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Abstract: This manuscript focuses on the application of the (m + 1/G′)-expansion method to the
(2+1)-dimensional hyperbolic nonlinear Schrödinger equation. With the help of projected method,
the periodic and singular complex wave solutions to the considered model are derived. Various
figures such as 3D and 2D surfaces with the selecting the suitable of parameter values are plotted.
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1. Introduction

Most of the properties of nature and science explained by using nonlinear partial differential
equations (NPDEs) are closely associated with the basic properties of applied sciences. Recently,
NPDEs have been used to investigate properties of many real-world problems arising in fluid
mechanics, population ecology, shallow-water wave propagation, plasma physics, solid-state physics,
heat, quantum mechanics, optical fibers and biology. Moreover, their mathematical structures have
also been presented to literature. Therefore, many effective methods such as (m + G′/G)-expansion
method [1,2], (1/G′)-expansion method [3–5], rational sine–cosine function method [6], F-expansion
method [7], Clarkson–Kruskal (CK) direct method [8], (G′/G)-expansion method [9], Bäcklund
transformation method [10], modified exp(−Ω(ξ))-expansion function [11], the Painlevé analysis [12],
(G′/G, 1/G)-expansion method [13], modified Laplace decomposition method [14], Hirota bilinear
method [15,16], homotopy analysis method [17], modified Kudryashov method [18], etc. [19–47] have
been presented to the literature for observing of deeper properties of these models. In this sense, many
detailed explanations of some methods with the regards of physical and mathematical properties have
been presented by R. Conte and his team [48,49].

In this work, we consider the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation
(HNSE) [19]:

ihy(x, y, t) +
1
2
[hxx(x, y, t) − htt(x, y, t)] +

∣∣∣h(x, y, t)
∣∣∣2h(x, y, t) = 0, (1)

where h(x, y, t) is used to describe the complex field, x, y and t denote spatial and temporal variables,
respectively. Nonlinear Schrödinger equations are mathematical models that correspond to basic
physical phenomena that define the dynamics of optical strength propagation in single-mode optical
fibers [43–46]. Many scientists have observed various properties of this model. Analytical properties to
the Equation (1) have been obtained in [20], exact solutions Equation (1) using extended sinh–Gordon
equation expansion method [21], via Adomian decomposition method [22], with the help of the first
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integral method [23] and many other properties such as instabilities of Schrödinger equation in [24]
and also group-invariant solutions and conservation laws in [36].

In second section, we present the general properties of the (m + 1/G′)-expansion method.
This method is an extended version of the classic (1/G′)-expansion method. Specifically, when m = 0,
solutions produced in (1/G′)-expansion method can be obtained. In third section, we apply the
(m + 1/G′)-expansion method to the governing model to find many new periodic and singular complex
wave solutions. In fourth section, we discuss some important properties of new findings. In fifth
section, we introduce a conclusion about the findings and figures.

2. General Properties of (m + 1/G′)-Expansion Method

Consider the general form of NPDEs as:

P
(
u, ux, uy, uz, ut, uxyzt, · · ·

)
= 0, (2)

and using wave transformation given as:

φ(x, y, t) = U(ξ), ξ = c1x + c2y + c3z + c4t, (3)

where ci , 0, (i = 1, 2, 3, 4). Using Equation (3) into Equation (2) yields a nonlinear ODE as following:

N
(
U, U′, U′′ , U2, · · ·

)
= 0. (4)

The solution of Equation (4) may assumed in the following form according to projected method:

U(ξ) =
n∑

i=−n

ai(m + F)i = ma0 + a1(m + F)+a2(m + F)2 + . . .+ an(m + F)n, (5)

where ai, ( i = 0, 1, · · · , n) are constants, m is nonzero and real constant. With the balancing principle,
we find the value of n. Moreover, F is defined as following:

F =
1

G′(ξ)
, (6)

and G′ = G′(ξ) provides the following second order linear ordinary differential equation:

G′′ + (λ+ 2mµ)G′ + µ = 0, (7)

where λ and µ are real constants and non zero to be determined later. Putting the Equation (5) into
Equation (4) and using Equation (6), then collect all terms with the same order of the (m + F)n, we obtain
a system of algebraic equations for ci , 0, (i = 1, 2, 3, 4), ai, ( i = 0, 1, · · · , n), µ and λ. Finally, when we
solve the system to find the value of ci , 0, (i = 1, 2, 3, 4) and ai, ( i = 0, 1, · · · , n), and inserting them
into Equation (5), we can extract the periodic and singular complex wave solutions to the Equation (2).

