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Abstract: In response to the growing challenges in drone security and airspace management, this
study introduces an advanced drone classifier, capable of detecting and categorizing Unmanned
Aerial Vehicles (UAVs) based on acoustic signatures. Utilizing a comprehensive database of drone
sounds across EU-defined classes (C0 to C3), this research leverages machine learning (ML) techniques
for effective UAV identification. The study primarily focuses on the impact of data augmentation
methods—pitch shifting, time delays, harmonic distortion, and ambient noise integration—on classifier
performance. These techniques aim to mimic real-world acoustic variations, thus enhancing the
classifier’s robustness and practical applicability. Results indicate that moderate levels of augmentation
significantly improve classification accuracy. However, excessive application of these methods can
negatively affect performance. The study concludes that sophisticated acoustic data augmentation can
substantially enhance ML-driven drone detection, providing a versatile and efficient tool for managing
drone-related security risks. This research contributes to UAV detection technology, presenting a
model that not only identifies but also categorizes drones, underscoring its potential for diverse
operational environments.

Keywords: UAV detection; UAV classification; machine learning; audio data augmentation

1. Introduction

The widespread use of UAVs, or drones, has led to a range of applications from aerial
photography to logistics, alongside challenges in airspace security, exemplified by the
2018 London Gatwick Airport incident [1]. These issues underscore the importance of
developing effective drone detection and classification systems.

Traditional detection methods, including radar [2], RF-based techniques [3], and visual
systems [4], face limitations in cost, range, and environmental sensitivity. Consequently,
there is an increased interest in acoustic-based detection, recognized for its cost-effectiveness
and flexibility. Acoustic signatures have been extensively studied for UAV detection, high-
lighting their viability [5–8].

However, it is crucial to acknowledge that each detection technique, including acoustic-
based methods, has its inherent advantages and disadvantages. No single technique suffices
in creating a comprehensive and effective drone detection system. As Park et al. aptly
noted, relying solely on one method of detection inevitably leads to gaps in drone detection
capabilities, posing challenges in successfully neutralizing illegal drones [9]. This paper
focuses primarily on acoustic detection due to its cost efficiency. The use of small, cost-
effective detection devices equipped with MEMS microphones could be widely deployed in
sensor networks, potentially compensating for some of the limitations inherent in acoustic-
based detection. By integrating these devices into extensive networks, a more thorough and
efficient detection framework can be established, leveraging the scalability and economic
feasibility of acoustic technology.

Building on prior work, ‘Comprehensive Database of Drone Sounds for Machine Learn-
ing’ [10], a substantial open-access database of drone audio data has been developed. This
database, meticulously compiled and categorized, covers a range of UAV classes from C0 to
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C3. An extensive collection of 40 different drone models is included, encompassing a signifi-
cant total duration of 23.42 h of recordings. This comprehensive assembly of data forms a
robust foundation for the development and training of ML algorithms for drone detection.

This study aims to develop drone classifiers that not only detect but also categorize
drones into EU-regulated classes (C0 to C3), considering UAV weight, capabilities, and
usage [11]. For detailed EU drone category descriptions, see Table 1, essential for under-
standing the range of UAVs identifiable by these classifiers.

Table 1. Overview of EU drone categories.

Category Description

C0 Drones weighing less than 250 g, typically for leisure and recreational use.

C1 Small drones weighing less than 900 g, used for both recreational and commercial
purposes, with more features than C0 drones.

C2 Drones weighing less than 4 kg, used for complex commercial operations, requiring
advanced operational skills.

C3 Larger drones weighing less than 25 kg, generally used for specialized commercial
tasks demanding specific capabilities.

This study investigates the impact of data augmentation on classifier performance,
initially training classifiers with high-quality drone sound recordings from an anechoic
chamber and later applying various augmentation techniques to mimic real-world condi-
tions, improving classifier robustness. Despite data augmentation’s potential in addressing
the deep learning challenge of requiring extensive training data, as discussed by [12,13], no
single method consistently outperforms others across all tests [13]. The need for dataset-
specific augmentation strategies is critical; for example, ref. [14] found certain spectrogram
augmentations ineffective in enhancing marmoset audio signal classification.

This research emphasizes the effectiveness of audio-based ML systems in UAV de-
tection, offering an economical, scalable, and flexible solution to drone-related challenges.
The methodology discusses the neural network architecture, training processes, and aug-
mentation techniques, along with details on significant data collection campaigns vital for
training and validation.

The results delve into the impact of various augmentation techniques on classifier
performance and assess their real-world utility through an experimental deployment in a
varied acoustic landscape, aiming to validate the classifiers’ adaptability and efficiency.

The paper methodically outlines the refinement and assessment of different classifiers,
focusing on their unique attributes and performance metrics. This detailed evaluation in
real-world scenarios aims to improve UAV detection and classification understanding and
applications, providing insights into these systems’ practicality.

2. Materials and Methods

The research methodology emphasizes transparency and reproducibility, making the
study’s source code publicly available on GitHub [15]. By sharing both the code and the
audio data from the database (refer to Section 2.1), the study provides the tools necessary for
replication, fostering an open and collaborative scientific community. This move towards
openness ensures methods and results can be independently verified, encouraging a deeper
understanding and further development within the academic field.

2.1. Data

The drone classifier’s training data chiefly comes from two major measurement cam-
paigns and a compilation of drone sounds from previous work [10]. Initially, recordings
were made in an anechoic chamber to capture high-quality, reflection-free audio from
various drones, establishing a baseline for the ML model’s early training phase.

Later, an outdoor experiment conducted at the Fraunhofer IVI test oval in Dresden
provided further data. Figure 1, illustrated with an OpenStreetMap graphic, details the
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drone’s flight path during a session. Microphones, represented by green dots, were placed
to collect drone sounds, with the drone’s red trajectory indicating constant altitude flight,
appearing continuous due to frequent GPS logging.

