor selection is part of the implementation process for ML models. The exemplary
procedure proposed by [4] for a holistic digitization concept is applied here:

• Sensors (and actuators) for process interaction;
• Connectivity for communication and automation;
• Data management for data accumulation and abstraction;
• Operational integration for business decisions.

Even though the focus of the research work is on the sensor selection step, all steps
(but not the actuator interaction) are carried out in this article. At the end of the creation of
the ML model, the model quality is also included in the discussion as additional informa-
tion with which to evaluate the suitability for operational integration. Strictly speaking,
the model metric as a measure of the model quality is a quantitative characteristic that will
be taken into account to discuss the overall success of the methodology.

The applied ML algorithms are from the family of supervised learning algorithms that
rely on labeled data as ground truth [9]. Methods of unsupervised learning, reinforcement
learning, or others are not considered in this article [14–16].

1.3. Article Structure

The article is structured in a classical way, starting with a materials section (Section 2).
Section 2.1 explains the use case of a changeover detector for manufacturing machines.
The very heterogeneous machine environment of the project consortium used to real-
ize this use case is analyzed, the most frequent numerical control (NC) manufacturers
are roughly portrayed, and the specifically used machines are presented (Section 2.2).
Section 2.3 describes the connectivity setups for the different scenarios (brownfield, green-
field, and combined approach).

Then, the supporting methods are presented in the methods section (Section 3). Here,
the focus is set on feature and sensor selection methods for the different approaches
(Section 3.1). The selected ML algorithms to model the use case are explained (Section 3.2),
as are the performance metrics used for the ML models (Section 3.3).
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In the results section (Section 4), the implementation of the changeover detector is
analyzed for the different scenarios as well as the performance metrics for the selected ML
algorithms. The results are discussed in Section 5.

Finally, conclusions are derived in Section 6.1, and directions for further research are
elaborated (Section 6.2).

2. Materials

The materials section introduces the use case of a changeover detector for manufactur-
ing machines (Section 2.1) and explains the machine environment of the project consortium
(Section 2.2). Moreover, an analysis of the most frequent numerical control (NC) manufac-
turers used in the consortium is presented. Section 2.3 explains the resulting connectivity
challenges for the brownfield, greenfield, and combined approaches.

2.1. Use Case Description

In prior research, a machine learning (ML) approach for milling machines was devel-
oped to distinguish between changeover and production phases. Changeover refers to the
period during which a production machine is prepared for the next product variant. This
changeover detector uses data from external sensors and the machine’s operational states to
evaluate whether a production machine is in changeover or production mode. The ML task
involves classifying the current sensor readings and machine status information into two
distinct manufacturing phases (No. 1, “Changeover”: changeover, including intermittent
idle time; No. 2, “Production”: the production phase). Although the original ML approach
incorporated additional changeover phases, this article focuses on comparing the different
approaches within these two phases.

Based on the changeover detector use case, three scenarios were defined to evaluate the
different effects of creating ML models in brownfield, greenfield, and mixed environments
(here: combined):

For the brownfield scenario, the ML model was based on a setup of external sensors,
which were applied to an existing antiquated milling machine (DMG 100 U duoBLOCK,
see also Section 2.2.4). These sensors were not connected to the numerical control (NC)
of the machines (“NC-external”). This brownfield approach did not require an up-to-
date NC to connect specific sensors (see Table 1, left). However, as was shown in [17],
all the different sensors had to be connected using their specific hardware interface (i.e.,
IO-Link, digital I/O, internal programmable logic controller (PLC)) and the data needed
to be collected (over message queuing telemetry transport (MQTT)) and aggregated in a
common structured query language (SQL) database.

For the combined approach, the external sensor setup was further enhanced by data
that were available directly from the NC (see Table 1, middle). Data were collected from
internal sensors, which were made available externally by the NC or were the internal
statuses or computed values of the NC (“NC-provided”). This approach was defined as the
combined approach (see Table 1, middle). The additional NC-provided sensors aggravated
the sensor selection problem, which was identified for the brownfield approach. Further-
more, the same information can be available in different variables in an NC. This underlined
the necessity of feature selection, which is a common activity of ML projects ([18], p. 27).
When using information directly from an NC, there are proprietary interfaces provided by
the NC manufacturers that have specific architectures (see Section 2.2). In order to connect
new sensors to the NC and enable them in software interfaces, maintenance personnel
need to be trained and available. For example, a door switch is already connected to the
NC, but the internal variable of the door switch has to be identified in the wiring plans and
made available for the data interface by a maintenance technician. This article shows that,
aside from these necessary efforts, the quality of the model can be improved by additional
NC-provided data (see Section 4).

The greenfield approach (see Table 1, right) relies solely on NC-provided variables
and sensors. In comparison to the brownfield and the combined approach, the greenfield
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approach offers standardized access to the NC (e.g., switch cabinet techniques and stan-
dardized NC programming) and reduces the number of sensor interfaces that have to
be connected.

Table 1. Different approaches in the OBerA project.

Brownfield Approach Combined Approach Greenfield Approach

Sensors NC-external sensors NC-external sensors NC-provided sensorsNC-provided sensors

Challenges

Heterogeneous data interface
Heterogeneous data interface Sensor feature selection NC manufacturer dependency
Sensor selection Perceived surveillance Feature selection
Perceived surveillance Exposure to environment Additional sensor data provisioning
Exposure to environment NC manufacturer dependency

Additional sensor data provisioning

Benefits Availability of sensors Availability of sensors and features Homogeneous data interface
Application flexibility Application flexibility Availability of features

2.2. Machine Environments

The machine control landscape in the OBerA consortium is very heterogeneous.
Figure 1 shows an overview of the different machine controls that exist in the different
companies of the consortium. The controls from Siemens, FANUC, and HEIDENHAIN
are the most frequently used in the consortium. However, it needs to be pointed out that
the number of Siemens controls exceeds that of the other manufacturers, as one of the
companies of the consortium is a Siemens production site.

