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Abstract: In recent years, welding feedback control systems and weld quality estimation systems
have been developed with the use of artificial intelligence to increase the quality consistency of
robotic welding solutions. This paper introduces the utilization of an intelligent welding system
(IWS) for feedback controlling the welding process. In this study, the GMAW process is controlled by
a backpropagation neural network (NN). The feedback control of the welding process is controlled
by the input parameters; root face and root gap, measured by a laser triangulation sensor. The
NN is trained to adapt NN output parameters; wire feed and arc voltage override of the weld
power source, in order to achieve consistent weld quality. The NN is trained offline with the specific
parameter window in varying weld conditions, and the testing of the system is performed on separate
specimens to evaluate the performance of the system. The butt-weld case is explained starting from
the experimental setup to the training process of the IWS, optimization and operating principle.
Furthermore, the method to create IWS for the welding process is explained. The results show
that the developed IWS can adapt to the welding conditions of the seam and feedback control
the welding process to achieve consistent weld quality outcomes. The method of using NN as a
welding process parameter optimization tool was successful. The results of this paper indicate that an
increased number of sensors could be applied to measure and control the welding process with the
developed IWS.

Keywords: artificial intelligence; neural network; Levenberg–Marquardt Algorithm; feedback control;
laser triangulation; GMAW; intelligent welding system

1. Introduction

The manufacturing industry is in a changing phase from traditional to digital intelli-
gent manufacturing. IIoT (Industrial Internet of Things) solutions and developments in
sensor technologies provide a basis for further data utilization [1]. In welding technology,
quality evaluation, adaptivity and feedback control have been the focus area. Traditionally,
adaptivity has been applied by creating manual adjustment maps and simple algorithms.
In recent years, artificial intelligence for evaluating and controlling the welding process
has been in the scope of interest. Artificial intelligence (AI) has been typically applied to
evaluate the weld quality, possible inconclusions, and weld bead dimensions [2,3], and has
achieved penetration [4–6] during welding. Different AI-based algorithms can be applied
to process sensor data automatically, to enable the possibility of real-time analysis and
process control during welding [6–13].

AI-based systems create the basis for the development of a real-time feedback control
system for the welding process. From a practical point of view, the advancements in
computing power, algorithm data management, sensor connectivity (IoT) and sensor
technology provide a sufficient base structure for developing a real-time feedback control
system [14]. Thus, the knowledge and ability to utilize AI-based algorithms in practical
applications have increased [7,15]. Practical applications enable enhancements for feature
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recognition, categorization and quality predictions for weld quality outcome and process
control purposes [7,9].

In terms of process feedback control, there are manually defined parameter adjust-
ments or adjustment windows based on manually defined algorithms and AI-based systems.
Manually defined parameter adjustment can be defined as a fully manually created parame-
ter control library based on experiments or theory. Algorithm-based systems can be utilized
as an example by using linear [12], curve-fitting [16] and model-free [17] adaptive controls.
These control methods are effective ways to control the welding process. However, in
traditional welding production, multiple parameters affect the weld quality. The research
problem of this study is that the parameter control with multiple input parameters is inac-
curate and complicated to create with manually defined adaptive control, thus resulting in
inconsistent weld quality output.

This study approaches the problem by developing an AI-based process control system
that enables the possibility to increase the number of feedback control parameters. The
number of parameters used in the parameter control drastically increases the complexity of
the algorithm and the manually defined adjustment maps. However, AI-based systems
are not sensitive to the complexity of data, increasing only the computing power/time
required for training the algorithm. The AI-based feedback control system can provide
a wide range of parameters that are taken into account in process control. Furthermore,
the training of the system requires less human interaction for obtaining multi-dimensional
parameter adjustment relationships.

This paper introduces a method to create an IWS (intelligent welding system) feedback
control system, capable of ensuring the defined penetration and quality aspects of the
weld in robotic butt weld application without root support in varying root gap and face
conditions. First, the IWS system components, appliances and sensors and the digital
connections between the appliances are introduced. Next, the data acquisition principle
and the creation of the knowledge bank for the NN (neural network) are introduced.
The neural network training principle with this knowledge bank is then introduced and
followed by the optimization of the neural network layout configuration for IWS purposes.
The introduced method is visualized and verified with practical experiments for knowledge
bank creation (the gathering of training data for NN), NN training optimization and the
practical examination of the control test with varying welding conditions (root gap and
root face). Finally, the reliability of the developed system is evaluated.