Figure 1. Visualization of a drone’s flight path over the Fraunhofer IVI test oval, with color-coded
altitude indicators and microphone positions.

The trajectory was intentionally designed to challenge the classifier’s detection capa-
bilities by having the drone initially move to a minimally audible distance and then return.
This tested the classifier’s range and its proficiency in discerning drone sounds amidst vary-
ing real-world background noises, thus enhancing the system’s robustness and practical
deployment readiness.

Finally, the data collection contains drone sounds from other scholars, either by taking
them from open repositories like from [6], by reaching out to scholars directly, or by taking
them from Youtube. The whole dataset contains sounds from 40 different drones. Table 2
shows the drone models of the audio recordings in the database sorted by origin (free-field
measurement, outdoor measurement, and collection) and drone class.

For a comprehensive understanding of the measurement methods and outcomes, we
direct readers to [10]. The complete dataset is principally available at https://mobilithek.
info/ (accessed on 14 March 2024) by searching for H2 Think [16], but the platform does
have certain data management constraints. The data must be downloaded and converted
from the platform, with guidance provided in the linked material. After the conversion
process, the data can be locally hosted as an SQL database. Alternatively, readers can
request a download link from the author where the data has been readily formatted for an
SQL database.

For targeted data preparation for training and validation, we employed an SQL query
to categorize and retrieve the data from our database (the exact query can be found in [15]).
The ‘Training’ folder comprised all drone classes from anechoic chamber measurements,
organized into subfolders C0, C1, C2, and C3, corresponding to different drone classi-
fications. A ‘Validation’ folder contained the remaining drone data. Additionally, a ‘no
drone’ folder was created with audio files from the database where drones were inaudible.
The limited ‘no drone’ samples in the database necessitated supplementing the dataset
with external sources like YouTube (accessed between February 2023 and April 2023)
and https://www.salamisound.de/ (accessed in November 2023), incorporating diverse
environmental sounds, such as the following:

• traffic noise from single vehicles like trains, cars, helicopters, as well as multiple
vehicles from streets and crossings;

• weather sounds like rain and thunder;
• talking people, from single persons to crowds;
• animal sounds, especially from birds.

These sounds were used to refine the model’s distinguishing capabilities.

https://mobilithek.info/
https://mobilithek.info/
https://www.salamisound.de/
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Table 2. Summary of drone models in database categorized by measurement campaigns (anechoic
chamber, ‘free field’, and outdoors) and data collection, with custom-built drones indicated by asterisks.

Type Free Field Outdoors Collection

C0

• Cartonic Toy drone
• DJI Mini 3 Pro
• Eachine E58 (Emotion)
• Potensic Firefly

-

• Mambo (Parrot Drone SAS)
• DJI Mini 3 Pro
• IDEA 16 (le-idea)
• Wipkviey T25 Mini
• Hubsan H107D

C1
• DJI Mavic Air 2
• DJI Phantom 4 Pro
• DJI Avatar

-

• DJI F450 Flame Wheel
• DJI FPV
• S 500 (Holybro)
• Parrot Bebop Drone
• Parrot Bebop 2
• Parrot AR.Drone
• DJI Mavic Pro
• DJI Mavic Air

C2 • DJI Mavic e3
• DJI Phantom 4 RTK

• DJI M30T
• DJI Phantom 4 RTK

• DJI Phantom 3
• Yuneec Typhon H
• DJI Matrice 100
• Tricopter (Uni Saarland) *
• 3DR Solo (3D Robotics)
• DJI Inspire

C3
• HP-X4 *
• DJI Inspire 2
• DJIMatrice 300

• HP-X4 *
• HP-E616P-1 *
• DJI Matrice 300
• DJI Inspire 2

• Yuneec H850
• Yuneec H850 RTK
• DJI Agras T30
• DJI Matrice 300
• DJI Matrice 300 RTK
• DJI S1000
• DJI Inspire 1
• Evo X8 (Premium Modellbau) *
• DexHawk (DLR) *
• WintrgaOne Gen II (Wingtra AG)

In the training phase, the dataset exclusively comprised data from free-field measure-
ments. Each drone audio file was categorized into one of the drone classes and segmented
into 1-second intervals. Initially, the data was randomly assigned to either the training
or validation sets in a 50:50 ratio. This specific partitioning was consistently used in all
subsequent analyses. In total, the dataset yielded 3279 segments for ‘C0’, 5233 segments for
‘C1’, 6634 segments for ‘C2’, 7301 segments for ‘C3’, and 14,452 segments for ‘no drone’,
for both training and validation purposes. This balanced distribution of data segments
across classes ensures a comprehensive learning process for the classifier.

2.2. Network and Training

The development of the audio-based drone detection model utilized the VGGish
network, a neural architecture tailored for acoustic applications, inspired by the VGGNet
design for image classification [17]. This model, adapted for audio, uses 2D convolutional
and max-pooling layers to generate a 128-dimensional feature vector, mirroring VGG11’s
structure with eight convolutional, five pooling, and three fully connected layers, each
employing a 3 × 3 convolution kernel [18]. Pre-trained on the YouTube-8M dataset, VGGish
effectively captures diverse audio characteristics, proving valuable for complex audio
data analysis and drone sound classification [19–21]. It processes Mel-Frequency Cepstral
Coefficients (MFCCs) matrices, a format chosen for its efficiency in encapsulating sound
characteristics crucial for identifying and classifying drone sounds across varied acoustic
environments [18].

