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Abstract: In this work we present three new models of the fractal-fractional Ebola virus.
We investigate the numerical solutions of the fractal-fractional Ebola virus in the sense of
three different kernels based on the power law, the exponential decay and the generalized
Mittag-Leffler function by using the concepts of the fractal differentiation and fractional differentiation.
These operators have two parameters: The first parameter p is considered as the fractal dimension
and the second parameter k is the fractional order. We evaluate the numerical solutions of the
fractal-fractional Ebola virus for these operators with the theory of fractional calculus and the help of
the Lagrange polynomial functions. In the case of p = k = 1, all of the numerical solutions based on
the power kernel, the exponential kernel and the generalized Mittag-Leffler kernel are found to be
close to each other and, therefore, one of the kernels is compared with such numerical methods as the
finite difference methods. This has led to an excellent agreement. For the effect of fractal-fractional
on the behavior, we study the numerical solutions for different values of p and k. All calculations in
this work are accomplished by using the Mathematica package.

Keywords: fractal-fractional ebola virus; lagrange polynomial interpolation; power law; exponential law;
generalized mittag-leffler function

MSC: primary 26A33; 34A08; secondary 35A20; 35A22

1. Introduction, Historical Background and Motivation

For the first time, an Ebola virus disease (EVD) was discovered near the Ebola River (Africa) in the
Democratic Republic of the Congo in 1976. It is a fatal disease with a rare outbreak (see, for details, [1]).
Due of this virus and its effect on humans, it leads to the spread of dangerous diseases and epidemics
in some African countries. Biologists have faced many difficulties in determining the origin of the
Ebola virus and how this virus is transmitted, but scientists have nevertheless resorted in order to
identify this virus accurately, that is, to study the behavior and nature of this virus and compare it with
other viruses. As a result of this study, scientists have found that this virus is most often transmitted
from animals. The origin and source of the Ebola virus are believed to be bats or non-human primates
(see, for example, [2,3]). The transmission of the infection to humans and non-human primates is
transmitted from monkeys, which (in turn) is transmitted to the monkeys from animals that carry the
virus. The Ebola virus, in general, can infect humans in one of the following ways:
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(i) By coming into contact with a person who has died of the Ebola virus disease or in contact with
the body fluids of a sick person;
(ii) Through direct contact with humans, body fluids, animal tissues and blood.

We turn now to the current onslaught of the Corona virus, which is referred to as COVID-19
(see, for details, [4-6]). As in the case of the Corona virus, the Ebola virus can be transmitted to others by
contact with infected body fluids, through broken skin, or through the mucous membranes of the eyes,
nose and mouth, but the Ebola virus can also be transmitted through sexual contact with a person who
has the virus or has recovered from it (see, for details, [7]; see also the recently-published works [8-11]
for the fractional-order modeling of various other diseases and other biological situations).

Fractional calculus is a generalization of the classical (or ordinary) calculus and many researchers
have paid attention to this science as and when they encounter a number of issues in the real world.
Most of these issues do not have exact analytical solution. This situation naturally interests many
researchers to look for and apply numerical and approximate methods to obtain solutions by using
such methods. There are many useful methods, such as the homotopy analysis [12-15], He’s variational
iteration method (see [16,17]), Adomian’s decomposition method (see [1,18,19]), the Fourier spectral
methods [20], finite difference schemes (see [21]), collocation methods (see [22-24]), and so on. In order
to find more about the fractional calculus and its applications, we refer the readers to the investigations
in (for example) [25,26] and also in the recent work [27] as well as in the survey-cum-expository
review article [28] for the theory and widespread applications of various operators of fractional
calculus and the basic (or g-) fractional calculus. More recently, a new concept was introduced for the
fractional-order operator because this operator has two orders, the first representing the fractional
order and the second representing the fractal dimension. Some recent developments in the area of
numerical techniques can be found in (for example) [29-31].