Every NC manufacturer has its own interface approach to making machine data avail-
able. The different concepts of the manufacturers (Siemens, FANUC, and HEIDENHAIN)
for retrieving NC data are described in the following sections. A new approach called
universal machine technology interface (umati) provides a framework for standardized
communication. It is based on the Open Platform Communications Unified Architec-
ture (OPC UA) protocol but is still under development and not commonly available [19].
Therefore, it is not considered in this article.

Table 2 shows exemplary reported usages for machine control interfaces from Siemens,
FANUC, and HEIDENHAIN in scientific research articles. For all NC manufacturers,
the machining operation for milling is reported. For FANUC and Siemens, turning is also
mentioned in some articles. Additionally, drilling and laser cutting use cases were reported
for Siemens.

Table 2. Examples for interface usages in machining applications in research.

NC Manufacturer Reported Interface Application References

FANUC Three-axis milling [20]
Five-axis micromachining, turning [21]

HEIDENHAIN Three-axis milling [22,23]
Five-axis milling [17,21,23,24]

Siemens
Drilling [25,26]
Milling [26–29]
Milling, turning, laser cutting [30]
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Figure 1. Distribution of different numerical control (NC) manufacturers in the OBerA consortium.

2.2.1. Siemens

Siemens mainly uses its platform (Mindsphere) to collect and store NC data. It
supports various communication protocols, such as MQTT, OPC UA, FANUC FOCAS,
Modbus, etc. [31]. Additional hardware can be used to transfer data to the Mindsphere,
and existing hardware can be connected through a supplementary software library [32].
Siemens distinguishes between high- and low-frequency data. The SINUMERIK Edge
concept allows up to 100 high-frequency variables (1 kHz), which are taken directly from
the NC kernel with data from interpolation or position control. Low-frequency data
can be distributed by the BTSS concept that gives access, e.g., to PLC, static, or system
NC variables.

2.2.2. FANUC

FANUC has its own software solution to collect data from machines, robots, and other
devices called MT-LINKi. It can connect to FANUC machines by using the FOCAS library,
machines from other manufacturers, PLCs, and sensors, as long as they are in a network
supporting OPC UA or MTConnect [33]. By using the FOCAS library, “own functions” can
be developed [34]. The FANUC OPC server can be used to convert the communication
protocols between OPC and FOCAS [35].

2.2.3. HEIDENHAIN

In order to obtain data from HEIDENHAIN machines, the HEIDENHAIN DNC
interface can be used. These data can be exchanged with numerous systems like enterprise
resource planning (ERP), CAD, or simulation software [36]. HEIDENHAIN has its own
platform for collecting, interpreting, and visualizing machine data. It can collect data from
its own distributed numerical control (DNC), OPC UA, MTConnect, and Modbus/TCP [37].
Problems can arise if the NC is too old to communicate with the interface. Machine controls
manufactured before the year 2006 cannot communicate via the HEIDENHAIN DNC [38].

2.2.4. Used Machine Tools

For the brownfield scenario, a five-axis milling center (DMG 100 U duoBLOCK) was
used [13]. The machine was equipped with a rotating pallet changer to allow changeover
preparations in parallel to the production time (Figure 2, right). In order to implement the
combined approach, establishing a connection to access data from the NC HEIDENHAIN
Mill Plus IT (Version 530) was essential. Unfortunately, it was not realizable on this
machine, as the Mill Plus IT NC is not supported by the HEIDENHAIN DNC interface [39].
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Consequently, for both the combined and greenfield scenarios, it became necessary to
identify an alternative machine with comparable features. The objective was to ensure
comparability with previous research, leading to the search for a milling machine equipped
with five-axis kinematics and support for the HEIDENHAIN DNC interface.

Figure 2. Milling machines from the company Pabst: HERMLE C600 U (left) and DMG 100U
duoBlock (right).

Figure 2 (left) shows the HERMLE C600 U milling machine selected for both the com-
bined and greenfield scenarios. The machine also has five-axis kinematics and is equipped
with an NC HEIDENHAIN iTNC 530, which is compatible with the HEIDENHAIN DNC
interface. Compared to the previously used DMG 100 U duoBLOCK, the HERMLE machine
has no rotating pallet changer.

The mentioned machine tools were located on the shopfloor of Pabst Komponenten-
fertigung GmbH from the OBerA project consortium. These production machines operate
on multi-shift schedules to process regular customer orders.

2.3. Connectivity

Section 1.1 described the fact that the connectivity approach for a brownfield environ-
ment must enable the simple integration of many different sensors and their heterogeneous
interfaces. For the greenfield scenario, devices, such as machine controls, are already
equipped with hardware and software to make their machine states available for other
applications. In the following sections, the chosen setups for brownfield (Section 2.3.1),
greenfield (Section 2.3.2), and the combined approach (Section 2.3.3) are explained.

2.3.1. Brownfield Setup

For the brownfield setup, it was necessary to establish a flexible platform to integrate
very different sensor types and interfaces. The aim was to establish a stand-alone solution
for the external sensor setup and not to connect sensors to the machine’s NC. For this
purpose, a Simatic IoT2040 gateway from Siemens for installation in a switch cabinet was
chosen. It offers low-level sensor interfaces, such as RS232 and RS485 ports, as well as
GPIO, including I2C and SPI support. An integrated web service allows for the transmis-
sion of data, e.g., via the MQTT protocol (integrated Node-RED software (Latest version:
v3.1.3 (npm))).

Additionally, an IO-Link master AL1350 from IFM was selected. IO-Link is a standard-
ized interface to connect sensors and actuators. It realizes bidirectional communication
between the sensor/actuator and PLC/NC control and enables the identification and trans-
mission of parameters, processes, events, and diagnostic data ([40], p. 27). A large selection
of industry-grade sensors is available for IO-Link. The IO-Link-master can be connected to
field buses. In the case of the chosen IFM IO-Link master, a web service is also integrated
into the device, allowing it to transmit data using the MQTT protocol.
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The data are aggregated on an Intel Next Unit of Computing (NUC) mini PC using
the software Node-RED. Then, the data are transmitted to an SQL database via a long-term
evolution (LTE) router.

Overall, this solution covers a wide range of different sensors and is not dependent on
the used machine or its NC.