3. Application of Projected Method

In this section, we apply the considered method to the Equation (1). Applying the following wave
transformation defined as:

h(x, y, t)= eiφ(x,y,t)U(ξ), ξ = x− tρ+ yτ, φ(x, y, t) = ax + by + dt + θ0, (8)

where a, b, d, ρ, τ, θ0 are real constants with not zero. ρ is velocity, τ is the slope of the connector
between the two stable states of the solution, a is the frequency, d is the phase, b is wavenumber, θ0 is
the center of phase. Considering Equation (8) into Equation (1), we have follows:
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(
−a2
− 2b + d2

)
U + 2U3

−

(
−1 + ρ2

)
U′′ = 0, (9)

2i(a + dρ+ τ)U′ = 0. (10)

From imaginary part, we get the following strain condition as:

a = −ρ− τ. (11)

Balancing in Equation (9), we get n = 1. Taking this into Equation (5), we get the following
solution form

U(ξ) = +a−1(m + F)−1 + ma0 + a1(m + F)1. (12)

Substituting Equation (12) into Equation (9), we get the following system of equations:(
m + 1

G′
)0

: 2m2λ2a−1 − 2m2λ2ρ2a−1 + 4m3λµa−1 − 4m3λρ2µa−1 + 2m4µ2a−1

−2m4ρ2µ2a−1 + 2a3
−1 = 0,(

m + 1
G′

)1
: −3mλ2a−1 + 3mλ2ρ2a−1 − 3m2λµa−1 + 3m2λρ2µa−1 + 6a2

−1a0 = 0,(
m + 1

G′
)2

: −2ba−1 + d2a−1 + λ2a−1 − λ2ρ2a−1 − 2mλµa−1 + 2mλρ2µa−1 − 2m2µ2a−1

+2m2ρ2µ2a−1 − (−dρ− τ)2a−1 + 6a−1a2
0 + 6a2

−1a1 = 0,(
m + 1

G′
)3

: λµa−1 − λρ2µa−1 − 2ba0 + d2a0 − (−dρ− τ)2a0 + 2a3
0 −mλ2a1 + mλ2ρ2a1

−m2λµa1 + m2λρ2µa1 + 12a−1a0a1 = 0,(
m + 1

G′
)4

: −2ba1 + d2a1 + λ2a1 − λ2ρ2a1 − 2mλµa1 + 2mλρ2µa1 − 2m2µ2a1

+2m2ρ2µ2a1 − (−dρ− τ)2a1 + 6a2
0a1 + 6a−1a2

1 = 0,(
m + 1

G′
)5

: 3λµa1 − 3λρ2µa1 + 6a0a2
1 = 0,(

m + 1
G′

)6
: 2µ2a1 − 2ρ2µ2a1 + 2a3

1 = 0.

(13)

Solving this system, we can find the following cases of the solutions to the Equation (1).
Case 1. Selecting the following coefficients

a−1 = 0, a1 =
√
−1 + ρ2µ,b = 1

4

((
1− ρ2

)(
2d2
− (λ+ 2mµ)2

)
− 4dρτ− 2τ2

)
,

a0 = 1
2λ

√
ρ2 − 1,

(14)

we have the following singular complex wave solution to the Equation (1):

h1 =
1
2

ei(dt−x(dρ+µ1)+ 1
4 y(κ−4ρτ−2τ2)+θ0)

√
ρ2 − 1

(
λ+ 2µ

(
m +

λ+ 2mµ

−µ+$τe−w(x−tρ+yτ)

))
, (15)

where w = λ+ 2mµ, κ =
(
1− ρ2

)(
2d2
−w2

)
.