The VGGish network’s input layer is designed to process Mel-Frequency Cepstral
Coefficients (MFCCs) matrices in a format of 96 × 64 × n, where ‘n’ represents consec-
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utive MFCCs. This format effectively captures essential sound characteristics, aiding in
identifying and classifying drone acoustic signatures. MFCCs, widely used in audio signal
processing for their compact representation of sound’s spectral envelope, form a significant,
manageable dataset for the VGGish network. This facilitates the accurate identification and
classification of drone sounds across various settings [22].

In the study, two classifiers were developed to enhance the drone detection system’s
efficiency and accuracy. The first classifier differentiates ‘drone’ from ‘no drone’ sounds,
while the second categorizes drone sounds into one of four classes (C0, C1, C2, and C3). This
dual-classifier strategy improves robustness by focusing on the subtle differences between
drone classes after excluding ‘no drone’ sounds. It also increases operational efficiency
by using a cascaded approach where the presence of drones is first detected, and then
their category is determined. This is especially effective for energy-efficient deployment,
potentially incorporating neuromorphic technology like for SynSense’s Xylo [23] low-power
binary classification. Detecting a drone could then activate a more power-intensive unit for
detailed classification and communication.

To enhance the model, consistent training parameters were upheld across all studies,
utilizing Stochastic Gradient Descent with Momentum (sgdm) for optimization. This method
effectively balanced convergence rate and model accuracy, with a learning rate starting at
0.001 and reducing by a factor of 0.1 every three epochs to prevent overfitting and refine
learning. Training involved batches of 256 samples, limited to 12 epochs to ensure efficient,
comprehensive learning without overburdening computational resources. All augmen-
tations were applied to the original data before training and saved separately to reuse
this exact augmented dataset for training if needed. Conducted on a Lenovo ThinkPad
with an 11th Gen Intel(R) Core(TM) i7 CPU, 32 GB RAM, and NVIDIA T500 graphics
(4 GB RAM), the process aimed not to exceed 2 h, achieving consistent accuracy after 4 to
5 epochs. Classification tasks utilized the same setup, optimized for speed and accuracy
within computational limits, ensuring a balance between performance and efficiency.

2.3. Augmentation Techniques and Data Preparation

To enhance the drone sound classification model’s robustness, several audio augmen-
tation techniques were investigated, including pitch shifting, adding delay, introducing
harmonic distortions, and mixing in background noise. The following methods simulate
real-world acoustic variations, preparing the model for effective operation under diverse
conditions:

1. Harmonic Distortion. Adding harmonic distortions simulates the effect of sound
traveling through different media. This technique challenges the model to maintain
accuracy in complex acoustic landscapes.

2. Environmental Noise. Integrating ambient noises from various environments with
drone sounds trains the model to effectively differentiate drone sounds from back-
ground noise in real-world situations.

3. Pitch Shifting. Altering the pitch of drone sounds without changing the playback
speed simulates variations in drone motor speeds.

4. Delay. Adding a time delay, varied in length and amplitude, to original sound, mimics
echo effects in various environments, enhancing the model’s adaptability to different
acoustic settings.

The augmentation techniques were applied solely to the training data, not the valida-
tion data, adhering to the principle that augmented data might not reflect realistic scenarios
accurately or might introduce alteration artifacts [24]. This strategy ensures the model is
trained on a diverse dataset but evaluated on unaltered, real-world data for a realistic
performance assessment.

During the data preparation phase for drone detection, audio data was initially seg-
mented into one-second chunks based on recommendations from [6], suggesting that
one-second clips are ideal for drone detection. To ensure only relevant data was used, a pre-
classification step removed segments without drone sounds, using the harmonic-to-noise
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ratio for effective isolation of drone noises from minimal background sounds. Additionally,
audio chunks were normalized to 90% amplitude to reduce volume variation effects, and a
bandpass filter was applied to limit the frequency range to 100–20,000 Hz, improving signal
quality and enhancing the model’s identification and categorization capabilities.

3. Results
3.1. ‘Drone’ vs. ‘No Drone’ Classification

First, a classifier for distinguishing between ‘Drone’ and ‘no Drone’ was trained.
Augmentation techniques such as pitching, delay, and harmonic distortions were applied
to the training data, aiming to enhance the classifier’s adaptability while preserving sound
integrity. The ‘Drone’ vs. ‘no Drone’ classifier achieved a drone detection accuracy of 99.1%
and a non-drone detection accuracy of 97.2%, indicating a reliable ability to distinguish
between drone and non-drone acoustic signatures. Despite this success, the augmentation
parameters were considered preliminary, with room for further optimization to improve
classifier performance, especially in challenging acoustic environments. This phase of the
study highlighted the classifier’s robust performance and established a foundation for
future enhancements.

3.2. Drone Class Classification without Augmentation

To establish a baseline for drone sound classification, four distinct classifiers were
trained without data augmentation techniques under seemingly identical conditions. De-
spite using the same script for each run, significant outcome variations were observed
across classifiers. Confusion matrices in Figure 2 illustrate these differences, with the
accuracy for correctly classifying C0 drones fluctuating between 82.8% and 87.2% and
C1 drones between 87.4% and 93.7%. Variations were also notable in the more nuanced
classifications of C2 and C3 categories.

Figure 2. Confusion matrices for four different classifiers (without augmentation), trained under
identical conditions.

The observed inconsistencies in classifier outcomes are attributed to the stochastic
nature of ML model training processes, including random weight initialization and inherent
probabilistic elements in learning algorithms. These variabilities significantly impact ML
models’ performance and generalization capabilities. The baseline experiment without data
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augmentation highlights the importance of considering these stochastic processes during
model training, which can cause notable performance variability, even with identical setups.
This underscores the necessity for meticulous experimental design, such as using fixed seeds
for random number generators, to ensure reproducibility and reliability in ML research.