Intelligent manufacturing technologies that consist of feedback require process pa-
rameters, preconditions and quality output measurement. The measurement is the key to
obtaining the information and before–after relationships and consequences in which the
process control can rely on its operational functions. The relations between the conditions,
process control and quality output can be seen as a basis for reliable and functioning
feedback control. Any variation in the data measured can lead to a false adjustment of the
process parameters. Thus, the operating principle and properties of IWS are explained in
this paper to highlight the challenges of developing the system.

2. Materials and Methods

The methods sections of this study are divided into the experimental setup, IWS
operating principle and training sequence of the NN. Furthermore, the validation of the
NN performance and reliability of IWS is introduced. The IWS is explained and practically
verified in a butt weld case study [18] and with statistical analysis.

The utilization of the IWS is not limited to the case study’s experimental setup pre-
sented in this paper. However, the appearance of the welding equipment does affect the
weld quality noticeably. Thus, the trained IWS only operates as desired by using a similar
welding device.
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2.1. Experimental Setup

The experimental setup of the study consists of an ABB IRB1600-10 welding robot with
ABB IRC5 robot controller, Fronius TPS 5000 power source with GMAW equipment and
Meta Vision SLS50-v1 laser triangulation sensor, located in LUT University, Lappeenranta,
Finland. The distance from the welding torch to the laser triangulation sensor was adjusted
to 100 mm, as significant arc and spatter disturbances were noted in the sensor data with
closer distances. The IRC5 robot controller was remote controlled (ethernet) from a PC via
ABB RobotStudio, enabling 100 Hz update frequency of any welding process parameters
used during welding. Similarly, the welding power source and the laser triangulation
sensor were connected to the same PC via an ethernet connection. The experimental setup
details and the information on the NN training can be found in Table 1 below.

Table 1. Experimental setup details with the information of the NN training.

Material, plate thickness S420 MC, 12 mm
Filler material Esab OK Autrod 12.51, Ø 1 mm

Welding process Gas metal arc welding (135)
Welding equipment Fronius TPS 5000

Joint type Butt weld
Weld position PA
Groove angle 60◦

Welding speed 7 mm/s
Welding gas and flow speed 92% Ar + 8% CO2, AGA Mison 8, 19 L/min

Torch distance 18 mm
Laser sensor Meta SLS50-v1

Neural network type Backpropagation neural network
Optimization algorithm Levenberg–Marquardt algorithm

Neural network configuration 2-20-20-2
Neural network input parameters Root gap, root face

Neural network output parameters Wire feed, arc voltage

More detailed chemical composition and mechanical properties of the materials used
can be found in Table 2.

Table 2. Chemical composition and mechanical properties of base and filler material.

Details Base Material Filler Material

Product commercial name SSAB S420 MC plus, 12 mm Esab OK Autrod 12.51
Yield strength 420 MPa 460 MPa

Ultimate tensile strength 490–620 MPa 540 MPa
Elongation at break 21% 26%

C 0.12 0.10
Mn 1.5 1.11
Si 0.03 0.72
S 0.015 0.012
P 0.020 0.013

The physical experimental setup can be found in Figure 1. The torch configuration in
Figure 1 also includes the HKS thermal profile sensor (black sensor behind the welding
torch), which is capable of sensing the infrared radiation over the weld pool, thus enabling
the measurement of the thermal distribution over the weld pool and analysis of the weld
pool behavior. However, this sensor was not used for feedback control purposes, but
separately to evaluate the thermal properties of the weld joint.
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Figure 1. Experimental setup with a close-up image of the torch configuration consisting of thermal
sensor, welding torch and laser triangulation sensor.

The physical connections enable the possibility to do close to real-time calculations,
optimization and updating of the welding parameters during welding. The important data
of the welding process were gathered on the PC, where it is processed and combined in the
MATLAB R2017a software. The raw data from the Meta sensor (50 Hz) were first gathered
and analyzed with the defined algorithm to recognize the important features of the seam;
root gap and root face, as described in more detail in a previous research article [19]. An
example of the groove profile can be found in Figure 2. The example groove profile can
be seen in Figure 1. The figure colors change from deep blue, the most distant, to yellow,
the closest point detected. The root gap can be measured by the width of the deep blue
gap and the root height can be calculated by measuring the depth difference between the



J. Manuf. Mater. Process. 2023, 7, 102 5 of 18

plate’s surface and the edge of the beveled groove near the root gap. In Figure 2, the tack
weld can be seen between roughly 120 mm and 150 mm. The marking on the beveled
surfaces originates from the manual grinding operation of the tack weld to achieve smooth
connection and prevent any inclusion and quality imperfections in the connecting points of
tack welds.
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Figure 2. Depth measurement data of the groove profile is plotted in the graph.