Case 2. When we consider another coefficient to the Equation (1) given as:

a−1 = −m
√
−1 + ρ2(λ+ mµ), a0 = 1

2λ
√
−1 + ρ2, a1 = 0,

b = 1
4

(
−

(
−1 + ρ2

)(
2d2
− (λ+ 2mµ)2

)
− 4dρτ− 2τ2

)
,

(16)

it gives another singular complex wave solution to the governing model as:

h2 =

√
ρ2 − 1

2

λ− 2mγ

m +
γ

−µ+$e−(λ+2mµ)(x−tρ+yτ)γ

ei(dt−x(ρ+τ)+ 1
4 y(υ−4dρτ−2τ2)+θ0), (17)
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in which γ = λ+ 2mµ, υ =
(
1− ρ2

)(
2d2
− γ2

)
.

Case 3. Choosing as:

a−1 =
(−1−i

√
2)m

2
√

d2+λ2

√
−2bλ2 +

λ2τ

(
d2τ−λ2τ−2d

√
−2b(d2+λ2)+(d2+λ2)2

−λ2τ2
)

d2+λ2 ,

a0 = 1
2
√

d2+λ2

√
−2bλ2 +

λ2τ

(
d2τ−λ2τ−2d

√
−2b(d2+λ2)+(d2+λ2)2

−λ2τ2
)

d2+λ2 ,

a1 = 0, ρ =
−dτ+

√
−2b(d2+λ2)+(d2+λ2)2

−λ2τ2

d2+λ2 , µ =
i(i+

√
2)λ

2m ,

(18)

we extract the following periodic complex wave solution to the Equation (1):

h3 =

2i+
√

2−4i$e
−i
√

2λ(x+yτ+
t(dτ−

√
β)

d2+λ2 )
m

e
i(dt+by−xτ+

dx(dτ−
√
β)

d2+λ2 +θ0)

2

−i+
√

2+2
√

2$e
−i
√

2λ(x+yτ+
t(dτ−

√
β)

d2+λ2 )
m

√d2+λ2

√
−2bλ2 +

λ2τ
(
d2τ−λ2τ−2d

√
β
)

d2+λ2 , (19)

where β = d4 + 2d2λ2 + λ4
− 2b

(
d2 + λ2

)
− λ2τ2 > 0, with strain condition.

Case 4. If it is taken as following form:

a−1 = 0, a0 = −

√
λ2

(
(d−λ)(d+λ)τ2−2b(d2+λ2)+2dτ

√
(d2+λ2)2

−2b(d2+λ2)−λ2τ2
)

d2+λ2

2
√

d2+λ2
,

a1 =
(1−i

√
2)

√
λ2

(
−2b(d2+λ2)+(d−λ)(d+λ)τ2+2dτ

√
−2b(d2+λ2)+(d2+λ2)2

−λ2τ2
)

d2+λ2

2m
√

d2+λ2
,

ρ = −
dτ+

√
−2b(d2+λ2)+(d2+λ2)2

−λ2τ2

d2+λ2 ,µ =
i(i+

√
2)λ

2m ,

(20)

produces following new complex traveling wave solution given as

h4 = −

e
i(dt+by−xτ+

dx(dτ+
√
β)

d2+λ2 +θ0)

√2−2i−4i$e
−i
√

2λ(x+yτ+
t(dτ+

√
β)

d2+λ2 )
m


√
−2bλ2+

λ2τ(d2τ−λ2τ+2d
√
β)

d2+λ2

2

i+
√

2−2
√

2$e
−i
√

2λ(x+yτ+
t(dτ+

√
β)

d2+λ2 )
m

√d2+λ2

, (21)

where −2bλ2 +
λ2τ

(
d2τ−λ2τ+2d

√
β
)

d2+λ2 > 0, with strain condition.