Table 3 summarizes the performance of sixteen classifiers, divided into four groups
with four classifiers each, trained under identical conditions without data augmentation.
These groups are differentiated by the random seed initialization used: no seed, seed
initialized to 1, seed initialized to 2, and seed initialized to 3. The classifiers within each seed
group were trained to assess the impact of controlled initial conditions on the consistency of
performance metrics.

Table 3. Classifier performance comparison without augmentation: accuracy metrics and resulting
variance with and without seed initialization.

Seed Prediction Recall

C0 C1 C2 C3 Mean C0 C1 C2 C3 Mean

no 87.3% 92.5% 98.3% 97.9% 86.6% 92.0% 97.8% 99.1%
no 82.8% 92.0% 98.1% 97.9% 86.0% 88.2% 97.7% 99.6%
no 84.9% 87.4% 97.3% 98.6% 81.1% 88.9% 98.5% 98.5%
no 87.2% 91.2% 97.2% 97.5% 84.9% 90.1% 98.0% 98.9%

std 1.6% 2.3% 0.5% 0.4% 1.2% 2.3% 0.8% 0.3% 0.4% 1.0%

1 87.3% 92.5% 98.3% 97.9% 86.6% 92.0% 97.8% 99.1%
1 85.8% 94.0% 97.9% 98.0% 88.5% 90.5% 98.1% 99.1%
1 85.1% 92.8% 98.3% 98.0% 86.8% 91.3% 97.9% 98.7%
1 89.4% 91.9% 86.6% 97.4% 86.8% 92.8% 97.5% 99.2%

std 1.6% 0.8% 0.2% 0.2% 0.7% 0.8% 0.8% 0.2% 0.2% 0.5%

2 86.7% 91.5% 97.8% 98.3% 85.6% 90.6% 98.8% 98.7%
2 86.7% 92.3% 96.9% 98.4% 87.0% 90.0% 98.2% 98.9%
2 81.4% 91.2% 98.6% 98.1% 84.3% 88.7% 98.3% 98.7%
2 87.7% 92.5% 97.3% 98.0% 86.0% 90.8% 98.9% 98.7%

std 2.5% 0.5% 0.6% 0.2% 1.0% 1.0% 0.8% 0.3% 0.1% 0.5%

3 84.7% 92.8% 97.8% 98.0% 89.5% 89.4% 97.5% 98.5%
3 87.7% 89.9% 98.3% 98.1% 84.4% 91.2% 98.1% 99.1%
3 86.1% 90.1% 97.8% 98.0% 84.8% 90.0% 97.4% 99.1%
3 88.0% 92.6% 97.5% 98.1% 87.7% 90.7% 98.0% 99.3%

std 1.3% 1.4% 0.3% 0.0% 0.8% 2.1% 0.7% 0.3% 0.3% 0.8%

The group without seed initialization showed significant variability in performance,
with the standard deviation of accuracy across classes (C0 to C3), averaging 1.2% for predic-
tion and 1.0% for recall. This reflects the stochastic influence on classifiers when random
processes are not controlled. In contrast, the seeded groups exhibited more consistency,
with standard deviations in accuracy reduced to around 1.0% maximum and 0.5% minimum.

Although only four classifiers were trained per seed, which may be considered a
limited sample for statistical robustness, the results demonstrate a clear trend. Classifiers
with controlled seed initialization yielded more consistent accuracies, suggesting that non-
random weight initialization can lead to more reliable classification results. The observed
trend, despite the small sample size, underscores the potential influence of controlled initial
conditions on model performance. Further research with a larger number of classifiers
per seed could provide additional insights into the effects of weight initialization on
classifier performance.

The analysis of these outcomes highlights the necessity for careful consideration of
initialization processes in ML classifiers, acknowledging the balance between random
variability and the quest for replicable results. It is generally important to use random-
ness in ML to provide the best stability and robustness for the most of neural networks.
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For the purpose of investigating the influence of several adjustments like augmentations on
general performance, however, fixed seed augmentation could reduce noise and increase
the comparability.

The performance of the first drone classifier, with seed 1, as detailed in Table 3, was
evaluated by classifying a C3 drone (HP-X4 2020) from an outdoor experiment. The out-
comes of this real-world application are depicted in Figure 3.

Figure 3. Top: Spectrogram of the audio signal capturing a drone’s acoustic signature (drone model:
‘HP-X4 2020’; drone class: C3) during the outdoor experiment. Bottom: Classification results over
time, showing the classifier’s predictions (based on the 2nd classifier with seed 1 in Table 3).

The spectrogram in the upper section of Figure 3 clearly illustrates a typical acoustic
footprint of the drone’s activity. The typical acoustic spectrum of a drone is characterized
by a distinctive pattern of harmonics across mid to high frequencies, often with peaks
in lower frequencies generated by the rotors and motors. The drone initiated movement
at around 7.5 s, with a stationary phase until approximately 25.5 s, and subsequently
moved away from the microphone. Its farthest distance from the microphone, where the
acoustic signature is weakest, was reached at around 52 s before it began its return journey.
The drone passed directly overhead at 66.5 s and finally landed at 109 s.

The classifier’s temporal predictions, depicted in the bottom panel, segmented the
audio signal into one-second intervals for classification. Although the classifier consistently
identified drone presence, it erroneously classified them as C0 drones in 72.1% of detections,
accurately recognizing them as C3 drones in only 9.9% of instances. Detection did not
occur before the drone’s takeoff when distant, or after landing, highlighting significant
misclassification likely influenced by environmental factors. The classifier, trained with
noise from an anechoic chamber, struggled against real-world environmental variations like
reflections and ambient sounds, underscoring the necessity for appropriate augmentation
for generalization.