At the same time, the welding parameters, both set and actual, are gathered from the
welding power source (100 Hz). These data were then combined with the Tool Center Point
(TCP, coordinates of the tool) data from the robot controller (100 Hz). The RobotStudio
software enables a 100 Hz update of any parameters to the robot controller (both welding
process parameters and movement of the robot) during welding with specified commands,
and can be run in MATLAB. Thus, any data can be fed and updated to the robot controller
and welding power source with a 100 Hz limit. The experimental setup can be found in
Figure 3. The training data for the case study used in this paper are introduced in our
previous research article [18].

2.2. Data Flow and Knowledge Bank Creation

Now that the physical and digital connections are defined, the focus is turned to
the data flow, knowledge bank creation and clarification of how the IWS operates. First
of all, the IWS system requires data on the actual welding so that it can be trained to
adapt to the conditions. This means that the system requires conditions before welding,
welding parameters during welding and the outcome of the weld (Quality). As the laser
triangulation sensor is capable of measuring the seam conditions and the weld quality
after welding, it can be used to gather the data before and after the welding and combine
the data in specific points via the TCP of the sensor. Similarly, the TCP of the welding
torch is combined with the specific welding parameters at that specific point. The data of
the welding process parameters are measured during the welding and combined with the
welding torch TCP. The before-, during- and after-welding data are saved in the coordinate-
based system. All the data are combined in the packs of closest TCPs as before–during–after
welding data, as shown in Figure 4. This creates a knowledge bank and training dataset for
the NN.

The experimental setup of this paper is divided into the five different phases that can
be seen in Figure 5, where the schematics and the steps of the experiments are visualized.

The schematics in Figure 5 give the main overview of the phases of the experimental
setup procedures. Phase 1 consists of the experimental testing of welding parameters
in different welding conditions, which can be used as predetermined welding process
parameters in phase 2, thus reducing the number of test samples while planning the actual
experiments. In phase 2, the 27 different cases of welding experiments are conducted with
varying welding conditions and by varying the wire feed and the arc voltage override
above and below the initial values of the experiment.
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Phase 3 consists of a visual inspection of the welds, to assure whether full penetration
was achieved in the experiments as well as the visual quality of the top side weld bead.
This was done with the automated weld visual quality inspection tool Winteria, by using
laser triangulation measurement. Furthermore, in this phase, the accepted weld data are
saved in the knowledge base for the NN training procedure.

In phase 4, the NN configuration is optimized for the case study and the results of the
NN decision-making are simulated over the desired parameter window of the use case. In
phase 5, the IWS is tested with separate test specimens, where the welding conditions, root
gap and root face are varied. The specimens are tested in more detail with NDT and DT
testing to verify the achieved quality of the test specimen. The more detailed procedures of
the main steps are discussed in the following paragraphs and sections.

The rough estimates of the suitable welding parameters need to be defined to reduce
the number of welding experiments. The appropriate parameter window determination
process is easier with having the predetermined parameter window for the use case. The
knowledge bank requires further validation and the data need to be gathered correctly to
be suitable for the NN.

First, the data need to be gathered from across the parameter adjustment window. In
this context, the parameter window means that all kinds of different conditions where the
IWS wanted to operate are gathered. As an example, in the case study, the root gap and root
face variations that can occur during welding are tested during the data-gathering process.

In this experimental case, the Taguchi method was used to define the parameter win-
dow in the defined experiments. The Taguchi method was found to be sufficient in accuracy
while maintaining a low number of experiments in total. The experiments were conducted
so that the welding process parameters varied with different welding conditions. First, the
root gap and root face were fixed in specified values in the experimental plates. The plate
was first scanned in order to obtain the root gap and root face values in different coordinates.
Furthermore, the welding was conducted over the plate. The welding parameters were
varied in such a way that individual parameters were adjusted to obtain unwanted quality
in the extremes.