This paper focuses on the idea of fractal-fractional derivative of orders p, k on the fractal-fractional
Ebola virus (FFEV). To this end, we replace the derivative of integer order with respect to by
the fractal-fractional derivatives based on the power law (FFP), the exponential-law (FFE) and
the Mittag-Leffler law (FFM) kernels which correspond to the Liouville-Caputo (LC) (see [32]),
Caputo-Fabrizio (CF) (see [33]) and the Atangana-Baleanu (AB) (see [34]) fractional derivatives,
respectively. Here, and in what follows, we use the term “Liouvile-Caputo fractional derivative”
in order to give due credit also to Liouville who, in fact, considered such fractional derivatives many
decades earlier in 1832. This topic has attracted many researchers and has been applied to researches
stemming from various real-world situations (see, for example, [35-38]).

In recent years, many researchers’ focus is directed towards modeling and analysis of various
problems in biomathematical sciences. This branch of science represents many distinguished data on
biological phenomena such as the Ebola and other related viruses, the nervous system and its impulse
transmission, the bacterial cell and its spread, et cetera (see [16,39]). This has led to the modeling
of many real-world problems. As a result of problems that arise from the real world on the basis of
statistical analysis and biological experiments, mathematical models of these problems are proposed
and most of them studied. These proposed models enable scientists and researchers to study and
verify the behavior of such models separately and independently in biological laboratory experiments
(see [30,40-45]). After modeling the biological phenomenon mathematically, that is, as a function of
time and the parameters involved, the numerical solutions can be found and these solutions can then
be represented in tables and figures. Furthermore, if the laboratory results are available, comparison
between theoretical and laboratory results can be made. The parameters affecting this system can
also be controlled appropriately. Furthermore, one of the advantages of mathematical modeling is the
possibility of re-studying the problems many times and, at any time value, without re-experimenting.

We begin by introducing epidemiological model of the Ebola virus as follows:

D¢p1(0) = —ap1(Z) B2(2) + B B3(0) — TN, 1)
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D¢B2(Z) = aBr1(Z) B2(Z) — €B2(Z) —6B2(2), 2)
D¢B5(B) = 6B2(8) — BB3(S) ®3)

and
D¢B4(g) = €Ba(g) + N, (4)

where, as usual, D; = d% and ¢ = 0.
In Table 1, we define the independent variables and the parameters of the Ebola virus.

Table 1. Description of the independent variables and the involved parameters.

Symbol Definition
B1(0) The susceptible population
B2(2) The infected population
B3(2) The recovery population
B4(0) The population died in the region

N The total population in the region
« The rate of infection with the disease
B The rate of susceptibility

0% The rate of natural death

€ The rate of death from the disease
0 The rate of recovery from the disease

For the definition which will be needed in our fractal-fractional-order epidemiological model of
the Ebola virus, we will state after replacing the classical epidemiological model of the Ebola virus
by the fractal-fractional based on three proposed kernels. Our goal in this paper is to find numerical
solutions for the fractal-fractional Ebola virus. We have introduced new models, so that these numerical
solutions can be used by biological researchers to benefit from our study and link it to the biological
laboratory results.

The main structure of this paper is as follows. In Sections 2—4, the numerical schema of the three
new models of the fractal-fractional Ebola virus are constructed. Then, in Section 5, the numerical
results are discussed. Finally, in Section 6, the conclusion is presented.

2. Numerical Scheme for Fractal-Fractional Ebola Virus Via the Power Law Kernel

The new model is obtained upon replacing the ordinary derivative D; by the the fractal-fractional
derivative involving the power law kernel as in the earlier work [34].

FFE D21 (2) = —a B1(0) B2(2) + B B3(8) — YN, 5)
B D2 By (2) = a B1() Ba() — epa(Q) — 6a(2), ©)
FERD2 B3 () = 6B2(2) — BB3(0) %)
and
FRDLBA(C) = epa() +AN  (pk € (0,1)), ®)

where the functions B;({) (i = 1,2,3,4) are continuous in the interval (g, b) and fractal differentiable
on (a,b) with order k. The fractal-fractional derivative of B;({) of order p in the Liouville-Caputo (LC)
sense with the power law are given by (see [34])

¢
DL Bi0) = ¢ L [0 m@a 0<pkSni=1238 O

1—p) dgk
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and

dap; . i(T) — Bi
ig(k@ _ P—%{ﬁ (1;)C _gk(C)}, (10)

where I'(z) denotes the classical (Euler’s) Gamma function defined, for #(z) > 0, by