It is noteworthy that the ‘Drone’ vs. ‘No Drone’ classifier’s performance was not partic-
ularly impressive, for instance in the time frame of 74 to 81 s where the drone’s presence can
unmistakably seen in the spectrogram. However, given the study’s focus on augmentation
techniques, this initial classifier was continuously used to ensure comparability across
different augmentation methods.

3.3. Augmentations
3.3.1. Harmonic Distortions

The study investigated the impact of harmonic distortions on drone classification ac-
curacy by varying distortion levels from 0% (no augmentation) to 63%, with 7% increments,
based on preliminary findings that showed a decline in performance beyond 50% distortion.
This approach allowed for a detailed exploration within a manageable framework, training
approximately 10 classifiers for each augmentation level. The findings, summarized in
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Table 4, indicated that slight to moderate distortions, particularly between 7% and 14%,
could enhance accuracy. Such levels of distortion may mimic the variety of sound qualities
UAVs produce under different operational conditions, thereby potentially increasing the
model’s adaptability to real-world situations.

Table 4. Classification accuracy for individual drone categories C0 to C3 across different levels of
augmentation with harmonic distortion, with the last two columns displaying the average (Mean)
and standard deviation (Std) of the accuracies for all categories. Results that meet or exceed the 75th
percentile threshold for their category are highlighted in green, indicating higher accuracy, while
results at or below the 25th percentile are highlighted in orange, indicating lower accuracy. For the
standard deviation (Std), this color scheme is reversed: lower values (indicating more consistent
accuracy) are marked in green and higher values (indicating less consistency) in orange.

Distortion Level C0 C1 C2 C3 Mean Std

0% 85.4% 93.1% 98.7% 97.9% 93.8% 6.1%
7% 85.3% 92.6% 98.7% 98.5% 93.8% 6.3%
14% 85.5% 93.6% 98.2% 98.2% 93.9% 6.0%
21% 84.0% 88.0% 98.2% 97.2% 91.9% 7.0%
28% 84.3% 90.3% 97.7% 95.3% 91.9% 5.9%
35% 80.0% 93.3% 98.0% 98.1% 92.4% 8.5%
42% 88.4% 68.4% 96.4% 94.7% 87.0% 12.9%
49% 88.0% 75.9% 98.2% 95.4% 89.4% 10.0%
56% 91.8% 66.7% 96.8% 95.4% 87.7% 14.1%
63% 74.9% 88.2% 95.1% 94.1% 88.1% 9.3%

The study discovered that increasing harmonic distortion levels initially boosted drone
classification accuracy, peaking between 7% and 14%. This suggests that moderate levels of
distortion more closely mimic the real-world acoustic conditions drones encounter, thus
improving the model’s generalization from the augmented training data. Importantly,
augmentation was applied solely to the training data, not the validation set, to ensure the
model was evaluated against unaltered, real-world data for an accurate capability assess-
ment. Beyond the optimal distortion range, accuracy decreased, indicating that excessive
distortion introduces noise, hindering correct classification. This finding emphasizes the
necessity for a balanced harmonic distortion application to preserve classification integrity.

However, the investigation into the optimal distortion range’s impact on outdoor
experiments did not yield a significant performance improvement. This outcome, while
not presented due to the lack of substantial enhancement, underscores the challenge of
applying controlled environment improvements to outdoor scenarios. It emphasizes the
complexities involved in acoustic drone classification under real-world conditions and
underscores the critical importance of comprehensive model validation strategies.

3.3.2. Environmental Noise

A rigorous investigation of the effects of environmental noise augmentation on training
data was conducted, with the aim of determining the impact of different noise intensities on
the classifier’s accuracy. The levels of noise introduced varied from 0% to 72%. This specific
range and increment step were informed by preliminary studies, which demonstrated
a clear degradation in classifier performance with noise augmentations exceeding 50%.
To cover the critical range effectively, we employed incremental steps of 8%, allowing us to
train 10 classifiers for each augmentation technique, and explore the impact of different
noise intensities on classification accuracy comprehensively. The results summarized in
Table 5 indicate that the incorporation of noise generally results in a decrease in classi-
fication accuracy. This finding is consistent with the discussion in the methods section,
which focused on the selective application of augmentation to training data. It is based on
the understanding that augmented data may not always accurately replicate real-world
conditions [24].
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Table 5. Classification accuracy for individual drone categories C0 to C3 across different levels of
environmental noise augmentation, with the last two columns displaying the average (Mean) and
standard deviation (Std) of the accuracies for all categories. Results that meet or exceed the 75th
percentile threshold for their category are highlighted in green, indicating higher accuracy, while
results at or below the 25th percentile are highlighted in orange, indicating lower accuracy. For the
standard deviation (Std), the color scheme is reversed: lower values are marked in green to indicate
consistency, and higher values in orange to indicate less consistency.

maxNoise C0 C1 C2 C3 Mean Std

0% 87.3% 90.5% 98.4% 98.0% 93.6% 5.5%
8% 84.3% 89.8% 98.4% 97.9% 92.6% 6.8%
16% 83.4% 92.8% 97.9% 98.0% 93.0% 6.9%
24% 81.1% 93.1% 98.6% 98.0% 92.7% 8.1%
32% 81.5% 89.7% 98.8% 97.6% 91.9% 8.0%
40% 66.2% 95.1% 97.1% 97.7% 89.0% 15.3%
48% 52.7% 93.2% 95.5% 95.1% 84.1% 21.0%
56% 69.1% 92.0% 95.2% 98.1% 88.6% 13.2%
64% 66.5% 86.5% 96.9% 91.8% 85.4% 13.3%
72% 48.0% 91.4% 95.7% 94.2% 82.3% 23.0%

The classifier performance remained stable up to 32% noise, suggesting that controlled
noise might enhance real-world robustness. Beyond this, accuracy dropped significantly,
especially above 40%. Figure 4 shows that applying 24% noise (blue circles) improved the
C3 drone classification of the above-mentioned example to 29.7%, a significant increase
over the non-augmented scenario (black dots) in Section 3.2. With 32% noise (red crosses),
correct classifications still occurred in 25.1% of instances.