Next, the scanning of the quality was conducted to obtain the quality data of the
specimen. In practice, this meant a minimum of 27 pieces of experimental plate for the
case study, as two different process parameters (wire feed/current and voltage) and two
welding conditions (root face and root gap) were adjusted. The more detailed experimental
setup and Taguchi method parameters of the welding experiments can be found in Table 3.
The experiments were conducted in all variations of the root gap and face combinations.
As the experimental workpieces have variations and cannot be carried out absolutely
according to the stated values, the seam dimensions have roughly ±0.5 mm variations
compared to the desired values. This, however, can be beneficial while using the NN as an
optimization tool.

Table 3. Experimental setup details of utilized welding parameters.

Root gap variation values 1 mm, 1.5 mm, 2 mm
Root face variation values 1 mm, 1.5 mm, 2 mm
Wire feed variation values ±1 m/min compared to the predefined value
arc voltage override values ±5% compared to the predefined value

Actual root gap variation in experiments 0.7–2.2 mm
Actual root face variation in experiments 0.9–2.6 mm

As the welding process parameters are varied in each experiment, the parameters
which enable sufficient weld quality can be gathered with a wider range over the desired
parameter window. By utilizing this strategy, the data can also be gathered during the
welding control process, thus improving the accuracy of the NN decision-making by
retraining the network with more extensive data during the operation of the system.

When the data from the experiments are collected, they need to be combined and
validated. NN requires that the validation of the experiments is done in such a way that only
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the welds that achieved sufficient quality within the limits of the standard (ISO 5817) [20]
are used for the training. Furthermore, the data need to be well spread across the parameter
window to obtain a reliable result from the NN training.

The data were further validated as follows: 25 mm from both ends of the experiments
were excluded from the evaluation to prevent inconsistencies due to the welding start and
end slopes. A similar procedure was carried out also in the positions of tack welds. As
the knowledge bank only consisted of the welds where the quality is sufficient, the quality
aspect of the data can be neglected. Hence, this results in a knowledge bank of welding
preconditions (root gap and root face) and the welding parameters used (that enabled
sufficient welding quality) which can be directly utilized for the NN training sequence. The
validated data consisted of a total of 1477 pairs of input–output data. The validated data in
Figure 6 show each parameter in the input–output pairs used for the NN training.

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 10 of 19 
 

 

preconditions (root gap and root face) and the welding parameters used (that enabled 
sufficient welding quality) which can be directly utilized for the NN training sequence. 
The validated data consisted of a total of 1477 pairs of input–output data. The validated 
data in Figure 6 show each parameter in the input–output pairs used for the NN training. 

  
Figure 6. Gathered and validated data from the welding experiments. The sample number presents 
one pair of all four parameters at the time. 

The validated data have sufficient data from the different combinations of the weld-
ing parameters. However, the root face data had some variation in some parts of the ex-
periment. The variations occurred due to the manual grinding operations on the prepara-
tion phase of the experiments. The NN training sequence is explained in detail later (in 
Section 3.1) After the NN training, the NN is capable of adapting to the weld conditions 
by optimizing the welding parameters based on the training data. 

2.3. IWS Operating Principle 
In terms of the IWS, the system’s operation is similar to the training sequence, apart 

from the NN welding parameter feedback control loop. The sensors gather the conditions 
during welding and the welding parameters are adjusted based on the conditions. In 
terms of laser triangulation sensors, or other sensors that are not measured at the same 
point where the welding torch is, the measurements are combined with the TCP of the 
sensor. When the TCP of the welding torch approaches the measured point of the speci-
men, the MATLAB script compares and finds the closest measured coordinates measured 
by the sensor to the welding torch TCP. The values of the welding conditions of the closest 
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one pair of all four parameters at the time.

The validated data have sufficient data from the different combinations of the welding
parameters. However, the root face data had some variation in some parts of the experiment.
The variations occurred due to the manual grinding operations on the preparation phase of
the experiments. The NN training sequence is explained in detail later (in Section 3.1) After
the NN training, the NN is capable of adapting to the weld conditions by optimizing the
welding parameters based on the training data.
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2.3. IWS Operating Principle