2.3.2. Greenfield Setup

A generalized software interface for the data acquisition process was used instead
of using the proprietary software interfaces from the NC manufacturer HEIDENHAIN.
For this research, Cybus Connectware was chosen for the connection of the NC (see also
Section 2.2.4). It offers the possibility to acquire data from a broad range of NCs from the
OBerA consortium.

Cybus Connectware is a manufacturing data platform that bridges the gap between
operation technology (OT) on the shop floor and information technology (IT) by building
a universal data architecture. This enables widespread and secure data flow between
industrial hardware and IT systems and services [41]. Within this environment, Cybus
Connectware acts as a technology-neutral layer between the IT and OT levels in the
automation stack (see Figure 3).

Figure 3. Cybus Connectware as the technology-neutral data layer between the shopfloor and
information technology (IT), adapted with permission from [42].

This enables connectivity between various devices on the shop floor, such as sensors,
signals, edge devices, and PLCs. At a controller level, Cybus Connectware can transmit
data bidirectionally via the typical industrial communication protocols, such as OPC UA,
Modbus/TCP, Siemens S7, Ethernet/IP, FANUC FOCAS, HEIDENHAIN DNC, and many
more [41,43]. Furthermore, Cybus Connectware has the ability to connect to IT applica-
tions and systems, such as ERP, a manufacturing execution system (MES), and databases,
and custom and third-party industrial Internet of Things (IIoT) services. This setup allows
any-to-any communication and data flow for shop floor devices towards enterprise IT
systems and vice versa. Using Cybus Connectware as a manufacturing data platform
allows for a factory-wide data architecture that receives live data from the shop floor and
manages access control as well as the distribution of data to users or applications in the
cloud or on-premises. With DevOps capabilities, such as Ansible [44] and Kubernetes [45],
Connectware enables the realization of complex use cases and data operations regarding
the possibilities of Industry 4.0. Within Cybus Connectware, the hardware parameters are
addressed via industry protocol schemes and are mapped into configurable hierarchical
names that reflect individual accessible topics on an MQTT-based message broker [41].
Data access is secured on a user-based level by an authentication and authorization system
that handles data access per accessed parameter. An entire set of industry protocols, pa-
rameter mappings, the corresponding access authentication and authorization schemes,
and optional plugin-like applications for local pre- or post-processing can be bundled into
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so-called Services [41]. Once created, Services can be deployed to the host running Cybus
Connectware via configurable text-based Yet Another Markup Language (YAML) files [46],
allowing for easy and highly automatable installation. Cybus Connectware is equipped
with a browser-based web interface for administering and configuring data endpoints,
installing and managing services to implement various use cases, and harvesting the pro-
duction data [41]. The application of Cybus Connectware is not limited to manufacturing
use cases (e.g., [47]). It can also be applied to increase sustainability, e.g., to reduce accidents
and waste and increase energy efficiency [48].

For the practical setup of this research work, a Cybus agent software collected the NC
data over the HEIDENHAIN DNC interface and transported it to the Azure cloud using
the MQTT protocol (see Figure 4). The installation of the Cybus Connectware was located
in the Azure cloud. There, the integrated software Node-RED was used to transmit the
data to an SQL database for storage. The requirements for the Azure cloud are a 64-bit
CPU, 4 GB RAM, and 32 GB hard drive [49].

NC

Machine

Cybus
Agent

Windows PC

Heidenhain
DNC

Connectware
Node-RED

Azure Cloud

MQTT SQL

Database

Figure 4. Architecture for combined and greenfield data acquisition.

2.3.3. Combined Setup

The interfaces outlined in Sections 2.3.1 and 2.3.2 were used concurrently in the
combined setup. Regarding the implementation effort, this scenario is presumed to be the
most complex. However, this situation may frequently occur in real-world environments,
particularly when old machines are replaced and a brownfield application is still operating
while being enhanced with the capabilities of a new machine.

3. Methods

In this section, the focus is set on sensor selection methods for the different approaches
(Section 3.1). Then, the selection of the ML algorithms to model the use case of a changeover
detector is discussed (Section 3.2), and the used performance metrics for the ML models
(Section 3.3) are described.

3.1. Sensor Selection Methods

The selection of the right data sources for optimization tasks can be challenging,
but this problem is basically understood, e.g., from the Six Sigma approach, where data
collection plans are generated [50]. A prerequisite for creating data collection plans is an
understanding of the output and input variables for optimization. The output variables
are the target of the optimization and are influenced by the input variable. During the
optimization process, suited settings for the input variables are determined to generate the
optimal output.

In Six Sigma, a general understanding of input and output variables is collected by a
detailed description and definition of the process that is about to be optimized (supplier,
input, process, output, customer diagram (SIPOC), and process map) [51]. Then, an under-
standing of the input and output variables can be generated by a cause-and-effect matrix
(CE-Matrix) or cause and effect diagrams (Fishbone or Ishikawa diagram) ([52], p. 112ff).

On this basis, prioritization of the inputs can be made. Often, a data acquisition plan is
created for this purpose. From the highest-rated inputs, hypotheses about the effectiveness
of the inputs can be formulated. These hypotheses must then be accepted or rejected via
analyses and interpretation of the results. These hypotheses’ test decisions then determine
whether the corresponding inputs are included in the selection ([52], p. 136ff).
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From the point of view of the measurement, the input variable, so far, is not equal
to a specific sensor. It can be considered a measurand. A measurement is, therefore,
a sequence of operations to determine a value for the measurand. A result of a measurement
also includes information about the uncertainty of measurement [53]. The measurement
uncertainty is a key selection criterion when choosing a specific sensor. There are several
metrics available to quantify the uncertainty of a sensor, e.g., measurement system analysis
(MSA) [54]. A rule of thumb is “the golden rule of metrology”: the measurement uncertainty
of a sensor should be one-tenth of the tolerance to be measured [55].

The methodical approach for selecting a sensor can be summarized with the follow-
ing steps:

1. Achieve an understanding of the optimization task (e.g., SIPOC, process map);
2. Understand the relations between the input and output variables (e.g., CE-Matrix, Ishikawa);
3. Prioritize the input variables (e.g., CE-Matrix);
4. Find a set of suited sensors for the measurand from these input variables (e.g., lists

with measurement principles and sensor manuals);
5. Evaluate the sensors (e.g., MSA and uncertainty budget);
6. Conduct hypothesis tests for the most important inputs (e.g., data acquisition plan

and statistical tests).