Figure 4. Classification results over time for a C3 (‘HP-X4 2020’) drone showing the classifiers predictions,
trained with different degrees of noise amplitude.

The increase in classification accuracy observed at higher noise levels is intuitive,
reflecting the outdoor measurement conditions layered with background noises. This
contrasts with the anechoic chamber’s measurements, which lack such ambient sounds and
served as the basis for training data. The incorporation of environmental noise through
augmentation closely mirrors actual conditions, emphasizing the relevance of the validation
methodology described in the methods section. Augmentation was applied exclusively to
the training data to keep the validation set realistic and free from potential bias-inducing
artifacts [24]. This cautious approach ensured the evaluation of classifier performance using
unaltered, real-world data, leading to a more accurate determination of their effectiveness.

3.3.3. Pitch Shifting

The assessment of how pitch augmentation affects classifier performance was done
by altering the maxPitch parameter, which defines the pitch change limits for each audio
segment from −maxPitch to +maxPitch semitones, with 0 indicating no change. This pa-
rameter ranged from 0 to 2.5 semitones. The results, detailed in Table 6, revealed varied
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impacts on performance. An analysis was conducted on how pitch affects accuracy for
different drone categories.

Table 6. Classification accuracy for individual drone categories C0 to C3 across different levels of
pitch augmentation, with the last two columns displaying the mean (Mean) and standard deviation
(Std) of the accuracies for all categories. Results that meet or exceed the 75th percentile threshold for
their category are highlighted in green, indicating higher accuracy, while results at or below the 25th
percentile are highlighted in orange, indicating lower accuracy. For the standard deviation (Std), this
color scheme is reversed: lower values (indicating more consistent accuracy) are marked in green
and higher values (indicating less consistency) in orange.

maxPitch C0 C1 C2 C3 Mean Std

0 87.6% 94.8% 98.4% 98.0% 94.7% 5.0%
0.2 86.3% 92.8% 98.3% 97.9% 93.8% 5.6%
0.4 84.8% 91.8% 97.6% 98.4% 93.2% 6.3%
0.6 81.5% 90.9% 98.2% 97.6% 92.1% 7.8%
0.8 78.9% 86.7% 97.5% 97.2% 90.1% 9.0%
1.1 85.3% 90.7% 96.2% 98.0% 92.6% 5.7%
1.4 78.7% 86.2% 96.5% 97.6% 89.8% 9.0%
1.7 84.1% 80.9% 95.0% 97.7% 89.4% 8.2%
2.1 80.6% 86.1% 93.3% 97.4% 89.4% 7.5%
2.5 86.7% 74.5% 96.3% 97.6% 88.8% 10.7%

The investigation into pitch augmentation’s effect on classifier accuracy revealed com-
plex outcomes. The analysis, as shown in Table 6, indicates that minor pitch adjustments,
up to +/−0.4 semitones, have minimal impact on precision. In contrast, larger alterations
lead to reduced accuracies, while the choice of augmentation level, specifically the aug-
mentation by +/−1.4 semitones for the outdoor drone model ‘HP-X4 2020’, might appear
contradictory given its performance in Table 6; this decision was grounded in a comprehen-
sive examination of the augmentation effects across all classifiers on real-world examples.
It was observed that, despite the seemingly counterintuitive selection based on Table 6’s
data, augmenting the pitch by +/−1.4 semitones significantly improved classification
accuracy by up to 40%, as depicted in Figure 5. This substantial improvement, illustrated
with blue circles, contrasts sharply with the 9.9% accuracy (represented by black dots) ob-
served without augmentation, as previously noted in Section 3.2. Augmentations beyond
+/−1.4 semitones further demonstrated substantial accuracy enhancements compared
to scenarios without augmentation. This strategic selection, thus, was based on detailed
assessments of augmentations’ impacts, identifying +/−1.4 semitones as the most effective
for enhancing classifier performance in real-world settings (for this particular example),
underscoring the broader applicability and importance of pitch augmentation.

Figure 5. Classification results over time, showing the classifier’s predictions with an augmentation
with a pitching of about +/−1.4 semitones (blue circles) and no augmentation (black dots).

Acknowledging the reliance on accuracy metrics from training, where augmented
values were compared with non-augmented ones from identical measurements, reveals a
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methodological limitation in evaluating the augmentation technique’s efficacy. This short-
fall highlights the need for broader assessments of augmentation strategies, particularly
pitch adjustments, to accurately gauge their benefits and constraints in enhancing drone
sound classification under diverse real-world scenarios.

3.3.4. Delays

The study’s investigation into the effects of introducing audio delays of 15 ms to
27 ms, with amplitudes varying from 30% to 90%, aimed to mimic real-world acoustic
phenomena like echoes and ground reflections. However, no specific trend was observed
in classification accuracy across different delay levels, suggesting minimal impact, possibly
due to noise rather than a systematic influence on performance.

The analysis of delay augmentation is uniquely dependent on the specific measure-
ment context, including the microphone–drone relative positions and surface reflectivity.
Real-world conditions can produce time differences between the direct signal and its reflec-
tion of up to 30 ms, with amplitude variations based on the reflection coefficient of surfaces.
This highlights the importance of incorporating a broad spectrum of delay variability to
accurately reflect real-world scenarios.