In terms of the IWS, the system’s operation is similar to the training sequence, apart
from the NN welding parameter feedback control loop. The sensors gather the conditions
during welding and the welding parameters are adjusted based on the conditions. In terms
of laser triangulation sensors, or other sensors that are not measured at the same point where
the welding torch is, the measurements are combined with the TCP of the sensor. When the
TCP of the welding torch approaches the measured point of the specimen, the MATLAB
script compares and finds the closest measured coordinates measured by the sensor to the
welding torch TCP. The values of the welding conditions of the closest coordinates are fed
into the feedback control system as an input parameter and the result is directly saved and
the parameters are set in the welding power source (via robot controller). The gathering
frequency of the welding conditions and the TCP of 50 Hz was used. However, to prevent
singular measurement errors from affecting the welding process, the 2 Hz feedback control
frequency was used. With a 2 Hz feedback control frequency, a median of 25 welding
measurements could be used for single parameter adjustment. The input data for the NN
consisted of root gap and root face, and were combined with the used welding parameter;
wire feed and arc voltage override value, which are used as output parameters for the NN.
This kind of link between the input (root gap and root face) and output (wire feed and arc
voltage override value) parameters of the NN enables the possibility to develop a real-time,
self-learning NN system in the future if combined with the quality measurement data.

2.4. Training Sequence and Validation of the NN Performance

The IWS training can be separated into the NN layout configuration and the training
process itself. First, it is required to choose the appropriate number of hidden layers and
neurons and further the performance evaluation of the NN. The welding process has often
quite a significant parameter window, which does not require exact welding parameters.
The variation of the welding parameters in order to achieve consistent weld output tends to
be around ±10%, depending on the application. Thus, the absolute accuracy of the process
parameter adjustment is not crucial in order to obtain sufficient weld quality. Therefore,
the neural networks are well suited to solve the welding process optimization problems.

In this study, a Levenberg–Marquardt Algorithm (LMA) is used as an optimization
algorithm in backpropagation, as LMA tends to perform well in optimization problems as
proven in multiple studies [15,21–27]. The training process is similar regardless of what
algorithm is used. The number of hidden layers and neurons is chosen by evaluating the
effect of layer configurations (Hidden layers and neurons) on the Mean Squared Error
(MSE) of the network, which is used for the performance evaluation of the network. The
MSE was chosen because it has been widely used to evaluate the performance of the NNs
and has been found to be an effective tool in previous studies [7,10,16–18,23,24].

The NN was trained with 1–4 hidden layers with neurons ranging from 1 to 30 for
each layer. The training set was divided into 70% for training, 15% for validation and 15%
for testing. For statistical consistency, each optimization was run 30 times. Furthermore,
the best-fitting hidden layer configuration was chosen, and the optimization of neurons
was conducted by measuring the performance with 1–60 neurons. Finally, the performance
was analyzed further by comparing training, validation and testing dataset performances
(MSE) to find the optimal configuration.

2.5. Reliability of IWS

The reliability of the IWS system was evaluated by comparing the NN decision
accuracy based on the validated training data with ISO 5817 quality level B. Standard
deviation from both the training and NN decision was used. With this data, the reliability
of how well the NN mimicked the training data were evaluated. Reliability is measured by
comparing the standard deviation of the training dataset to the individual decisions of the
NN and further to the standard deviation of the NN decisions. As the validated training
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dataset consisted only of the ISO 5817 level B welds, the limits of level B were defined to be
the standard deviation limits of the validated dataset.

3. Results and Analysis

This section addresses the results of the NN training sequence and the validation of
the performance and reliability of the IWS. The results are also analyzed.