[(z) = /Ooo e Tdr (R(z) >0)

and, by its analytic continuation, for z € C\ {0, —1, -2, - - - }, C being the set of complex numbers.
Just as we pointed out above, we have used the term “Liouvile-Caputo sense” in order to give due
credit also to Liouville who, in fact, considered such fractional derivatives many decades earlier in 1832.
We now operate on both sides of the Equations (5) to (8) by the fractal-fractional integral which is
given by (see [34])

k . _
TR0 = oy ) @ B 1
We thus find that
B~ B0 = 157 [ - P B a0 el Ba(r) T (12
where

q’l(ﬁl(ﬂ/ﬁl(ﬂf /T> = —ap1(7) B2(7) + BB3(T) — TN, (13)

2 (B1(7), B1(7), B2(7), Pa (1), T) = (1) — eBa(7) — 9Ba(0), (14)

s (B (1), B1 (1), B2 (1), B2(7), T) = 8B2(T) — B Ba (), (15)

o, (ﬁmﬁ1<r>,ﬁz<r>,ﬁz<r>,r) = epa(7) + T N. (16)

By taking { = {41 in (12) and approximating the above integrals, we obtain

Cmt1
B0~ 8:0) = 7 & [ G 0 0B, o) o) () T ()
For simplicity, we set

T10;(B1(1), B1(1), B2(1), B2(1), T) = Hi(T)  (i=1,2,3,4)

and approximate H;(7) on the finite interval [, {;+1]- Then, by using the two-step Lagrange
polynomial interpolation, we obtain

© Cerl
B@ A0 = 5 L [ G~ 0P i s)
where
Hi(r) = 7210810, (B (1), ) o), i) ) — =

L @ (B1(Ti1), Ba(Ti1), B3 (Tw—1), Ba(Tu—1), Tm-1)- (19)
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These integrals are evaluated directly and the numerical solutions of (5)—(8) involving the FFP
derivative are given by

BilErn) = BiO) £y 2 (T B ) B, B (G, Bl ) 9

— O L ®i(B1(Tm—1), B2(Gm-1) B3(Cm—1), Ba(Tm-1), Tm—1) 2 (n, m)), (20)

P1(n,m) = [(n—i—l—m)p(n—m—b—Z—i—p)— (n—m)p-(n—m—i-Z—O—Zp)} (21)

and
ga(n,m) = [(n+1=m)P = (n—=m)P(n—m+1+p)], (22)

where } is the step size.

3. Numerical Scheme for the Fractal-Fractional Ebola Virus Involving the Exponential
Decay Kernel

Considering the FFE derivative, we have (see [34])

FFE D21 (2) = —a B1() B2(0) + B3(8) — YN, (23)
PP DE*By(2) = a B1(2) Ba() — epa(Q) — 6a(2), (24)
FFE D2 B3 (L) = 3B2(C) — BBa(D) (25)
and
FE DEBA(Z) = epa(Q) + 1N, (26)

where the functions ;({) (i =1,2,3,4) are continuous in the interval (a,b) and fractal differentiable
on (a,b) with order k. The fractal-fractional derivative of B;({) of order p in the Caputo-Fabrizio (CF)
sense with the exponential decay kernel are given by (see [34])

M(p) d

& —p (-
=T e e 0 <pk), @)

FFEng/k,Bi(@ )

where M(p) is a normalization function such that

We now operate on both sides of the Equations (23)—(26) by the fractal-fractional integrals which
are given by (see [34])

_ k—1
A0 = L)+ B [P e8)
We thus obtain
k—=1(1 _
B0~ 1(0) = T (51(0), Bal0), Bal0), Ba(), )

+ #p) /OC kT8 1;(B1(T), B2(7), B3 (T), Ba(T), T)dT. 29)
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Upon setting { = {,, 11, we are led to the following equations:

k=101 _
BilGusn) ~ Bi(0) = ) (812, Bl BaEn) Ba(Eo) )
'§n+1
475@555‘4) k10, (B1 (1), Ba(T), B3 (T), Ba(t), T)dT. (30)
Now, if we take the difference between the successive terms, we have the following results
k=101 _
Bi(Gusr) = Bi(G) = " E B (0), BaEn) (G, Bl )

k101 _
"CM<<1P)> ®:(B1(Tn-1), B2 (Gn-1), B3(Gn1), Ba(Tn-1), Tur)
+NIF()p)/jn+lka1q>i(l[31(1—),’[32(”[),[33(7),,54(”[),”[)11"{. (31)