Figure 6 presents the classification performance over time for the ‘HP-X4 2020’ drone,
comparing non-augmented (black dots) and random delay-augmented (blue dots) scenarios.
This augmentation significantly improved accuracy from 9.9% without augmentation to
27.3% with random delay augmentation. Such an enhancement underscores the critical
need to simulate a wide array of delay variations, closely resembling the acoustic reflection
conditions found in real-world environments. This finding advocates for random delay
augmentation as an effective strategy to increase the robustness of classification systems in
settings with prevalent echoes and reflections.

Figure 6. Classification results over time, showing the classifier’s predictions with a random delay
augmentation (blue circles) and no augmentation (black dots).

4. Discussion
4.1. Interpretation of Findings

This section distills the study’s insights into developing an advanced drone classifica-
tion system leveraging acoustic signatures and data augmentation techniques:

• Influence of Random Processes in Model Training. Highlighting the significant
impact of random processes, such as weight initialization, on training results. Utilizing
a fixed seed for random number generation is shown to reduce variability in ML model
outcomes, leading to more reliable and reproducible results. This underscores the
importance of controlling random initialization effects in ML experiments, with the use
of fixed seeds recommended for consistent ML model performance. It is noteworthy,
that this is a worthful approch for comparison purposes, but it should not be a general
approach in ML, since random weight initialization is important to avoid of reaching
the worst position of weights (local minima or plateau).

• Impact of Data Augmentation. The results demonstrate how various data augmenta-
tion techniques, including pitch shifting, time delay, harmonic distortion, and ambient
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noise, enhance classifier performance. Each method affects drone detection differently
and should be tailored to the dataset.

• Harmonic Distortion. Though intended to simulate sound travel through different
mediums for improved complex environment accuracy, introducing harmonic distor-
tions yielded only minimal classification accuracy improvements.

• Inclusion of Ambient Noise. Introducing ambient noise is critical for improving
model performance in distinguishing drone sounds among daily noises, up to an
optimal level, beyond which performance decreases.

• Pitch Shifting. Pitch adjustment within a specific range significantly improved the sys-
tem’s adaptability to drone motor sound variations, while training accuracies offered
limited insights, an outdoor drone case study revealed notable accuracy improvements
at higher pitch levels.

• Time Delay and Echo Effects. Implementing time delays to replicate echo effects in di-
verse environments improved the model’s adaptability to different acoustic conditions.
Experiments showed the complexity of simulating real-world echo conditions, with a
broad range of delay parameters essential for capturing the variety of real-world
echo scenarios.

Overall, this study illustrates the effectiveness of acoustic data augmentation in im-
proving ML systems for drone detection. It offers key insights for creating efficient UAV
detection systems applicable in multiple security and management scenarios. Specifically,
investigating random delay and amplitude variation highlights the importance of accom-
modating a broad range of real acoustic conditions to enhance drone classification accuracy.

4.2. Theoretical and Practical Implications

This research significantly advances UAV detection technology. Incorporating 40 drone
models into a comprehensive database lays a solid groundwork for ML algorithm devel-
opment and training in drone detection. The classifier’s ability to identify and classify
drones into EU-defined classes C0 to C3 showcases its practical utility. Moreover, the study
emphasizes the classifier’s potential adaptability across diverse operational environments,
highlighting its broad applicability.

Training with outdoor audio data inherently includes scene-specific elements like
reflections, ambient noise, and environmental factors. Even recordings in still conditions on
open, flat areas capture ground reflections, varying with the ground’s properties and drone–
microphone positions. In contrast, free-field data from anechoic chambers, augmented to
simulate various scenarios, enable a controlled, diverse training dataset. This prepares the
model for real-world acoustic unpredictability.

The theoretical and practical flexibility in augmentation bears substantial implications.
Theoretically, it refines our understanding of environmental factors’ effects on acoustic
signal processing and classification in ML models. Practically, it offers a methodology
to boost detection systems’ adaptability, ensuring efficacy across diverse real-world con-
ditions. Systematically augmenting clean, free-field data to simulate different scenarios
broadens the classifier’s exposure to potential real-world acoustic signatures, enhancing its
operational readiness.

4.3. Limitations and Challenges

The work on UAV detection using ML presented in this paper is characterized by
specific limitations and challenges, evident both in the experimental results and within
the context of the cited literature. A principal limitation, as highlighted in [12], is the
inherent variability of ML model performances, even with the use of identical parameter
settings. This variability is attributed to random processes in initialization and learning
algorithms, emphasizing the necessity for meticulous validation and robust design in
model development to achieve consistent and reliable classification results.

A significant limitation and the biggest weakness of this study is presented by the close
relationship between the validation and training data sets. Despite the decision, based on
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guidance from [24], not to apply augmentation techniques to the validation data, the fact that
these data are derived from the same set of measurements as the training data introduces
a risk of overfitting. This strategy aligns with the understanding that augmented data
may not accurately represent realistic scenarios or could introduce alteration artifacts [24].
However, it could result in classifiers being unduly tuned to the characteristics of the training
environment. This may lead to an overestimation of their efficacy in real-world applications
due to their familiarity with the data. This aspect is crucial, as it could compromise the
classifiers’ ability to generalize to new, unseen data, which is a vital criterion for real-
world applications.

Moreover, this study’s exclusivity in employing the VGGish model as the sole network
for investigation marks a significant limitation. The dependence of acoustic augmentation
methods on the algorithm suggests that the model choice likely influences robustness in
drone sound classification. Future research should encompass comparisons across various
models to comprehensively understand model-dependent performance variations and
enhance classifier adaptability to diverse acoustic scenarios.

Furthermore, the adaptability of the classifier to real-world scenarios, characterized
by acoustic diversity, remains a challenge. Despite the extensive database [10] and sophis-
ticated augmentation techniques, the accurate classification of drone sounds in dynamic
environments proves difficult. Studies such as [5–8] confirm the complexity of distinguish-
ing drones against various background noises and conditions.