3.1. Training Sequence of NN

The specific parameters for training the network were chosen based on previous
experience. Often, the optimal welding process parameters for each case are found mainly
by trial and error. The most significant variation can be found in the complexity of the
NN, which is created in terms of the NN training sequence—the optimization process
takes a considerable amount of time. The desired dataset of the case study consisted of a
total of 3600 trained NNs. The training process itself took over 12 h, even with a high-end
computer and using all cores of the processor and the graphics card for the calculation
(MATLAB parallel pool, eight cores and a graphics card). However, the calculation time
is not a crucial aspect in terms of offline training, as the training system does not need to
operate during the welding process. Thus, the optimization process should be carried out
carefully to maximize the performance of the system. The median results of the MSE with
1–4 hidden layers with neurons ranging from 1 to 30 can be found in Figure 7.
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As can be seen in Figure 7, the performance in terms of MSE (the lower the number the
better) is not varying significantly with more than two layers. The complexity of the layer
configuration should be kept minimal to prevent the issue of the overfitting appearance of
NNs. Due to the stabilized performance, the three- and four-layer networks tend to have
higher complexity in this case study. Thus, the two-hidden-layer network was chosen for
further performance evaluation. Although it has been mentioned that the best performance
can be found where the MSE is the lowest, the overall performance needs to be addressed
by evaluating which part of the MSE is creating the overall reduction in MSE. The MSE
performance of the NN can be found in Figure 8. The MSE is calculated from training,
validation and testing performances and the result of the separate performances can be
found in Figure 9.
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The MSE of the two-layer network is steadily decreasing up until roughly 40 neurons,
and stabilizes after that, as can be seen in Figure 7. However, the MSE decreases in
the training performance dataset, as can be seen in Figure 8. The training data tends to
decrease with the higher number of neurons as it measures the performance from the same
dataset that was used to train the network. The more important aspect is to evaluate the
validation and testing datasets. These datasets stabilize roughly in the 20 neurons range.
The difference in training performance and the testing datasets increases after the similar
20-neuron range, indicating the increasing overfitting tendency of the NN. Thus, the most
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suitable network configuration for this case is the 2-20-20-2 network. After the optimization
of NN training, the validation of the practical performance of the IWS can be evaluated
with the trained NN. The NN decision-making software can be simulated by mapping
the values of the welding conditions over time and plotting the decision of the NN in
the graph. Both parameters are drawn in the different graphs to visualize the decisions
of the NN separately for both wire feed and arc voltage correction separately. Figure 10
shows the wire feed and Figure 11 shows the arc voltage correction values in the trained
parameter window.
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Both NN decision-making simulated control maps have variations in the edges of the
parameter window. This visualizes the extrapolation tendency of the NN, as the extreme
values do not have enough, or any, related data. However, as an example, the extreme
value of the root gap (2.5 mm) operates as expected within a 0.5–2.5 mm parameter window.
It would be beneficial to narrow the parameter window to consist only of reliable data
if the system would be used in the production environment to increase the reliability of
the system.

3.2. Validation of the Performance and Reliability of the IWS

The performance and reliability of the IWS can be evaluated by comparing the standard
deviation of the validated training dataset to the IWS decision-making compared to the
training data. The percentual difference in the NN parameters (red is arc power and blue is
arc voltage) compared to nominal parameter values from the training dataset are presented
in Figure 12. Furthermore, the standard deviation limits of the validated training dataset,
also defined to be the limits of quality level B, are presented as dashed and dotted lines
in Figure 12.
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Figure 12. IWS reliability as a relative error compared to training data. Limits of quality by ISO 5817
level B.

The standard deviation of the training dataset for arc power was 9.5% and for arc, the
voltage was 5.2%. These limits are the limits of ISO 5817 quality level B, as the training
dataset only consisted of quality level B. It can be seen that the NN decisions have significant
“spikes”, or singular decision errors, in the data. The individual spikes can be created due
to small inconsistencies in the welding process, e.g., wire feeder slipping, wire twisting
within the wire feeder tube, instability of the welding arc, magnetic arc blow, contact tip
errors, or similar small instabilities. The arc power consisted of 2.7% false decisions while
the arc voltage consisted of 2.4% incorrect values. When comparing the standard deviation
of the NN decisions, only 0.4% points of error can be stated for arc power, and 0.8% points
for arc voltage. The overall performance in terms of the standard deviation of the decisions
of the trained NN resulted in a reliability of 99.5% for arc power and 99.4% for arc voltage.
Similarly, with practical examination and evaluation already carried out in a previous
article, the weld consistently reached ISO 5817 level B [18].
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4. Discussion

This study shows that the IWS enables the possibility to simplify adaptive welding and
enable multiple welding conditions and welding process parameters to control the welding
process. Although “simplifying” is relative in terms of NN, as it requires knowledge of
NN, it reduces the amount of manual interaction and reduces human error in the process.
Furthermore, when using multiple inputs and outputs for the NN decision, the problem
becomes so complex that it is not possible or feasible to solve it manually. The results
of the study show a possible method to utilize the NN to feedback control the welding
process. Although the dataset was limited as it consisted of 1477 data pairs (~10 m of
weld), the accuracy of the NN was sufficient and the reliability of the parameter control
remained at a suitable level in both practical welding experiments as well as statistical
evaluation. The singular spikes that are shown in Figure 6 show the effect of possible
inaccuracies in validating the training datasets. Therefore, it is suggested to use the median
of multiple measurements and NN decisions to prevent singular errors from affecting the
welding quality.