It follows from the Lagrange polynomial interpolation, and upon evaluating the resulting
integrals, that

Wq}(ﬂl(én),ﬁz(én)rﬁa(@n)/ﬁz;(én)r@n)
gk 1(1_ )
- GatC o)

’ zﬁlp 7 [3E8 1B (@) BaACn), B3 (). Ba T )

i (B1(En-1), B2(Gn1), B3 (1), BalCn-1), Gn1) (32)

Bi(Cnt1) — Bi(Cn) =

D;(B1(Zn-1),B2(Cn—-1),B3(Zn-1), Ba(Tn-1),Cn-1)

that is,

51‘@"“)‘%"):‘Df%<€n>/ﬁz@n%ﬁs(én),mn),én>kéﬁ1[(§4?p)+ e ]

p)  2M(p)
— @;(B1(Cn—-1),B2(Cn-1), B3(Cn-1), B4(Cn-1),Cn-1)
a[A=p)  hp
6 * ) >

4. Numerical Scheme for the Fractal-Fractional Ebola Virus With the Generalized
Mittag-Lefller Kernel

Considering the FFM derivative, we have (see [34])

FEMDERBy () = —a 1(2) Ba(Q) + BB(0) — YN, (34)
FEMD2 B2 (2) = a B1(£) B2(2) — €pa(2) — 562 (D), (35)
FEMDR B3 (2) = 6B2(2) — BBa(0) (36)

and

YD Ba(C) = eBa(0) + 1N, (37)
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where the functions B;({) (i = 1,2,3,4) are continuous in the interval (a,b) and fractal differentiable
on (a,b) with order k. The fractal-fractional derivative of ;(f) of order p in the Atangana-Baleanu
(AB) sense with the generalized Mittag-Leffler type kernel is given by (see [34])

4 _
YD) = T [ E (SR a0 <pksSy, 69
where o o
Alp)=1—p+ (o)

We now operate on both sides of the Equation (34) by the fractal-fractional integrals which are
given by (see [34])

ko _(1_p)k§kil . Lk g’r’“ — )V 18.(1) dt
TR B0 = O+ 4y T o () e (39)
We thus find that
k—1 o
B:2) - Bi(0) = =P g (5.(0), B2(2), B(D), Bal0), )

A(p)
+7 / kT — )P 1 ®;(B1(7), B2(7), B3(T), Ba(T), T) dT. (40)

When ¢ = {,,+1, we obtain the following equations:

BilZns1) — Bi(0) = W¢i<ﬁ1<gn>,ﬁz<gn>,ﬁ3<gn>,ﬁ4<§n>,gn>
s [ K G = P01 (0) a0 (), a0, T (4
The integrals involved in these last Equation (41) can be approximated. We thus get
Bi(Cn+1) — Bi(0) = W‘Di(ﬁl(Cn),ﬁz(Cn)/ﬁs(Cn),ﬁzL(Cn)/Cn)
g L G 0 B0, o) (), ) .

The following numerical schemes after approximating the following expressions using the
Lagrange polynomial interpolation:

1 (B (1), B2(1), B (1), Ba(1), T),

in the interval [}, ;1] in (42), are given by
Koy '(1—p)
Alp)

kh? U
+ AOTETD gg;f 1;(B1(), ﬁz@j),ﬁe,(g),m(g»g)lpl(n,m)

k L @i(B1(Zj-1), B2(j-1), B3(Tj-1), Ba(Tj—1), j—1) 2 (n, m). (43)

BilEns1) — Bi(0) = i (B1(2n), Ba(@n), Ba(Cn), Ba(Gn) )
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5. Numerical Results and Graphical Illustrations

In this section, we study in detail the effect of the fractal-fractional order on the numerical
solutions of the FFEV based on three proposed kernels. The power law, the exponential law and the
Mittag-Leffler kernels in the Liouville-Caputo (LC) sense (because, as we already have indicated above,
the term “Liouvile-Caputo sense” is being used in order to give due credit also to Liouville who, in fact,
considered such fractional derivatives many decades earlier in 1832).