An ML task usually has a target variable, Y, which depends on several independent
variables, xi. The dependent variables correspond to the output variables described above,
and the independent variables correspond to the input variables. The independent variables
need to be measured to deliver data for the training of the ML model. For supervised
ML, the target variable needs to be measured. The selection of possible sensors for the
independent variables, xi, should be supported by the expert knowledge of data scientists
and domain experts, as described for the classical Six Sigma approach above.

Existing data sources are referred to as passive sources in Six Sigma, while the data
sources resulting from experiments or hypothesis tests are referred to as active sources ([52],
p. 44). One advantage of passive sources is their availability, as these sources already exist in
the operational context. However, these sources have the disadvantage that these variables
are pre-selected under a certain context and may also be post-processed and filtered. Active
sources require more effort to determine but are geared toward the optimization task and,
therefore, offer more accuracy. This distinction between active and passive sources becomes
important when discussing the sensor selection approach for the brownfield (Section 3.1.1)
and greenfield approaches (Section 3.1.2).

In the following text, the terms “target variable” for Y and “independent variable”
for xi are used. For the use case of a changeover detector, the target variable Y is a
decision variable, containing the two elements “Changeover”, if a changeover is detected,
or “Production” (see Section 2.1). The variable Y is assigned to the measurements of xi in
a so-called labeling process. The labels for variable Y were assigned while recording and
supervising practical changeover processes on the shop floor. In the following sections,
the sensor selection for the variables for xi for each approach is explained.

3.1.1. Brownfield Selection Methods

Section 1.1 describes how the necessary sensors are not yet integrated and need to be
selected in a brownfield scenario. Considering the above-described terminology, they can
be considered active sources, which require effort for selection but offer a good adaption to
the optimization task.

For the use case of a changeover detector (see Section 2.1), the described steps from
above can be considered in the sensor selection process: At first, a general understanding
needs to be achieved, and sensors to acquire data for the independent variables, xi, need to
be chosen (see Section 3.1).

In order to gain insight into the process, an alternative tool to those mentioned in
Section 3.1 is utilized: the so-called systems modeling language (SysML). The SysML, which
is used in system engineering in particular, provides support for the formal description of
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structures, behaviors, and requirements ([56], p. 30). Within the SysML framework, multiple
diagram types are defined. In order to achieve an understanding of the optimization task
(Step 1, see Section 3.1), the requirement diagram, use case diagram, activity diagram,
and block definition diagram were used. The exemplary activity (Figure 5) and block
definition diagrams are shown in Figure 6. While the activity diagram can serve the
purpose of a process map, the block definition diagram can offer an added value for the
selection of specific sensors; for each selected sensor, the measurand, as well as information
on the measurement operation, were described (Step 4).

Reporting changeover
start at the terminal

Machine table cleaning Remove fixture from
the machine table

Component fastening
fo fixture

Move fixture to
the machine table

Attach fixutre to
the machine table

Load NC programTool presetting

Tool magazine filling
and tool control Enter tool dimensions Rotate pallet changer Set zero point

NC program
optimizing & runningRotate pallet changerComponent cleaning

Component
dismantling

Component deburring
Component
remeasuring

Upload the optimized
NC program

Reporting changeover
stop at the terminal

Figure 5. Activity diagram.

Figure 6. Block definition diagram.

In order to understand the input and output variables (Step 2), as well as the priori-
tization of variables (Step 3), a CE-Matrix was also created (see Table 3). The steps of the
changeover process were taken from the activity diagram, and the possible measurands
from the block definition diagram were assigned. Then, this was discussed with domain
experts to see if the specific changeover step can be detected by the underlying sensor.
From these discussions, the set of suited sensors was derived (see Table 4).
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Table 3. CE-Matrix of changeover process with sensors.

Steps Description

Distance to Contact Contact
Factory Door Handle Switch Switch Alternating Flow Indoor

Terminal (Tool Holder (Second (Main Current (Coolant) PS (x/y)
Cabinet) Chamber) Door)

1 Reporting changeover (1) (9)start at the terminal

2 Machine table cleaning (2) (9)

3 Remove fixture (2) (9)from the machine table

4 Component fastening (9)to fixture

5 Move fixture (2) (9)to the machine table

6 Attach fixture (2) (9)to the machine table

7 NC program loading (9)

8 Tool presetting (9)

9 Tool magazine filling (3) (9)and tool control

10 Enter tool dimensions (9)

11 Rotate pallet changer (4) (4) (6) (9)

12 Zero point setting (5) (5) (7)

13 NC program optimizing (5) (5) (7) (8)and running

14 Rotate pallet changer (4) (4) (6)

15 Component cleaning (9)

16 Component dismantling (9)

17 Component deburring (9)

18 Component remeasuring (9)

19 Upoad the optimized (9)NC program

20 Reporting changeover (1) (9)stop at the terminal

(1) Logging in and out of the set-up order results in an entry in the factory terminal. (2) Removing and feeding
the fixture to the machine table and cleaning it requires the workpiece holder to be opened. (3) Filling the tool
magazine requires the workpiece holder to be opened. (4) To rotate the pallet changer, the doors of the workpiece
holder and machine access must be closed. (5) During zero point setting and NC program execution, the doors of
the workpiece holder and machine access must be closed. (6) Rotating the pallet changer leads to a power peak.
(7) Setting the zero point and running the NC program results in higher power consumption compared to the idle
mode. (8) Running the NC program results in a higher coolant flow than in the idle mode. (9) The position of the
system operator changes during almost the entire setup process, except when using the control panel.

The selected external sensors have the disadvantage of being affected by environmental
conditions, such as heat, humidity, and vibrations. When externally mounted and visible,
they can also be regarded as surveillance devices by the workforce. This is especially
important for the tracking of the operator position. Here, it must be assured that sensor
recordings are anonymized and comply with data security standards.