An additional aspect that must be contemplated is the possibility that classification
into distinct drone classes based solely on acoustic signatures may not be entirely feasible.
Drone noises primarily originate from rotors, with rotor type changes significantly altering
the drone’s acoustic footprint. For instance, FFT analyses pre and post rotor change in a
Phantom 4 RTK showed similar patterns but noticeable differences with Rotor 2, including
harmonics shifting to lower frequencies and a decrease at higher frequencies (see Figure 7).
Comparatively, a different C2 drone (DJI Mavic 3e) exhibited a more distinct acoustic
fingerprint change, while different drone types can be distinguished irrespective of rotor
changes, generalizing acoustic fingerprints by drone classes poses challenges and warrants
further investigation.

Figure 7. FFT analysis of drone acoustic signatures: effects of rotor change and comparison between
different drone models.

4.4. Future Research

Future research in UAV detection using ML should prioritize refining the dataset for
enhanced real-world applicability, particularly by incorporating outdoor data as validation
data in the training process. This approach addresses the challenge of preparing recordings
to serve as representative validation data, utilizing the ‘Drone’ vs. ‘No Drone’ classifier for



Drones 2024, 8, 105 15 of 17

preprocessing to identify relevant validation segments effectively. The benefits of this strat-
egy include more realistic validation, improved data quality, efficiency in data preparation,
and insights for model improvements against environmental noises and variable factors.

Simultaneously, a systematic examination of drone-specific features remains cru-
cial. Investigating a wide range of time-domain, frequency-domain, Cepstral-domain,
and image-based features may reveal distinctive acoustic signatures of different drone
classes, significantly advancing the precision and reliability of drone classification systems.
A comprehensive overview of various features can be found in [25].

Moreover, future work should continue exploring the impact of multiple reflections
on drone sound classification, addressing the complexity of simulating real-world echo
conditions. This research could involve simulating various reflective conditions, from sim-
ple two-surface reflections to complex hall-like reverberations, to assess their impact on
classifier accuracy.

The methodological revision to use augnemnted free-field data for training and pure
outdoor data as validation in the training process underscores the necessity of a nuanced
approach that enhances the generalizability and reliability of models in complex environ-
ments. This foundational shift, coupled with ongoing explorations in feature analysis,
presents a comprehensive strategy for advancing the accuracy and reliability of drone
detection systems in diverse operational environments.

Furthermore, future evaluations should consider the relationship between classifica-
tion results and the drone’s distance from the microphones, exploring the operational limits
of classifiers in terms of detection range and the impact of loudness levels on classification
accuracy. This multi-faceted approach to future research will pave the way for developing
more advanced models, capable of operating effectively across a variety of environmental
conditions and meeting the challenges of drone detection with robust, adaptable solutions.

5. Conclusions

In the study “Sound of Surveillance: Enhancing ML-Driven Drone Detection with
Advanced Acoustic Augmentation,” a comprehensive exploration is presented into the
application of advanced acoustic data augmentation techniques for improving the perfor-
mance of ML systems in drone detection. The key conclusions drawn from the research are
as follows:

• Effectiveness of Data Augmentation. Various data augmentation techniques, such
as pitch shifting, time delay, harmonic distortion, and ambient noise incorporation,
have been demonstrated to significantly enhance the classifier’s accuracy. These tech-
niques have been shown to enable the system to adapt to diverse acoustic environ-
ments, effectively identifying and categorizing drone sounds amidst a variety of
background noises.

• Optimization of Augmentation Techniques. The study’s findings indicate varied
effects of different augmentation techniques on drone sound detection. Specifically,
pitch adjustments demonstrated ambivalent outcomes, with significant improvements
in classification accuracy for a C3 drone in outdoor measurements at +/− 1.4semitones,
underscoring the importance of pitch shifting in augmentation. However, harmonic
distortions did not show notable enhancements, and training process accuracies did not
provide clear conclusions. Introducing time delays and ambient noises at controlled
levels, on the other hand, contributed to the model’s robustness and adaptability.

• Classifier Performance and Reproducibility. The research highlighted the critical
role of random processes in ML model training. Variability in the performance of
classifiers, even under identical parameter settings, underscores the importance of
ensuring consistent initialization of initial weights and the selection of mini-batches.
Future research should prioritize standardizing these aspects to achieve more reliable
and reproducible outcomes.

• Practical Applicability and Future Directions. While the current ML-based classifier
demonstrates significant potential in security and airspace management, complying
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with EU drone categorization regulations, further refinement is required for optimal
performance in classifying drone categories. General drone detection using ML has
proven effective, yet precise categorization of drones into specific classes as per EU
standards demands additional research. Future studies should focus on exploring
advanced optimization algorithms and experimenting with diverse parameter com-
binations. This exploration will be critical for enhancing the accuracy of drone noise
classification systems, particularly in accurately identifying and classifying drones
into distinct regulatory categories. Continued research in this direction will not only
improve the reliability of drone detection systems but also ensure their compliance
with evolving regulatory frameworks, thereby bolstering their practical applicability
in various real-world scenarios.

• Contribution to UAV Detection Technology. Significant contributions have been
made to the field of UAV detection technology through this research. The establish-
ment of a comprehensive database encompassing 40 different drone models provides
a solid foundation for the continued development and training of ML algorithms in
this domain. The demonstrated capability to classify drones into distinct categories
(C0 to C3) in accordance with EU regulations underlines the practical applicability
and relevance of the system in meeting both current and emerging requirements in
drone security.

In summary, this study offers valuable insights into the development of effective UAV
detection and classification systems, leveraging sophisticated acoustic data augmentation
techniques. It lays a foundation for future research and advancements in this field, aimed at
enhancing security and management capabilities in response to the growing use of drones.
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