We first validate by means of our results in the case of the classical Ebola viruses in the
case of the power kernel with a known numerical method such as the finite-difference method.
We show satisfaction with the numerical solutions in the case of the power law kernel in sense of
the Liouville-Caputo fractal-fractional derivative giving due credit also to Liouville who, in fact,
considered such fractional derivatives many decades earlier in 1832. This is because all of the
numerical solutions based on the three proposed kernels are close to each other at p = k = 1.
Figure la—d exhibit the comparison of the numerical solutions (20) found here and the numerical
solutions based on the finite-difference method with p = 1 and k = 1. The parameters used here are
A =0.01,s =0.002,6 = 0.006,« = 0.004, = 0.01, N = 10,k = 0.02 and the initial conditions are
B1(0) =70,B2(0) =2,B3(0) = 0 and B4(0) = 0. From Figure la-d, we observe an excellent agreement,
and the agreement is increasing as we increase the value of h. Figures 2—4 show the behavior of
the numerical solutions based upon on the constructions (20), (33) and (43), respectively. Numerical
solutions are drawn for p = 09,k =1, p = 09,k = 0.8, and p = 1,k = 0.8 in those sub-figures
a to ¢, respectively. In these figures, we set the parameters as A = 0.01,s = 0.02,0 = 0.6,a& = 0.4,
B =0.01, N = 1000, i = 0.02 and the initial conditions are given as follows:

B1(0) = 1000, pB2(0) =15, pB3(0)=0 and B4(0) = 0.
(a) (b)
70~ ' ———
ook \ 60F d =
\ 50F //
50F
—~ 40F \ ~ 40F /
= 30f \ < 30f
20F \ 20f /
\ /
10f N - 10F s
OF, e 0 A L L
0 5 10 15 20 5 10 15 20
e e
(© (d)
4pr . p; SFT . ps
# d
# #
3t # 6r #
# #
S ool # S L A
& / =4 s
& #
[ e [ s
1 P 2 -
A -
a e
of——=", . . d o= . . g
0 5 10 15 20 0 5 10 15 20
4 ¢

Figure 1. Comparison between the numerical solutions (20) and numerical based on finite-difference
methods for (a) B1(¢), (b) B2({), (c) B3(Z) and (d) B4(Z), respectively, with p = 1,k = 1,A = 0.01,
s = 0.002,6 = 0.006,« = 0.004,8 = 0.01, N = 10,h = 0.02 and the following initial conditions:
B1(0) =70, B2(0) =2, P3(0) =0andB4(0) = 0. (Green solid color: Numerical solutions based on
finite-difference methods; Red dashed color: Numerical solutions (20)).
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(a) (b)
1000F p=0.9, k=1, FFP 1000f ' =0.9, k=0.8, FFP ]
800f | A1 800k | £1(0)
600F ¥\ 5,0 600 I\ g,
400f 400f
\ \
‘ X
ot/ — : : ] of! : : . .
0 2 4 6 8 10 0 4 6 8 10
¢ ¢
(©
1000¢ o0=1, k=0.8, FFP
800} | B1()
600F ¥ \ 8,0
400f
\
20 \
) — . .

10

Figure 2. Graph of the numerical solutions based on FFP for (a) p = 0.9,k =1, (b) p = 0.9,k = 0.8 and
(¢)p =1,k = 0.8, respectively, with A = 0.01,s = 0.02,0 = 0.6,a« = 0.4and 8 = 0.01, N = 1000, 1 = 0.02
and the following initial conditions: f1(0) = 1000, B(0) = 15, f3(0) = 0and B4(0) = 0.