For the evaluation step of the sensors (Step 5), standardized testing methods exist.
Moreover, sensors with binary testing decisions, such as “on/off”, can be checked. For the



J. Manuf. Mater. Process. 2024, 8, 15 13 of 25

sake of readability, these methods are not described in detail here. For the indoor po-
sitioning system (PS), a measurement uncertainty analysis was carried out [57]. As the
hypothesis tests (Step 6) were correlation tests, principal component analysis (PCA) and
t-distributed stochastic neighbor embedding (t-SNE) analysis were conducted [13].

Table 4. Sensor selection for the brownfield approach.

Sensor Measurand

Distance Distance to door handle (tool holder cabinet)
Flow Flow (coolant)
Door status Contact switch (main door)
Door status Contact switch (second chamber)
Power consumption Alternating current
Operator position Indoor GPS position (x/y)

3.1.2. Greenfield Selection Methods

The HERMLE C600 U milling machine with its HEIDENHAIN iTNC 530 NC offers
more than 400 potential features over the Cybus Connectware for ML models as input or
dependent variables xi. Revisiting the concept of active and passive sources, the Cybus
Connectware can be regarded as a passive source. The choice of 400 potential features can
be regarded as pre-selection (see Section 3.1) in the context of the milling machine, as the
interface exports all available machine variables. Data for these variables can originate
from NC-provided sensors, which are physically connected to the NC. Additionally, NC-
provided variables, such as the current DNC mode, are exported.

With the switch from the DMG milling machine to the HERMLE machine for the
greenfield approach, it was necessary to revisit the process steps of the changeover phases
and slightly adapt the documents from Step 1 (understanding the optimization task)
and Step 2 (relations between the inputs and output) of brownfield selection; the new
machine cannot swivel the palette changer; therefore, the step description was changed
to ”putting/retrieving tools directly into/from the spindle”. Additionally, two final steps
were added for general quality control and work-piece quality control. For Step 3, a team of
domain experts then selected 19 from the available 400 features, sorting out any duplicates
and focusing on the process variables that could be related to the use case of machine
changeover (see Table 5).

Table 5. Sensor and data channel selection for the greenfield approach.

Initial Selection Final Selection

CabinDoorLocks (Side, Front) -
ChipCleaningGunStatus -
CoolantFlow status -
DNCMode -
DoorStatuses (Main, Tooling) DoorStatus (Tooling)
DriveStatus DriveStatus
FeedRate FeedRate
OverrideFeed OverrideFeed
OverrideSpindle -
PocketTable PocketTable
ProgramChange -
ProgramDetail ProgramStatus
RapidTraverseKey -
SpindleApproval -
SpindleCleaning -
SpindleSpeed Spindle Speed
ToolNumber ToolNumber

This list of nineteen pre-selected features was reduced to eight (Step 4); at first, a basic
statistical analysis was carried out to evaluate the minimum/maximum values and the stan-
dard deviation of the feature. CabinDoorLockSide, SpindleApproval, and OverrideSpindle
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showed no changes in their values over the observation period and were excluded. Then,
a correlation analysis and a calculation of the importance of individual features (permu-
tation feature importance (PFI)) were conducted (Step 6). The remaining features were
DoorStatus Tooling, DriveStatus, FeedRate, OverrideFeed, PocketTable, ProgramStatus,
SpindleSpeed, and ToolNumber. Most of these features are related to the milling process
of the HERMLE machine. For the selection of sensors in the greenfield scenario, it can
be summarized that by using only the interface of the NC, a pre-selection concerning
the context of the milling machine was made. This pre-selection was further adjusted by
domain experts, and a fine selection was made using feature selection approaches.

For the evaluation of the sensors (Step 5), the following was found:

1. DoorStatus is a binary testing decision and can be checked with standardized methods;
2. DriveStatus, PocketTable, ProgramStatus, and OverrideFeed represent status informa-

tion from the NC and are difficult to check;
3. FeedRate and SpindleSpeed are NC parameters for the milling process and can be

checked with additional testing efforts (external testing equipment is necessary).

Though it is possible, from a theoretical point of view, to verify the status information
and the milling process parameters from the NC, this is often not conducted by the practi-
tioners. Using data from these sensors poses a risk to the quality of the ML model because
the uncertainty of the measurement remains unknown and can impact the quality metrics
of the ML model (see Sections 3.3 and 4). In order to evaluate these consequences for the
practitioners later on (see Section 5), no further investigations were carried out here. At this
point, it can be summarized that model inaccuracies that can arise due to the pre-selection
problem of passive sources can be aggravated by a missing evaluation of sensor suitability.

3.1.3. Combined Approach Selection Methods

The combined approach consists, initially, of the selected sensors from the brownfield
(see Section 2.3.1) and greenfield (see Section 2.3.2) approaches. The external sensors for
coolant flow and the door contacts were left out because they were available from the NC
(see Table 6, NC-provided, replacing, initial selection). The indoor PS and the sensor for the
power consumption remained in the selection for the NC-external sensors. Newly added
NC-provided sensors to the initial selection were the same sensors as those described for
the greenfield approach (see Table 5, initial selection). After refining the sensor selection,
as described above, the final selection of the sensors for the combined approach consists
of the indoor PS and the sensors from the final selection of the greenfield approach (see
Table 5, final selection). The feature PowerConsumption was left out as it was directly
correlated to SpindleSpeed and DriveStatus.

3.2. Chosen Machine Learning Algorithms

In [13], it was confirmed by the authors that random forest algorithms are well suited
for the described machine learning (ML) classification task. For further research work,
extra trees were also selected for the training of the ML models. Extremely randomized
trees (ERTs) or extra trees are similar to random forests but have advantages, i.e., faster
computation time and reduced variance [58]. In [59], it was stated that when random forest
algorithms perform well, gradient boosting can also be taken into consideration. These
algorithms show advantages in terms of training speed and generalization. Therefore,
CatBoost, LightGBM, and XGBoost were also selected for the training.

For the ML algorithms random forest, CatBoost, and XGBoost, hyperparameter op-
timization was conducted. For LightGBM and extra trees, hyperparameter optimization
showed no improvements, and therefore, standard parameters were used. For details,
please consult the provided source code (see Data Availability Statement) and Appendix A.
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Table 6. Sensor and data channel selection for the combined approach.