4. Results and Discussions

First, it may be observed that Figures 1 and 2 are singular complex wave solutions to the governing
model, Figures 3 and 4 are periodic complex wave solutions for the Equation (1).Unlike many analytical
methods, we offer different solutions from the (1/G′)-expansion method [25–28] which produces
hyperbolic type traveling wave solution. What is interesting here is the idea that at the beginning,
if m = 0, the solutions produced by the (1/G′)-expansion method are obtained. However, if m = 0
is taken in Equation (20), µ is undefined. Therefore, we offered different solutions from the solution
produced by the classic (1/G′)-expansion method. Such solutions include singular points. Solutions
containing single points are important for the shock wave structure. Moreover, the solutions that
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provide the equation due to the structure of the Schrödinger equation are of the complex wave solution.
These solutions are in hyperbolic form and are different from the solutions produced in other analytical
solutions. Appropriate values are given so that the structure of the functions created by the parameters
is not disrupted. The special values given to these constants have rendered to draw the shape of the
wave at any given moment.
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42. Kaya, D.; Yokuş, A.; Demiroğlu, U. Comparison of exact and numerical solutions for the Sharma–Tasso–Olver
equation. In Numerical Solutions of Realistic Nonlinear Phenomena; Springer: Cham, Switzerland, 2020;
pp. 53–65.

43. Apeanti, W.O.; Seadawy, A.R.; Lu, D. Complex optical solutions and modulation instability of hyperbolic
Schrödinger dynamical equation. Results Phys. 2019, 12, 2091–2097. [CrossRef]

44. Arshad, M.; Seadawy, A.R.; Lu, D. Bright–dark solitary wave solutions of generalized higher-order nonlinear
Schrödinger equation and its applications in optics. J. Electromagn. Waves Appl. 2017, 31, 1711–1721. [CrossRef]

45. Arshad, M.; Seadawy, A.R.; Lu, D. Exact bright–dark solitary wave solutions of the higher-order cubic–quintic
nonlinear Schrödinger equation and its stability. Optik 2017, 138, 40–49. [CrossRef]

46. Arshad, M.; Seadawy, A.R.; Lu, D.; Jun, W. Modulation instability analysis of modify unstable nonlinear
schrodinger dynamical equation and its optical soliton solutions. Results Phys. 2017, 7, 4153–4161. [CrossRef]

47. Baskonus, H.M.; Cattani, C.; Ciancio, A. Periodic, complex and kink-type solitons for the nonlinear model in
microtubules. J. Appl. Sci. 2019, 21, 34–45.

48. Conte, R.; Musette, M. Elliptic general analytic solutions. Stud. Appl. Math. 2009, 123, 63–81. [CrossRef]
49. Conte, R.; Ng, T.W. Meromorphic solutions of a third order nonlinear differential equation. J. Math. Phys.

2010, 51, 033518. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.fluiddyn.2005.11.001
http://dx.doi.org/10.3934/dcdss.2020035
http://dx.doi.org/10.1016/j.physa.2016.02.061
http://dx.doi.org/10.1016/j.rinp.2016.11.043
http://dx.doi.org/10.1016/j.rinp.2017.02.002
http://dx.doi.org/10.1080/16583655.2020.1760513
http://dx.doi.org/10.1080/16583655.2020.1741943
http://dx.doi.org/10.1016/j.ijleo.2017.07.013
http://dx.doi.org/10.2478/amns.2020.1.00042
http://dx.doi.org/10.2478/amns.2020.1.00043
http://dx.doi.org/10.1016/j.rinp.2019.02.014
http://dx.doi.org/10.1080/09205071.2017.1362361
http://dx.doi.org/10.1016/j.ijleo.2017.03.005
http://dx.doi.org/10.1016/j.rinp.2017.10.029
http://dx.doi.org/10.1111/j.1467-9590.2009.00447.x
http://dx.doi.org/10.1063/1.3319568
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	General Properties of ( m + 1/G ) -Expansion Method 
	Application of Projected Method 
	Results and Discussions 
	Conclusions 
	References