(a) (b)
1000F " p=0.9, k=1, FFE | 1000f " p=0.9, k=0.8, FFE ]
800f | 510 800f{ 410
600f 600'(\/52(4)
400} i
4 a00ft - X
200 [ \\% 200 \
| — : : , i — : . .
0 2 4 6 8 10 0 2 4 6 8 10
l 4
(©
1000 " Toi1, k=0.8, FFE
800}
600}
400}
200} \
OH . : . . .
0 2 6 8 10

Figure 3. Graph of the numerical solutions based on FFE for (a) p = 0.9,k =1, (b) p = 0.9,k = 0.8 and
(¢) p =1,k = 0.8, respectively, with A = 0.01,s = 0.02,5 = 0.6,a = 0.4, 8 = 0.01, N = 1000, = 0.02
and the following initial conditions: B1(0) = 1000, B,(0) = 15, 83(0) = 0and B4(0) = 0.
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(a) (b)
1000F p=0.9, k=1, FFM 1000f " p=0.9, k=0.8, FFM |
800} | 81(0) 800} A1)
400} 400-h
\ <.
200} | X \ 200 X \
NG N
Ot . n : ot . . n
0 2 6 8 10 0 2 4 6 8 10
l 4
(©
1000 0-0.9, k=1, FFM
800}| A1(0)
600Kt B0
400}
\
200} X \
\ e ————
Ok . .

0 2 4 6 8 10

Figure 4. Graph of the numerical solutions based on FFM for (a) p = 0.9,k =1, (b) p = 0.9,k = 0.8 and
(c) p =1,k = 0.8, respectively, with A = 0.01,s = 0.02,5 = 0.6,a« = 0.4, 8 = 0.01, N = 1000, = 0.02
and the following initial conditions: B1(0) = 1000, 8,(0) = 15, 83(0) = 0and B4(0) = 0.

In Figure 5, the numerical solutions (20), (33) and (43) are combined for p = 0.9,k = 0.8,
A =0.01,5=0.02,6 =0.6,0 = 04,8 = 0.01, N = 1000, 1 = 0.0025 and the following initial conditions:

B1(0) =1000, By(0)=15, B3(0)=0 and  py(0) =O.

In fact, Figure 5 summarizes the behavior of numerical solutions (20), (33) and (43). The purpose
of Figure 5 is not the numerical comparison between the three solutions, as each solution is based on
an operator with a different kernel. Nevertheless, we find that the numerical solution (20) is much
closer to the numerical solution (43) compared to the numerical solution (33).
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(b)
. @_ , L 600 : :
1000t 1 0=0.9, k=0.8
0=0.9, k=0.8 sook
800} Birre(), Birre), ] Barrr (@), Barre(),
! 400
600f 1 300k
400¢ 1 200}
200¢ ] 100F . ]
N~ \\\‘—*
oL 013 . : : r
0 2 4 6 8 10 0 2 4 6 8 10
4 ¢
: ©) )
500F
400} ——
400t 0=0.9, k=0.8 0=0.9,
300 .
300 Barrp ), Barre)s Barrp @), Barre),
200} 200¢
100F 100}
0 2 4 6 8 10 0 2 4 6 8 10
4 ¢

Figure 5. Graph of the combined numerical solutions based on FFP, FFE and FFM for (a) 81({),
(b) B2(Z), (c) B3(C) and (d) B4(Q), respectively, with p = 0.9,k = 0.8, A = 0.01,5s = 0.02,6 = 0.6, = 0.4,
B = 0.01,N = 1000, = 0.0025 and the following initial conditions: 1(0) = 1000, 8,(0) = 15,
B3(0) = 0and B4(0) = 0. (Red solid color: Numerical solutions (20); Blue solid color: Numerical
solutions (33); Green dashed color: Numerical solutions (43)).

6. Conclusions

In this paper, numerical solutions of three new models of the fractal-fractional Ebola virus
have been studied. We have introduced the fractal-fractional Ebola virus in three instances of
fractional derivatives based on the power law, the exponential law and the Mittag-Leffler kernels in
the Liouville-Caputo concept which, in fact, was considered by Liouville many decades earlier in 1832.
We have constructed three schemes for these three kernels. We have compared the numerical results
used these schemes with those derived by using the finite-difference method in the case of integer
order and and we have found an excellent agreement. Finally, the effects of the various values of the
fractal and fractional order have been investigated and graphically illustrated in different figures.

The method presented in this paper is accurate and effective, and it can be used to find and
study numerical solutions for many models related to the real-world situations. This method can be
developed easily and, if we replace the Lagrange functions with other known functions, it will give
rise to another field in the vast areas of numerical analysis. One of the advantages of this method is its
ease of programming and obtaining realistic results.

In all of our calculations, we have used the Mathematica Program Package.
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