Sensors Brownfield Approach Combined Approach
Initial Selection Final Selection

N
C

-e
xt

er
na

l Coolant flow - -
Door contacts - -
Door handle distance - -
Indoor GPS (x, y) Indoor GPS (x, y) Indoor GPS (x, y)
Power consumption Power consumption -

N
C

-p
ro

vi
de

d

Replacing -
DoorStatuses DoorStatus (Tooling)(Main, Tooling)
CoolantFlowStatus -

New -

CabinDoorLocks -(Side, Front)
ChipCleaning -GunStatus
DNCMode -
DriveStatus DriveStatus
FeedRate FeedRate
OverrideFeed OverrideFeed
OverrideSpindle -
PocketTable PocketTable
ProgramChange ProgramStatus
ProgramDetail -
RapidTraverseKey -
SpindleApproval -
SpindleCleaning -
SpindleSpeed SpindleSpeed
ToolNumber ToolNumber

3.3. Performance Metrics

Several metrics exist for the evaluation of ML models. A popular metric is the F1 score.
The value of the F1 score ranges between 0 and 1. For a classification task, a value of 0
indicates that none of the data points were correctly assigned to the right class. A value of
1 indicates that all data points were classified correctly ([60], p. 430).

For imbalanced datasets, the F1 score is regarded as problematic. In this case, the
Matthews correlation coefficient (MCC) is preferred instead ([61], p. 10, and [62]). Like the
F1 score, the MCC ranges from 0 to 1.

Data points are considered imbalanced when the quantity of data points is differently
distributed in the groups that are to be classified. Figure 7 shows the occurrences of the
two phases, “Production” and “Changeover”. It can be seen that the “Production” phase is
slightly more frequent in the data than the “Changeover” phase. Therefore, in this paper,
the F1 score and the MCC were used together to compare the quality of the ML models.
For improved readability, the ranges of the F1 score and the MCC were converted into
percentage values (0 as 0% and 1 as 100%).

Production Changeover
0
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12000

Phases for classification
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Figure 7. Occurrences in two phases.
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4. Results

This section evaluates the results from the implemented scenarios from the use case.
First, the qualitative findings from the implementation are summarized in Section 4.1. Then,
the performance metric results for the ML models are presented in Section 4.2.

4.1. General Findings from Implementation

In Section 1.2, an implementation process for ML models proposed by [4] was intro-
duced. Regarding this implementation workflow, there were noticeable differences between
the greenfield and brownfield approaches (see Figure 8). For the brownfield approach,
usually, the workflow starts with the definition of the optimization goal and the derivation
of a corresponding target or output variable. Afterward, the independent or input vari-
ables, which are expressed in combination with the output variable, are elaborated. Then,
a relationship between the input and output variables can be determined (here, by ML
models) (see also Section 3.1).

There already exists a selection of input variables for the greenfield approach, which
are available through up-to-date machine interfaces. This selection needs to be refined
during feature selection. Using a selection of machine interface variables also incorporates
an implicit assumption that this selection can somehow express the output variable of
the optimization.

In the following subsections, the methodical approach for selecting sensors/features
from Section 3.1 is discussed individually for all three scenarios.

Brownfield approach Greenfield approach

Section 2.1
Use case: Changeover
in milling processes

Section 2.2
Machine environment

Section 3.1
Sensor selection

Section 2.3
Connectivity

Section 2.3
Connectivity

Section 3.1
Feature selection

Section 3.2
ML algorithms

Section 3.3
Performance metrics

Figure 8. Flowchart of the brownfield and greenfield approaches.

4.1.1. Brownfield Findings

For the brownfield scenario, the understanding of the optimization task was generated
through the generation of SysML diagrams (Step 1). Here, the block definition diagram has
already helped find a set of suitable sensors for the input variables (Step 4). The relationship
between the input and output variables, as well as the prioritization of variables, was
achieved by the application of a CE-Matrix (Step 2 + 3). For the evaluation of sensors
(Step 5), standardized testing methods were applied, and hypothesis tests were conducted
(Step 6).

Overall, it was possible to follow the planned methodological procedure in full.
With regard to the sequence of steps, the use of SysML as a support tool meant that
Step 4 could be conducted earlier.
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4.1.2. Greenfield Findings

For the greenfield scenario, a process for understanding the optimization task (Step 1)
and the relations between the input and output variables (Step 2) was conducted. As Cybus
Connectware offered more than 400 potential features, the prioritization of the input
variables (Step 3) was important for the greenfield scenario. This prioritization started with
the pre-selection of 19 features by domain experts (Step 3). The further reduction in the
features to a final set of eight was carried out using feature selection techniques (Step 4).

In the greenfield scenario, the machine interfaces provide data regardless of if the
underlying sensor is suited in terms of measurement uncertainty, which is checked only
during Step 5. The features that are related to unsuited sensors need to be omitted. The sit-
uation of omitting features may cause conflicts with Step 4; during this step, the technique
of permutation feature importance (PFI) was used to reduce the number of features. This
technique generates preliminary models with specific combinations of features and derives
feature importance. If a sensor in Step 5 is omitted, in this case, Step 4 needs to also be revis-
ited without this feature. Depending on the importance of the feature, the entire remaining
set of features might change. While conducting Step 5, it also turned out that the features
that belong to the internal sensors of the machine are difficult to check. The practitioner
might be tempted, in this case, to skip this step. During Step 6, correlation tests, PCA and
t-SNE, were conducted to analyze whether the entire feature set is suitable for modeling.

To summarize, the high quantity of available features in the greenfield scenario under-
lines the importance of Steps 3 and 4 to reduce their number. Regarding Step 5, problems
can arise as a pre-selection of features already exists, which, thus, defines the underly-
ing sensor selection. However, the sensor suitability check only takes place after the
pre-selection and may be skipped by the practitioner due to convenience.

4.1.3. Combined Approach Findings

The feature set of the combined scenario consisted of the x/y position from the indoor
PS and features from the Cybus Connectware interface. The external sensors from the
brownfield scenario were regarded as being the same as the features from the Connect-
ware interface. Therefore, no more specific findings from the implementation process
were noticed.