The results of the study show that the developed IWS enables the possibility to utilize
NN for welding process feedback control. In the restricted number of experiments, the
system operated as intended; however, further study needs to be conducted on a larger
scale. Nevertheless, the method for controlling the process was proven to be reliable
in practical terms. The reliability of the system is complicated to evaluate in practical
applications, as the accuracy of the training data affects the evaluation. It was noted
that the training data had significant variation, which led to quality level B in terms of
ISO 5817 [20]. However, by combining the practical examination with statistical evaluation,
the results of the study could be concluded.

A similar multi-variable parameter control would be challenging to achieve, although
not impossible, with manual parameter adjustment methods. The main benefit of using the
algorithm is to reduce the time and effort to create such parameter control. Furthermore,
this study was conducted to prove the method of utilizing NN in the welding process
feedback control and to prove the functionality of the IWS in successful process control.
The main benefit of the IWS lies in the increased number of sensors used for process control.
Now that the state-of-the-art principle of the IWS has been proven successful, the IWS can
be used in more demanding applications with extended use of sensors. Furthermore, the
understanding of the causality between the NN input and output parameters could be
better visualized and clarified by using numerical modelling techniques [28–30]. A deeper
analysis and understanding of the welding process itself could also help to decide the most
beneficial sensors for each use case.

There are, however, inconsistencies and inaccuracies in the IWS. The utilized laser
triangulation sensor itself has a significant 100 mm distance from the welding torch. This
distance will affect the real-time aspect of the data, creating variation between the actual
conditions and the gathered conditions with the sensor. In some cases, the data can behave
similarly, but approaching the point of discontinuity, such as a tack weld or a corner,
the variations could have a significant effect. It would be beneficial to have the welding
conditions as real-time as possible, but in this paper, challenges with interference were
noted if the sensor was closer to the welding torch. Improvements to the sensor’s protection
and the filter lenses could be added to reduce the effect of arc disturbance. Furthermore,
the air or shielding gas flow could be utilized to blow off the small flying spatters in the air
toward the sensor. This, however, requires further investigation.

Further remarks have been made related to the data transfer delays between the
sensors and devices, as well as decision-making software decisions, until the realized
adjustment in the actual welding parameters. This, however, requires significant testing to
measure, and the delays are test-setup-dependent, thus distracting from the main research
topic of this paper. Therefore, the process delay evaluation was ruled out from this paper
and will be part of a future study. In principle, all the inaccuracies, refresh rate and data
transfer variations will affect the weld quality and reduce the performance of the IWS.
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Depending on the delay type, some of the effects will be reduced by the testing setup itself,
as the NN training and testing setups will both have the same delays.

As a future study, the self-learning IWS could be developed by utilizing these research
outcomes. The basis for the operating principle of such systems has already been discussed
and researched already some time ago [31–34], and the novel developments and possibilities
should be revised. The main feature of such a self-learning system is the measurement of
weld quality. As all of the measurements are taken automatically, the sensor needs to be
chosen correctly to evaluate the desired quality to a reasonable extent. Furthermore, the
training can be done in batches after each weld or by training the system consistently after
each pair of data is gathered. Both are valid methods and worth researching in the future.

5. Conclusions

This paper introduced the method by which to develop IWS, a welding adaptive
feedback control system for welding process parameters. The system utilizes NNs to create
parameter adjustments based on the welding conditions. This IWS was trained by using
training data created by using the Taguchi method-type experimental setup for welding
experiments. The data flow within the system and the training principle of the NN were
introduced in order to operate the feedback control system. Furthermore, the optimization
of the NN layer configuration was explained and demonstrated with the training data.
Finally, the IWS performance and reliability were addressed.

The study shows that the method for developing an intelligent welding system, IWS,
can be utilized to control welding feedback with multiple welding conditions and welding
process parameters. The reliability shows that the system is capable of reaching the set
quality limits with 99.4% reliability from the statistical point of view. However, in practical
experimentation in our previous research article [18], no variation or unaccepted weld
quality was observed. This proves the method of creating IWS to be valid, and the NN
optimization resulted in the desired outcome.

This paper proves that the IWS method of using NN as an optimization tool for
controlling the welding process and achieving consistent weld quality is successful. The
prospect of using more sensors to evaluate the welding process and control it can now be
enabled. The benefits of the IWS rely on the extensive benefits of using NN to increase the
complexity of the process control. This can be utilized by increasing the number of sensors
and process control measurements. This will enable more benefits from cause-and-effect
type welding process controls in the future. This, however, was not evaluated in the current
paper and needs to be investigated in future research.
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