4.2. Performance Metrics Results

In this subsection, we present the metrics for the different ML algorithms, which were
trained with the recorded data for the brownfield (Section 4.2.1), combined (Section 4.2.2),
and greenfield (Section 4.2.3) approaches. Each algorithm is evaluated by using the F1
score and MCC metric.

4.2.1. Brownfield Results

In Figure 9, the results for the brownfield approach are shown. The highest F1 scores
were achieved for the extra trees (97.4%) and the random forest algorithms (97.25). The Cat-
Boost algorithm shows the lowest F1 score, with 95.37%. In comparison to the F1 score,
the MCC value always shows lower percentages. The difference between F1 score and
MCC ranges from 2.57% (extra trees) to 4.57% for the CatBoost algorithms. Overall, the per-
formance metrics of all algorithms are moderate, showing F1 scores over 95.37% but an
MCC of only 90.8%.



J. Manuf. Mater. Process. 2024, 8, 15 18 of 25

Ran
dom

Fores
t

Extr
a Tr

ee
s

CatB
oost

LightG
BM

XGBoost
90%

92%

94%

96%

98%

100%

97.25 97.4

95.37 95.59 96.25

94.52 94.83

90.8 91.22
92.5

Algorithm

Sc
or

e
2-phases (F1)
2-phases (MCC)

Figure 9. Comparison of F1 scores and MCC values for the brownfield approach.

4.2.2. Combined Approach Results

Figure 10 shows the results of the combined approaches. The highest F1 scores were
achieved by the extra trees, random forest, and XGBoost algorithms (99.63). The lowest
F1 scores were achieved by the CatBoost (99.57%) and the LightGBM (99.52%) algorithms.
In comparison to the F1 score, the MCC value also shows lower percentages. However,
compared to the brownfield approach, the gap between the F1 score and MCC is much
smaller and ranges from 0.57% (extra trees, random forest, and XGBoost) to 0.44% for
CatBoost and 0.48% for LightGBM. Overall, the performance metrics of all algorithms are
excellent, showing F1 scores over 99.52% and over 99.04% for the MCC.
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Figure 10. Comparison of F1 scores and MCC values for the combined approach.

4.2.3. Greenfield Results

In Figure 11, the results for the greenfield approach are shown. The highest F1 score
was achieved by the XGBoost algorithm (98.83%). The lowest F1 scores were obtained by
the extra trees (98.58%) and the random forest (98.65%) algorithms. In comparison to the
F1 score, the MCC value also shows lower percentages, but like the combined approach,
the gap between the F1 score and MCC is much smaller than in the brownfield approach
and ranges from 1.2% for LightGBM to 1.41% for extra trees. Overall, the performance
metrics of all algorithms are very good, showing F1 scores over 98.58% and over 97.17% for
the MCC.
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Figure 11. Comparison of F1 scores and MCC values for the greenfield approach.

5. Discussion

In Figure 12, the F1 scores from the previous chapters are summarized. For the
brownfield approach, the F1 scores range from a minimum of 95.37% to a maximum of
97.4%. From all scenarios, the brownfield scenario has the lowest F1 scores with an absolute
range of 2.03%.

When the sensor/feature selection from the combined approach is applied to training
the ML models, the F1 scores become almost optimal, with values from 99.52% to 99.63%
and a very small range of 0.11%. The difference between the sensor/feature set of the
brownfield approach is that the process parameters, such as the feed rate of the milling
process, were also taken into account. Additional machine parameters, like the status
of door switches, were directly recorded through NC variables. The external Rogowsky
sensors for power consumption were substituted by correlating NC variables. For the
classification task between changeover and production, better results were generated by
also considering the process parameters of the milling process. As an external sensor,
just the indoor PS, measuring the x/y position of the operator, remained as part of the
ML model.

The F1 scores for the greenfield approach are slightly lower when compared to the
combined approach: the F1 scores have a minimum of 98.58% and a maximum of 98.83%.
The range of 0.25% between these values is twice as high as that of the combined approach
but around a factor of 10 better than that of the brownfield approach. When comparing the
best model from the combined approach (extra trees, random forest, and XGBoost: 99.62%)
to the best model from the greenfield approach (XGBoost: 98.83%), the external indoor
PS sensor in the combined approach seems to be responsible for a performance difference
of 0.79%.

As this underlying data set is slightly imbalanced, different methods could be con-
sidered to improve the classification results, for example, over- or undersampling the
classes to minimize the imbalance [63]. Additionally, a genetic algorithm could be uti-
lized to create more data points [64]. These methods were not used, as the dataset is not
strongly imbalanced.

All approaches need experts to select the sensors/features. For the combined and
greenfield approach, this selection could be automated. For example, using all available
variables and conducting a PFI to identify the most important features. The PFI can be
combined with all ML algorithms, such as neural networks or random forests. Another
approach would be to use AutoML to select features [65]. These methods can only be used
when there are recorded data. For the brownfield approach, this is only applicable if there
are many external sensors installed.
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Figure 12. Comparison of F1 scores for the different approaches.

6. Conclusions and Further Research

In this section, the conclusions are derived (Section 6.1), and an outlook for further
research is given (Section 6.1).

6.1. Conclusions

The brownfield approach differs from the combined approach primarily in that none
of the parameters of the milling process that are available in the NC were included in the
classification task. In Step 13 of the description of the changeover process (see Table 3),
the NC program and the parameters of the milling process are optimized. Because only
external sensors were explicitly used in the brownfield approach, the activities concerning
the NC can only be recorded indirectly, e.g., via the operator position in front of the NC.
Overall, the ML models of the brownfield approach show the worst performance compared
to the other approaches. Nevertheless, random forest and extra trees can achieve good
results above 97%. This also confirms that extra trees are suitable when random forest
algorithms show good results. However, the range in the performances of all the ML
algorithms indicates that the selected input variables and, thus, external sensors do not
yet cover the changeover process sufficiently well. This is also implied by the biggest
differences between the F1 scores and MCC values of all approaches.

If the combined approach is compared with the greenfield approach, the position
detection of the employee by the external indoor PS is omitted. The loss of this information
slightly degrades the excellent results of the combined approach. Although the influence of
the employee’s position on the setup is, therefore, evident, it can be partially compensated
by the information from the milling-related parameters. For the modeling of a setup
detector, however, the use of process parameters from an NC seems, overall, to be advisable.

For production and technology-related optimization tasks, such as the setup detector,
a brownfield approach based only on external sensors appears to be too inaccurate overall.
However, in this case, the application of the changeover detector decides whether a 97%
F1 score is sufficient. The greenfield approach, based solely on input variables from the
controller, delivers better results here. However, the choice of possible variables is much
larger here, and the quality of sensor readings can often not be verified or can be only with
great effort. In addition to the lack of position information from the operator, these two
reasons may have contributed to the greenfield approach performing slightly worse than
the combined approach. The good results for the combined approach imply that it might
be beneficial to incorporate features that are only indirectly related to the optimization
task, like the position of the operator. For other machining operations, e.g., injection plastic
molding, the movement of the molds might be considered as a feature.
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The presented methodical approach for selecting sensors shows applicability for all
approaches (first research question). The end users of this approach are either manufac-
turing engineers who typically conduct data-driven improvement projects (Six Sigma) or
data scientists who conduct digitization projects. The heterogeneity of the interfaces in the
brownfield approach poses challenges for both groups, as customization efforts have to be
made. In the greenfield approach, software suites, such as Cybus Connectware, make it
easier to roll out ML applications based on shopfloor data. Automatized feature selection
methods can be used efficiently here. The approach described can ensure, in this case, that
the selection of suitable data sources is reliable. In the greenfield approach, the suitability
of the internal sensors should be ensured as far as possible as part of regular measurement
device monitoring in order to be able to provide reliable data via interfaces.

Though the results for the brownfield approach were worse than for the greenfield and
combined approaches, the described methodical approach can help to avoid ML models
with low quality, e.g., below 90% MCC (second research question).

In the case of the brownfield approach, the domain experts made the assumption that
the selected sensor set was suited for the ML task. This assumption became questionable
after additional features from the NC were entered into the combined and greenfield
approaches and showed better results. Despite the efforts for the creation of the ML models,
the model creation and validation itself can be interpreted as a hypothesis test in terms of
the methodical approach for selecting sensors (Step 6). For the greenfield approach, it can
be concluded that domain experts might also assume that the rich availability of features
from an NC guarantees the best performance results for ML models. Moreover, for this
approach, the model creation and validation can serve as a hypothesis test. However,
the changeover use case also shows that 400 features should be pre-selected instead of
spending computing resources on ML models with large feature sets. Overall, it can be
pointed out that the decisions of the domain experts have an impact on the results. In the
case of the brownfield approach, the selection process for sensors is strongly dependent on
their creativity, problem-solving, and methodical competence. For the greenfield approach,
feature selection algorithms might reduce their impact, as feature selection algorithms can
support the sorting out of variables. The challenge here is for the domain experts to check
whether the feature set contains enough information for the modeling despite a rich choice
of features.

6.2. Further Research

It was shown that the integration of specific information, such as milling parameters,
is particularly important if changeover detectors are to be created for other machining
processes. In future research work, the modeling of other machining processes, such as
turning, is to be pursued further. The investigation should also focus on a precise evaluation
of the contribution of the specific process parameters in order to improve the transferability
of the approach from milling to other machining processes.

In an operational context, employee tracking is problematic. Operators may feel
controlled and adjust their operational activities accordingly. The results for the greenfield
approach show that the indoor PS can be omitted, but this causes a slight decrease in the
quality metrics of the ML models. However, further work is needed to check whether the
accuracy of the greenfield models is still sufficient for specific applications, i.e., time data
updates in ERP systems.
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Abbreviations
The following abbreviations are used in this manuscript:

CE-Matrix cause-and-effect matrix
DNC distributed numerical control
ERP enterprise resource planning
PS positioning system
IIoT industrial Internet of Things
IT information technology
LTE long-term evolution
MCC Matthews correlation coefficient
MES manufacturing execution system
ML machine learning
MQTT message queuing telemetry transport
MSA measurement system analysis
NC numerical control
NUC Next Unit of Computing

OBerA
Optimization of Processes and Machine Tools through Provision, Analysis and
Target/Actual Comparison of Production Data

OT operation technology
PCA principal component analysis
PFI permutation feature importance
PLC programmable logic controller
OPC UA Open Platform Communications Unified Architecture
SIPOC supplier, input, process, output, customer diagram
SME small and medium-sized enterprise
SQL structured query language
SysML systems modeling language
t-SNE t-distributed stochastic neighbor embedding
umati universal machine technology interface
VM virtual machine
YAML Yet Another Markup Language

Appendix A. Hyperparameters of Algorithms

For the brownfield approach, the hyperparameters were tuned in previous research us-
ing a grid search; therefore, the parameters for the random forest algorithm were used [13].
They are the following:

• Number of estimators (trees): 30;
• Bootstrap: False;
• Max. depth of tree: 30;
• Min. samples at leaf: 1;
• Min. samples to split: 2.

For the other algorithms, the tuned hyperparameters of the combined approach
were used, as they provided better results. A separate grid search was not conducted.
The standard parameters of the Python scikit-learn and lightgbm packages were used for

https://github.com/SuperAms/machine_learning_models_in_manufacturing.
https://github.com/SuperAms/machine_learning_models_in_manufacturing.
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the extra trees and LightGBM algorithms for all three approaches. For the combined and
greenfield approach, the standard parameters for random forest were also used. Table A1
shows the hyperparameters for the CatBoost and XGBoost algorithms.

Table A1. CatBoost and XGBoost hyperparameters for the combined and greenfield approaches.

CatBoost XGBoost

iterations: 260 objective: binary:logistic
depth: 9 colsample_bytree: 0.7
loss_function: Logloss learning_rate: 0.4
random_strength: 0.7 max_depth: 9
eta: 0.3 n_estimators: 170
sampling_frequency: PerTree reg_alpha: 0.005

scale_pos_weight: 3.3
subsample: 0.9
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